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Magnetic properties of the planar antiferromagnet K,FeF, have been studied using correlated-
effective-field theory. Magnetic moments in this sample are confined in a plane due to an axial
crystal field perpendicular to the plane. With the assumption that the magnetic moments lie in the
x direction and the crystal-field anisotropy lies in the z direction, the sublattice magnetization and
the susceptibilities are calculated and compared with experimental results. The exchange (J) and the
crystal-field (D) parameters which give a best fit to the experimental results are J = —4.2 cm ™! and

D=5.0cm™!

I. INTRODUCTION

K,FeF, is an example of planar antiferromagnets and it
belongs to the K,NiF, family. While all other members
of this family have a common property that their spins
point parallel to the tetragonal c axis, K,FeF, has the
peculiarity that the spins point perpendicular to the
tetragonal ¢ axis. Only very recently have its magnetic
properties become fairly accurately known, and only a
partial understanding of its magnetic data is available in
the current literature. The compound K,FeF, has been
investigated by many workers, who tried to probe various
properties by different experimental methods. Thurlings
et al.! measured the two-magnon Raman scattering and
provided an estimate of the single-ion anisotropy. Macco
et al.? measured the magnetic excitations and confirmed
the presence of large anisotropy. Spin-wave dispersion
and sublattice magnetization by the neutron scattering
technique have been observed by Thurlings et al.> The
temperature dependence of the magnetic excitation was
measured by Balucani et al.* and the magnetic field
behavior of the magnon mode was measured by Diirr and
Schleechauf.> All these experiments reveal the two-
dimensional character of this compound. ’

Direct measurements of the magnetization and the sus-
ceptibilities of this compound have become only recently
available®’ from neutron scattering, NMR, and magne-
tometer experiments. In order to interpret the low-
temperature magnetization data using renormalized spin-
wave theory, Thurlings et al.® assumed J=—15.7+0.3
K, D=5.7%0.1 K, and E =—0.49%0.03 K, while they
obtained J=-—16.4+0.3 K, D=4.3+0.1 K, and
E =-0.2940.03 K to explain the Raman scattering ex-
periment® using unrenormalized spin-wave theory. Thur-
lings et al. first studied’® the magnetization by a
Mossbauer experiment with the objective of estimating the
critical exponent () by means of a power-law fitting of

the magnetization curve. Later from neutron scattering

experiments®® they obtained the magnetization curve and
found the critical exponent (B) in the same way.
Structural studies of this compound with the help of the
Maossbauer technique!® and neutron scattering experi-
ment!! show that K,FeF, is isomorphous with Rb,FeF,.
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These investigations confirm that the magnetic moments
in K,FeF, order antiferromagnetically below 70 K with
the moments lying in the XY plane. It has tetragonal
crystal structure identical to K,MnF, and K,NiF,, and
the lattice parameters are found? to be a=4.41 A
and ¢ =12.98 A at room temperature. From Mossbauer
studies, the hyperfine-split spectrum at 71 K confirms the
divalent character of the Fe ion. From various estimates
of the transition temperature of this compound, it has
been observed that the transition temperature should lie
between 60 and 68 K. Thurlings et al.! quoted the transi-
tion temperature to be 60 K, while from Mdgssbauer
study’ they reported the transition temperature to be
67.2+0.3 K. However, performing a neutron scattering
experiment, 6 they reported the transition temperature to
be 63.01+0.3 K.

Various attempts have been made to understand
theoretically the magnetic behavior of K,FeF,, of which
one can mention those of Balucani et al.'® and Thurlings
et al.®~® Balucani et al.’®> employed a Green-function
technique and matching of matrix element (MME) ap-
proach, whereas Thurlings et al.®~% used the spin-wave
theory. As regards the susceptibility curve, they ex-
plained® different regions by using different theoretical
models. In order to reproduce the low-temperature sus-
ceptibilities, they used the spin-wave theory for longitudi-
nal susceptibilities and the molecular field theory for
transverse susceptibilities. The high-temperature suscepti-
bilities were reproduced by using the high-temperature
series-expansion method. In this paper, we will attempt to
account for the low-temperature as well as the high-
temperature magnetic behavior using the correlated-
effective-field (CEF) theory as developed by Lines.'* The
success of CEF theory in explaining the magnetic proper-
ties of low-dimensional compounds has already been ex-
amined.’’

II. THEORY

Correlated-effective-field theory goes beyond mean-
field theory because static spin correlations are taken into
account. This theory has been discussed in detail by
Lines."* In this theory the CEF Hamiltonian becomes

505 ©1985 The American Physical Society



506 S. MUKHOPADHYAY AND IBHA CHATTERJEE 31

%25]:: -— 2 J;«’a'y(S‘y )2
V.
23 7YS5,((8}) —a, (53 )) (1)
Y]

where i,j refer to the lattice sites and ¥ runs over the spa-
tial components. All the lattice points are assumed to be
equivalent in this theory. The order parameter is calculat-
ed from the equation
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where A is the direction of the easy axis. E,’s are the
eigenvalues obtained by diagonalizing the CEF Hamil-
tonian and |, )’s are the corresponding eigenstates.. The
temperature-dependent correlation parameters (a,) are
determined self-consistently from the equation
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This is computationally more convenient than the expres-
sion used by Lines.!* The g-dependent susceptibilities are
given by

Ng’u3(si:si)
KT —2[J,(§)—a,J,(0)](S}:S} )

where Sf,:S;',) has the usual meaning- given by Lines.
From this equation the uniform molar susceptibility is
calculated by setting 4 =0. .

In the compound of interest Fe’* has the electronic
configuration 3d°® and °T, is the ground-state term in the
cubic field. Since there is a tetragonal distortion in the
sample, T, again splits up into a doublet °E and a singlet
B, with B, lying lowest. From a Mdssbauer experiment
this splitting has been found to be!® ~700 K and in our
calculation only the ground-state term B, is considered.
B, is orbitally nondegenerate and it is a spin-quintet
state. The spin degeneracy can be lifted by the combined
effect of tetragonal crystal field and spin-orbit interaction.
This is incorporated in our theory by introducing a term
D(S!)? in the spin Hamiltonian [Eq. (1)]. Further, an an-
tiferromagnetic ordering demands that the nearest neigh-
bors of an up spin at the ith site are all down spins, so
that (S5 )=—(S}). Thus for planar antiferromagnets
(four nearest neighbors) considering isotropic exchange in-
teraction, our Hamiltonian becomes

H'=D (S} —4T [0, (S5 +a,(S) ) +a,(S;)?]

X Aq)= @)
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+8JSE(SIY 1 +ay), (5)

where the spin moments are assumed to be aligned in the
x direction. By solving Eqgs. (2), (3), and (5) self-

§0nsistently, the uniform molar susceptibility is calculated
rom
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FIG. 1. Temperature dependence of the sublattice magnetiza-

. tion.
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III. RESULTS AND DISCUSSION

Using the correlated-effective-field theory as discussed
in Sec. II, the antiferromagnetic order parameter has been
calculated and shown in Fig. 1. In this figure, the theoret-
ical results are represented by a solid curve and the experi-
mental results are denoted by dots. As our Hamiltonian
contains two parameters (D and J) only, the magnetic
data are reproduced with a suitable choice of these two.
parameters. The best fit parameters are J =—4.2 cm™!
and D =5.0 cm~! which shows that the crystal field and
the exchange interaction are of comparable magnitude.
As evident from Fig. 1, an excellent agreement with ex-
perimental results is obtained with this set of parameters
and our theoretical curve gives a correct estimate of the
transition temperature® ( Ty ~ 63 K).

Using the same set of exchange and crystal-field param-
eters (J=—4.2cm™!, D=5.0 cm™!) and with g =2, the
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FIG. 2. Longitudinal (X,) and transverse (X,,X) susceptibili-
ties as a function of temperature.
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FIG. 3. Variation of correlation parameters with tempera-
ture.

susceptibilities in different directions (x,y,z) are calculat-
ed in the temperature range 0—300 K. The theoretical re-
sults are shown by solid curves in Fig. 2 and these results
are compared with the experimental results denoted by
solid and open circles in the same figure. The solid circles
represent the data obtained from magnetometer experi-
ment and the open circles represent those obtained from
NMR experiment. The variations of correlation parame-
ters with temperature, as determined self-consistently in
our calculations, are shown in Fig. 3. As Fig. 2 shows,

there is a qualitative agreement between the theoretical
and the experimental results in the whole range of tem-
perature 0—300 K and a quantitative agreement is found
in the ordered phase only. The transverse susceptibilities
in the ordered phase and the susceptibilities in the
paramagnetic phase fail to agree quantitatively because in
our calculation, only the crystal-field ground state B, is
considered. This is justified only in the calculation of
longitudinal susceptibilities (X, ) at low temperatures. In
the calculations of X y»X; in the ordered phase and X’s in
the paramagnetic phase, the excited crystal-field states
which are supposed to be populated at higher tempera-
tures should also be included. Therefore, if the mixing of
low-lying excited states with the ground state due to spin-
orbit and crystal-field effects is allowed, we hope, a quan-
titative agreement could be obtained. Figure 2 shows a
small gap in the theoretical curve near the critical tem-
perature. This is due to the fact that in a narrow region
of temperature around Ty, we have not been able to find
a self-consistent solution as numerical convergence is very
poor in this region.

Although the two-dimensional character of K,FeF, is
well established,® our present study also confirms this
character. Therefore, we may conclude that CEF theory
can not only explain the magnetic properties of three-
dimensional compounds, but it explains the magnetic
behavior of planar compounds as well.
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