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The charge distribution, Knight shift K„and total energy E of intermetallic LiT1 and NaTl have

been calculated by the relativistic augmented-plane-wave method. For the B32-phase NaTl it is

found that the valence-electron bands are separated by a band gap. The lower valence bands are
built up by the 6s electrons of Tl forming covalent s-like bands within the diamondlike Tl sublattice.
These 6s bands give a negative contribution to K, (Tl) of —0.52% due to the exchange polarization
effect. The valence bands above the 6s bands are sp bands of predominantly metallic character. In
the B2-phase LiTl all valence bands overlap and the covalent character of the lower valence bands is

much less pronounced than in NaTl. Theoretically the following values for K, are found: X,(LtT1)
= 0.003go, E,(Li Tl) =1.0%%uo, K,(XaTl) = 0.002%, and K, (NaTI) = —0. 14%%u~. The agreement
with the experimental results is good besides K, (NaTl) [K,(expt. , NaTl)= —0.96%%ui]. From the

shape of the electron bands near the Fermi surface one could conclude that the difference between

K, (theor. , NaTl) and K, (expt. NaTI) is caused by a diamagnetic contribution to E,. To obtain some

insight in the stability of Zintl phases (B32 structure), the energy difference AE =E(B2) —E(B32)
is calculated. One obtains AE(LiT1) = —0. 15 eV per atom and bE(NaTl)=+0. 005 eV per atom.
The physical mechanisms which lead to the different signs in AE are discussed.

I. INTRODUCTION

Intermetallic NaTl is the prototype of the Zintl phases
(B32 structure), ' whereas LiT1 crystallizes in the CsC1-
type structure (B2 structure). In a simple picture both
structures, 82 and 832, are superstructures of the bcc lat-
tice (Fig. 1). Compared to most intermetallic phases the
Zintl phases have some unusual physical properties: (a)
The nearest neighbors are four like and four unlike atoms,
whereas for most structures (e.g. , the B2 structure) the
nearest neighbors are unlike atoms; (b) the chemical shift
of the NMR signal (Knight shift K, ) is distinctly smaller
than the corresponding shift in the pure metals or in "nor-
mal" alloys; ' e.g., X,( Tl) is equal to —0.96% in
NaT1, 1.66&o in Tl metal, " and 1.2%%uo in LiT1; and (c) the
chemical bond in Zintl phases is described as metallic, co-
valent and ionic.

To get some insight in the unusual electronic properties
of the Zintl phases, we have compared the electronic
structures of the Zintl phase NaT1 and the B2-phase LiT1.
LiT1 and NaT1 have been shown for three reasons. First-
ly, both are alkali-thallium phases. Secondly, for both
phases the Knight shifts are very different (see above).
Thirdly, the 82 and the 832 structures are both super-
structures of the bcc structure.

There are several ways to calculate the difference in the
ordering energies for the 82- and the 832-type structures.
The comparison of the 82- and 832-type structure has
been performed in the literature using the same neighbor-
ing distances for both lattices. From the pseudopotential
method ' one obtains differences in the band-energy
values. However, significant differences could not be
found by comparing B2 and B32-type co-mpounds.
McNeil et al. have found that Zintl phases are only
found for those compounds AB for which the sizes of A

=Na

=Li

FICx. 1. Unit cells for NaTl and LiTl. a is the lattice con-
stant.
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and 8 are nearly the same.
In this paper we discuss the influence of the band struc-

ture as well as the influence of the size of the atoms on
the lattice energy for the compounds LiT1 and NaTl. For
this purpose we have also calculated the band structure of
LiT1 for a hypothetical B32-phase LiT1, with name
LiT1(B32). In an analogous manner the band structure of
hypothetical NaT1(B2) has been studied. The calculation
for both structures for the same compound have been per-
formed for lattice constants a+32 2a~2. Then the neigh-
boring distances of the atoms are the same for both lat-
tices, and both lattices only differ in the arrangement of
the atoms on the lattice sites; see Fig. 1. For this case the
difference in the ordering energy b,E =E (B2) —E (B32)
can be estimated very easily by calculating the difference
in the sum of the one-electron energies using the same po-
tential around the atoms. ' AE is also calculated from
the energy expressions, which one gets from the loml-
density approach. "'

From Fig. 1 it can be seen that in the Zintl-phase NaT1
the Na and the Tl atoms form sublattices of the diamond
type. In the valence-state picture the covalent bonds in di-
amond are formed by sp hybrids. Therefore it is as-
sumed that similar bonds are built by the diamond-type
sublattice of the Tl atoms in NaT1. ' Since the tetra-
valent elements crystallize in the diamond structure, it is
assumed that the trivalent Tl receives the 4th electron
from the Na atom. Therefore, a large charge transfer
should take place in NaT1 from Na to Tl. An indication
for this charge transfer gives the Knight shift, which on
one hand is nearly zero at the Na site' (that is, one finds
roughly the NMR signal of Na+), and which is on the
other hand negative at the Tl site, indicating pure p con-
duction bands. ' In the present paper the charge distribu-
tion and the character of the chemical bond in NaT1 and
LiT1 are studied by comparing the amount of charge in
the different atomic region of the solid and by plotting
contour maps of the charge density for the electron states
of these phases.

In addition to the energy states and the charge distribu-
tion, we have studied the Knight shift K, . The contribu-
tions to K, are caused by the spin (direct' and exchange
polarization' ' terms) and by angular momentum (di-
amagnetic' and orbital' effects). In simple metals and
alloys with sp-like wave functions the direct contribution
caused by the Pauli paramagnetism' is the main part of
E,. It is expected that this also holds for the Knight shift
in LiT1. In NaT1 the situation is much more complicated.
Firstly, NaTl is diamagnetic, ' and we expect, that di-
amagnetic Landau contributions to K, are also impor-
tant. Secondly, calculations of the hyperfine-coupling
constant for the Tl atom have shown that the contribu-
tion of the exchange polarization of the 6s electrons by
the 6p electron is large. Therefore, the exchange polariza-
tion of the inner valence bands in NaT1 should give a dis-
tinct contribution to E,. Thirdly, since the conduction
bands are expected to be sp-hybrid bands, the direct con-
tribution to K, must also be considered. In the present
paper only the contributions mused by the spin, including
the spin-orbit coupling, could be investigated but not the
diamagnetic Landau contribution.

The calculations have been carried out by means of a
relativistic augmented-plane-wave (RAPW) technique '

using the muffin-tin approximation for the construction
of the crystal potential and using the ansatz of the local
electron-density theory for the total energy. " Since
a large amount of computer time is needed for a full self-
consistent RAPW calculation, the self-consistent muffin-
tin potential was calculated by the simpler scalar RAPW
(SRAPW) method, for which the spin-orbit coupling is
neglected and where the spin has a good quantum num-
ber. Therefore in the following we mean by RAPW a full
relativistic augmented-plane-wave calculation ' using a
self-consistent potential obtained from SRAPW calcula-
tions. In the next section the formulas for the total ener-

gy and the Knight shift are briefly outlined and details for
the used numerical procedure are given. In Sec. III the re-
sults of the band-structure calculations for LiT1 and NaT1
are presented, and in the last section these results are dis-
cussed in view of the questions of the electronic properties
introduced above.

II. THEORY

E =T + U +E„+E~~,
N

T = g (t/r*;( icy V+ —,'c—)g;), (2)
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/

(5)

1V is the number of electrons and Z, is the nuclear charge.
The wave functions (4-spinors) P; are solutions of the
one-electron Dirac equations

[ ica V+ —,'Pc—+ V(r)jg;=e;g;,
sU &E.. sUV(r)= + "' = +p„, . (7)

There are numerous approaches to the exchange-
correlation energy E„and potential p„ in the litera-
ture. '2' In the present work we have used the relativ-
istic exchange energy proposed by MacDonald and
Vosko and the correlation energy suggested by Vosko
et al. for all calculations.

The potential V(r) [Eq. (7)] and the electrostatic energy
U [Eq. (3)j are calculated on the basis of the muffin-tin

A. Total energy

The total energy is calculated on the basis of the relativ-
istic version of the local-density-functional approach and
on the basis of the muffin-tin model. The total energy of
a solid with frozen nuclei is given by"
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po=Q'&~', (S)

approximation. The volume of the unit cell co is separated
in the volume of nonoverlapping atomic spheres tp„
s= Li, Na, and Tl, and the volume between the spheres cu'.

The following three approximations are made for calcu-
lating V(r) and U. (a) The electron density in co' can be
approximated by a constant

s =s
s+s

CsCl

—2.837 297
—0.801 936

Na Tl

—5.386 791
—1.891 66

TABLE I. Values aM ~ in atomic units (ao Ry) for the CsC1-
and the NaTl-type structures. a is the lattice constant; see Fig.
1. The values are calculated by Hund's method (Ref. 31), taking
the electrostatic potential from Hajj (Ref. 32).

where Q is the electron charge in units of —e within the
volume co'. (b) The electron charge density inside the
muffin-tin spheres p(r) can be replaced by the spherical
mean

p, (r)= f f p(r)dtpd cost) .1

4m

(c) The distant terms are calculated by a procedure pro-
posed by Slater and de Cicco.

Then one obtains for the potential inside the muffin-tin
s with radius R,

m 3 ~p 3 E ~s

Pp —— , +to, +— + g E,M„
s = I s s s'=1

For the total energy per unit cell one obtains
I

m R
E = T+ g —Sm f Z, rp, (r)dr

s=1

(16)

V, (r) = V, +P, +p„,(p, )

where Vs is the 1ocal Hartree potential

(10)

V, (r)= —2 +Svr —f p, (r')(r') dr'
I 0

R

+ f p, (r')r'dr'

and Ps is equal to the distant term

COs S

Ps= —3pp —2 g E M„,
s s'=1

(12)

Es =Zs —Qs +po~s
R

Q, =4m p, (r)r dr,
0

(13)

(14)

and the values for M„are given in Table I. The summa-
tion in Eq. (12) is taken over all different kinds of muffin
tins within the unit cell; the number of atoms in the unit
cell is g v, =m.

Outside the muffin tins the potential is a constant Vp..

Vo =do+@..(po»

where C,„, is the distant contribution to E,
m s 6 m (to po)C.„,= g g M„E,E,.——g

s =1 s'=1, s =1 Rs

s pcsm E ( )

1 Rs
(1S)

P =Pc +Pb»~ (19)

where p, and pb are the charge densities for the core and
the electrons treated as band electrons, respectively, one
obtains for this contribution to the total energy

In the case of metals (one muffin tin per unit. cell), these
equations reduce to the ones given by Janak and for the
'case of the Hartree-Fock-Slater method to those given by
Asano and Yamashita.

In the following we are only interested in the ordering
energy. Therefore, we omit the kinetic energy and the lo-
cal potential energy of the core electrons (those electrons
which have no charge outside the muffin tins). Writing

pb (r') [pb(r) +2p, (r) ]
Eb ——Tb+ g —Sm f '

Z, rpbdr+ f f, ' «d&'+4' r'e. spb dr +E c +Co t
0 t0, ir r'i 0

L

(20)

where e„, is the exchange-correlation energy per electron. Using Eqs. (6) one can write

pb(r)pb(r') R

Eb = g e; —y„ f f ', dv. dr'+4m f (e„, p„,)pbr dr +E„'—",'+ g Q,p'„",'+C,„,—g Q,p, ,
~r —r'~

L

(21)

where Ez is the Fermi energy.
The difference in the ordering energy bE=E(B2)

—E (B32) can be determined from b,E =Eb(B2)
—Eb(B32), where a self-consistent field (SCF) calculation

I

has to be performed for the B2 as well as for the B32
phase. However using lattice constants a~32 ——2a~2, AE
can be calculated more efficiently from the differences of
the first term of Eq. (21) by carrying out band-structure
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calculations for B2 and B32 phases with the same
muffin-tin potential. ' If Njj2(E) and Nz&2(E) are the
density of states (DOS) for the B2 and the B32 phases,
one obtains

EF(B2)
hE =AE = f, ,

ENg2(E)dE

H hr, , ; = —,Eg s;.5{r;—r, ),
PB

+B pOpB 0 033 54X 10 Ryao

(30)

(31)

hyperfine Hamiltonians in a cubic surrounding can be
written as

(22)
EF(B32)f ENID g2(E)dE

where e~ are the energy values at the bottom of the bands. a;=
0 s;

s; 0

~ec p )(r
Hh~, ; ——cea; A;= IBa;.

27TA PBf'.
(32)

(33)

B. %ave functions

The wave functions g; are linear combinations of the
relativistic augmented plane waves @J.

where s; is the spin operator and pB is the Bohr magne-
ton. The Knight shift K, can be expressed in first order
as

fi = g cj,m pj, m

J,m
(23) g Ehfs, i

Xs=
Emagll

(34)

(24)

(inside muffin tin s).

O'J'm =
ym

exp [ikj.rjo"kj-J™ (25)

(outside muffin tins). The X"„are the spin-angular func-
tions and the X are the spin functions. For the SCF
calculations in this paper the spin-angular part of the
wave functions is simplified by using relativistic spin
wave functions. Within this approximation the large
component of the basis function is given by

Rwhere Eh&, ; is the expectation value of H hi;; and H hf, ;,
which is

3 co PB
(35)

(36)

(I'; ) is equal to 1 for free electrons.
In the relativistic case one obtains from Eqs. (28) and

(32)

In the nonrelativistic treatment equations (27) and (30)
yield the usual Fermi contact term for (F; )

{s) p (s) mg~ g~=gg Y( {26)

P;(r)=Pg „(r), m =+—,
'

(27)

For the calculation of the hyperfine properties (see below)
it is helpful to use in the full relativistic procedure the
wave functions, which correspond to these pure spin
states. The electron states with wave-function equations
(23)—(25) are twofold degenerate. For these degenerate
states with wave functions g and pn, we have taken those
linear combinations g+ and g, which diagonalized the
electronic Zeeman Hamiltonian. Then the full relativistic
wave functions can also be indicated by the quantum
numbers k, n, and m:

Then the spin quantum number m of the electron states is
a good quantum number and the wave function can be
described by m, the wave vector k and the band index n:

(38)

For spin-restricted calculations only the single occupied
states at the Fermi surface I' contribute the E, and one
obtains the well-known expression'

N„{Ep)
X„=EB

(39)

(40)

4~A p

which is given explicitly for RAPW wave-function equa-
tions (23) and (24) elsewhere.

In the next sections the bandwise contributions to the
Knight shift E, shall be considered. Therefore E, is writ-
ten as

f;(r)=pi, „(r), m =+ . (28) (41)

Emagn = P '~ (29)

The one-electron nonrelativistic (NR) and relativistic (R)

C. Knight shift

In SI units the Zeernan energy of the nuclear moment p
in a magnetic field 8 is given by

where g„and X„are the contributions of the band n to
the Pauli susceptibility and the density of states, respec-
tively.

To include into our investigations the contribution
caused by the exchange polarization of the lower valence
states, self-consistent spin-polarized electron states
have been calculated by inserting a magnetic energy of
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+0.0005 Ry in the one-electron equations. Then, the
self-consistent potential V(r) becomes spin 'dependent and
the susceptibility can be calculated from the difference in
the number, X, and X„of spin-up and spin-down elec-
trons in the band n:

X„' =+g
copgB

(42)

The difference between X„' [Eq. (42)] and X„[Eq. (40)] is
caused by the exchange enhancement effect.

Within this method the Knight shift can be calculated
as an integral over all occupied states in k space (an in-
tegral over the Fermi volume):

+ I, (P„„)dr*
Conl

(43)

where co* is the volume of the Brillouin zone and m*„, and
co«are the Fermi volumes of the nth band for the spin-up
and spin-down electrons. In the nonrelativistic theory the
expression inside the large parentheses is equal to the spin
density at the nucleus considered multiplied by co. Ac-
cording to Eqs. (39)—(43), three different values for the
Knight shift have been calculated: (I) the direct contribu-
tion, Eq. (39); (II) the direct contribution using the ex-
change enhanced susceptibility, .Eq. (42); and (III) the
value deduced from the spin-polarized procedure, Eq.
(43).

Comparing method I with methods II and III one ob-
tains the influence of the exchange enhancement of the
susceptibility on the value of K, . Method II takes only
the enhancement of the susceptibility into account,
whereas method III gives in addition the exchange polari-
zation of the inner valence states.

Besides the different procedures to sum over the elec-
tron states to get X„we also investigated the influence of
the use of the different types of wave functions g; [Eqs.
(27) and (28)] on the calculated hyperfine fields. This
means that the expectation value (FI ) can either be calcu-
lated from the SRAPW wave functions using Eq. (36) or
from the RAPW wave functions using Eq. (37).
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cell with one formula unit LiTl is used. However, to en-
sure that the accuracy as well as the convergence are the
same for the 82 and 832 calculations, we have done test
calculations for LiTl for the larger fcc unit cell with the
atomic arrangement corresponding to the B2 structure
(see Fig. 1). Therefore, the following data correspond to
the calculations in the fcc unit cell. The k points, for
which the SCF calculation have been performed, have
been chosen equidistant in k space. Most calculations
have been done for 89 k points in the irreducible —,', th of
the Brillouin zone. Integration over k space has been per-
formed by extending the tetrahedron method of Lehmann
and Taut to volume integrals.

The majority of calculations have been done with a
maximum angular momentum l,„=5. The number of
RAPW basis functions is chosen according to the Switen-
dick criterion S=5 (about 60 reciprocal-lattice vectors
k).

The convergence and accuracy of the calculations have
been checked by bisecting the mesh width in k space, by
increasing I „to 10, and by setting S=6. A change in
the difference of the ordering energy and in the Knight
shift of less than 5% is found.

D. Numerical details

In this section the input data for the RAP%' calculation
are listed. For the SCF calculation the following electrons
are treated as band electrons:

Tl: 5d' 6s 6p',
Na: 3s',
Li. 2s'.

-2.5

-5.0

-10.0 (

X M

k

I I

0.2 0.W 0.6 0.8 1.0
oos( v-')

The lattice constants are a(LiT1) =6.472ao and
a(NaTl) = 14.15ao. The muffin-tin radii are always taken
as half the nearest-neighbor distance.

The fcc unit cell for the NaT1-type structure is one-
fourth of the unit cell given in Fig. 1 with two formula
units NaTl. For a B2 phase as LiT1 the simple cubic unit

FIG. 2. Left: Band structure of the first three valence bands
of LiTl and the first six valence bands for NaT1. The zero of
the energy scale is the Fermi energy EF. Right: Density of
states (DOS) X(E) for the bands shown on the left-hand side.
Curve 1, total DOS per unit cell; curve 2, partial DOS for the Tl
sphere; curve 3, partial DOS for the alkali sphere.
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III. RESULTS

The band-structure calculations for LiT1 and NaT1 have
been performed by the self-consistent scalar relativistic
augmented-plane-wave method (SRAPW). The resulting
band structure and the density of states (DOS) for the
valence electrons are shown in Fig. 2. These bands do not
overlap with the Sd bands of Tl, which are not shown
here. Since the size of the unit cells for LiT1 and NaT1
are different, one band of LiT1 corresponds to two bands
for NaTl. Comparing NaTl and LiT1 one can see that the
different bands overlap more in LiT1 than in NaT1. For
NaTl the bands show only a small overlap and the Fermi
energy lie between the 4th and 5th band in a region of low
DOS, which is also found for the Zintl-phase LiA1.

Figure 3 shows a comparison between the
DOS(SRAPW) and the DOS(RAPW). Differences be-
tween the SRAPW and RAPW approaches are found for
the higher valence bands and the DOS at the Fermi sur-
face. For NaTl the DOS at the Fermi energy is smaller
by a factor of 2 for the RAPW calculation. The differ-
ences between the SRAPW and the RAPW results are
caused by the spin-orbit coupling. It is also found for
PbTe (Ref. 41) that the omission of the spin-orbit cou-
pling mostly influences the higher valence bands.

In addition to the total DOS, the local DOS

q, (E)=N(E) I p(r, E)dr (44)

is shown in Fig. 2. p(r, E) is the electron density of the
states with energy eigenvalue E, X(E) is the DOS, and co,

is the volume of the muffin-tin sphere s. From the curves

q, as a function of E one can see that the charge distribu-
tion is significantly different for the lower valence bands
(1st band of LiT1 and 1st and 2nd bands of NaT1) and the
upper valence bands (2nd and 3rd bands of LiTl and 3rd
and 4th bands for NaT1). For the lower bands qT~(E) is
much larger than q, lk, &;(E), that is, the charge for these
states is more or less concentrated on the thallium
spheres. This effect is more pronounced in NaTl than in
LiT1. On the other hand, for the upper valence bands the
electronic charge is much more evenly distributed between
the thallium and alkali spheres.

The resulting character of the chemical bond can be
seen in Fig. 4, where contour maps of the charge density p
are plotted for the (101) plane for some electron states for
the lower and upper valence bands. For a pure metallic
bond the charge distribution should be nearly constant
outside the regions of the ionic cores. The sizes of the
ionic cores are plotted in Fig. 4(a). The charge-density
contour lines shown in Fig. 4 are normalized to a constant
charge density po ——I /co&2.

For NaT1 one finds for the electron states of the lower
valence bands strong covalent bonds of nearly pure s char-
acter formed by the diamondlike Tl sublattice. For the
states of the upper bands the bonds are more metalliclike.
This metallic character is indicated in Fig. 4 by the fact
that the characteristic bonding directions are less pro-
nounced for these states especially in the region outside
the ionic cores. In the region between like atoms the

NoTl LITl

2.0

N tev ')

1.0— (b)

(c)

0.5

0
-10.0 -7.5 00 25

E (e~)
7.5

FIG. 3. Density of states N(E) per formula unit AB for the
first three valence bands of LiTl and for the first six valence
bands of NaTl. Thick line N(E) deduced from the full RAPW
procedure; thin line, N(E) deduced from the scalar RAPW
(SRAPW) procedure.

FIG. 4. Display of contour lines of the charge density p for
one electron for the (101) plane for LiT1 and NaT1 calculated by
the SRAPW procedure. The numbers at the contour lines corre-
spond to the normalization p'=5p/po, where po is equal to the
constant distribution of the charge of one electron in LiTl and
NaT1; po ——1/a for LiTl and po ——1(a/2) for NaTl with values
of a given in Table II. It follows that the contour line with
p=po is labeled by the number 5. (a) Atomic positions in the
(101) plane thin-line circles, muffin-tin spheres; thick-line cir-
cles, sizes of the atomic cores Li+, Na+, and Tl +. (b) Contour
lines for p' for an electron state of the first valence band. (c)
Contour lines for p' for an electron state near the Fermi surface.
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charge density shows only small fluctuations. However
between the Na atoms p is distinctly smaller than po,
whereas p &po between the Tl atoms. Furthermore, one
finds a gradient in the charge density in the region from
the Tl to the Na atoms.

For LiTl the bonds are more metalliclike than for NaT1
in the sense that in LiTl the electronic charge outside the
ionic cores is more uniformly distributed than in NaT1.
Even for the lower valence band one finds for LiTl a dis-
tinct amount of charge in the Li atomic sphere.

The charge distribution is given quantitatively in Table
II. The total amount of charge inside the Na sphere in
NaT1 is equal to 0.5 (column 7 in the last line of Table II),
which is less than the charge inside the Li sphere in LiT1
(=0.7), although the muffin-tin sphere of Li is smaller
than that of Na. Besides this band-structure result listed
in Table II, we have also calculated the charge distribu-
tion for LiT1 and NaT1, which one obtains from overlap-
ping the charge densities of the free atoms. Then one ca1-
culates the charge inside the atomic spheres without any
charge transfer. This yields q(Na)=0. 6 for Na in NaTl
and q(Li)=0.7 for Li in LiT1, and shows that a charge
transfer takes place in NaT1 from the Na atoms to the Tl
atoms but no distinct charge transfer could be found in
LiT1. However, the charge transfer in NaT1 is less than
for an ionic phase Na+Tl; see 'also Ref. 43. The
charge-transfer effect for NaT1 can be seen in Fig. 5,
where the charge density of the valence electrons is plot-
ted for the direction of nearest neighbors [111];see Fig. 1.
One can very clearly see the small amount of charge in
the nonbonding region between the Na atoms.

In Tables III—VI the results for the calculated hyper-
fine fields are presented. Table III contains the hyperfine
expectation values for one k point for LiT1. From this
table the different contributions to the hyperfine fields as
well as the differences in the fields gained from the
SRAPW and RAPW procedures can be studied. Al-
though the SRAPW and the RAPW procedures give simi-
lar results for the charge distributions and the density of

0.04

0.02

0
NG

0.04

I
1~~—

0.02

0.04

0.02

i ~o

Tl Tl
FIG. 5. Charge density p for the valence states of NaTl for

the (111) direction calculated by the SRAPW procedure. p is
plotted from one nucleus site to the next nucleus site. The solid
lines show the band-structure results whereas the dotted lines
give the result from overlapping the charge densities of the free
atoms Na and Tl.

states, the. calculated hyperfine fields are quite different
for both methods; the reasons are discussed below.

It is found that for most electronic states the s contri-
bution to the hyperfine field is large compared to others.
This is also found for PbTe. However, for those elec-
tronic states having a small amount of s-like charge, the p
contributions to the hyperfine fields are of the same size.

TABLE II. Charge inside and outside the atomic spheres Q, and Q,„, for the SRAPW and the RAPW calculations for LiTl and
Na Tl for lattice constants a(LiTl) =6.472a0 and a{NaTl) = 14.15ao and volumes of the atomic spheres co~;(LiT1)
=co~~(LiT1)=84.134a and coN, (NaT1) =~~~(NaT1) = 113.569a, All values are given per formula unit LiTl and NaTl.

LiTl

1st band
2nd band
3rd band
Total

Number of
electrons

2.000
1.675
0.325
4.000

SRAPW

Qalkali

0.211
0.430
0.072
0.713

Qri

1.228
0.550
0.129
1.907

Q-i

(a) LiTl
0.561
0.695
0.124
1.380

Number of
electrons

2.000
1.739
0.261
4.000

RAPW

Qalkali

0.210
0.413
0.061
0.684

Qri

1.230
0.630
0.098
1.958

0.560
0.696
0.102
1.358

1st band
2nd band
3rd band
4th band
5th band
6th band
Total

1.000
1.000
0.994
0.954
0.052
0.0004
4.000

0.061
0.046
0.224
0.141
0.014
0.000
0.486

0.707
0.761
0.399
0.443
0.020
0.000
2.330

{b) NaTl
0.232
0.193
0.371
0.370
0.018
0.000
1.184

1.000
1.000
1.000
0.980
0.020
0.000
4.000

0.061
0.046
0.206
0.143
0.007
0.000
0.463

0.707
0.761
0.432
0.473
0.006
0.000
2.379

0.232
0.193
0.362
0.364
0.007
0.000
1.158
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000 0 A large cancellation between the different p contributions
by integrating over k space is found. Such a large p con-
tribution is missing in PbTe, because the electronic states
at the Fermi surface (L6+ in Fig. 1 of Ref. 41) have a
dominant s component.

The data which one obtains from the Fermi-contact
Hamiltonian using SRAPW wave functions are much
larger than the ones resulting from using the correct rela-
tivistic method. The large difference in the values of
(F~) for Tl is caused by the following three effects: (a)
the density at the Tl nucleus is about 3 times larger for
the SRAPW wave functions than for the RAPW wave
functions; (b) the omission of the dipolar terms by using
the Hamiltonian in Eq. (30) instead of Eq. (32); (c) the
slight divergence of the relativistic wave functions near
the nucleus.

The results for the hyperfine fields from RAPW wave
functions are also compared with those from relativistic
orthogonalized-plane-wave wave functions (ROPW).
Since calculated hyperfine fields from ROPW's are avail-
able for Cs metal, we have calculated the hyperfine
fields (F;), Eq. (37), for this metal. Tterlikkis et al. ~~

have gotten for the value of F'=8'(F; )l3 from ROPW
E'(Cs) = 18 571, whereas our results from non-self-
consistent RAP W calculation give 13 500 & F' ~ 19 500,
depending on the direct in k space.

In Tables IV—VI the results for the Knight shift calcu-
lated by methods I—III (see Sec. II) are given. For com-
parison purposes, the experimenta1 results are also listed.
From the results for both alloys (LiT1 and NaTl), one can
deduce the following general trends. The values gained
from the scalar relativistic wave functions (SRAPW) are
much larger than the experimenta1 results. This was ex-
pected, as was shown above by the analysis of the hyper-
fine fields. Furthermore, the values for IC, (T1) gained
from the integration over the Fermi volume (method III)
are closer to the K, (expt. ) than those gained from the in-
tegration over the Fermi surface (methods I and II). The
reasons for this are twofold: Firstly, there is a large ex-
change polarization contribution of about —0.23% per
electron of the lower valence bands (Tl 6s bands). Second-
ly, for those bands for which a small s character is found
at the Fermi energy or for which the DOS(EF) is small,
the contribution from polarization effects from these
bands can be of the same order as the direct contribution
from the Fermi surface.

Comparing the theoretical and the experimental results,
one finds good agreement only for LiTl. For NaT1 we
have given two different values for the total theoretical re-
sult. The first value K, (Tl) =0.99'Po belongs to the
stoichiometric phase NaT1 with 4 valence electrons per
half fcc unit cell (X~E ——4), i.e., 1 "molecule" per half unit
cell. The largest contribution in this case comes from the
5th band, which is only occupied by 0.02 electrons per
half unit cell (see Table II). However it is known, that the
IA-III ' compounds of the Na Tl type are "defect
phases". ' In these phases vacancies at the positions of
the alkali-metal atoms of 2—4% are present. ' As dis-
cussed by Asada et al. for the case of LiA1, the Fermi
energy is shifted according to the smaller NvE. Assuming
4% vacancies for NaT1 at the Na sites (N~E ——3.96), the
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TABLE IV. Paramagnetic spin-susceptibility P and Knight shift K, for LiTl calculated by three different methods (see Sec. II).
Method I, integration over Fermi surface [Eqs (39) and (40)]; method II, including the exchange enhancement of J [Eqs. (39) and
(42)]; method III, integration over Fermi volume [Eq. (43)]. The values are given for the scalar relativistic (SRAPW) and full relativ-
istic (RAPW) procedure.

Xpf

Eq. (40)

10+
Xrf

Eq. (42)
Method I

7Li 205Ti

10 K,
Method II

'Li 205Tl
Method III

7Li 205Tl

SRAPW
1st band
2nd band
3rd band

Total

2.87
3.08

7,20
7.40

0.0018
0.0026
0.0044

0.65
4.60
5.25

0.0046
0.00061
0.0107

1.62
11.06
12.68

0.0003
0.0041
0.0059
0.0103

—3.00
1.44

10.61
9.05

RAPW
1st band
2nd band
3rd band

Total
E, (Expt.)'

2.04
2.52

5.05
6.19

0.0016
0.0015
0.0031

«0.025

0.05
0.51
0.56
1.2

0.0039
0.0037
0.0076

«0.025

0.12
1.24
1.36
1.2

0.0010
0.0036
0.0037
0.0083

«0.025

—0.46
0.32
1.17
1.03
1.2

'References 2 and 5; E,( Li) is found to be very small compared to K,{'Li) in Li metal.

TABLE V. Bandwise contributions to the paramagnetic susceptibility g„and Knight shift K, „ for NaTl. The SRAPW and
RAPW results are listed in the first and second line, respectively. P„and K, „are calculated by three different methods; see caption
of Table IV.

Band n 10 g„ 10 g„'
Method I

23N 205Tl

10 K,,„
Method II

23N 205Tl
Method III

23'Q 205Tl

0.33

1.76
0.78
4.91
2.90
0.06
0.001
7.006
3.69

0.47

2.18
0.85
5.59
3.31
0.09
0.001
8.33
4.17

0.001

0.0003
0.0009
0.1172
0.0882
0.0022
0.003
0.12
0.09

0.332

2.048
0.168

12.58
1.14
0.16
0.00

15.12
1.31

0.0026

0.0004
0.0010
0.1332
0.1007
0.0032
0.0003
0.14
0.10

0.46

2.536
0.183

14.330
1.30
0.254
0.00

17.58
1.48

0.0006
0.0005
0.0006
0.0004
0.0008
0.0001
0.0002
0.0011
0.1242
0.0993
0.0002
0.0006
0.13
0.10

—1.66
—0.25
—1.98
—0.27

0.60
0.04
2.56
0.20

13.82
1.26
0.18
0.01

13.52
0.99

TABLE VI. Knight shift K, for NaTl from full relativistic
APW calculations (method III in Sec. II) for different numbers
of valence electrons per half fcc unit cell (X~E).

%vs

4
3.96

Expt.'

10'SC,(Na)

0.10'
0.0025b

—0.016

10 I(,(Tl)

0 99a
—0.14b
—0.96

'Last line from Table V.
'The bandwise contributions are X, &, X, 2, and IC, 3 as given in
Table V; K, 5 ——0 and X,;q( Na) =0.0017% and
E, 4( Tl) =0.34%.
'References 2 and 5.

Fermi energy is shifted below the 5th band, and a total
K, (Tl,theor. ) = —0.14% results. This means that the neg-
ative contribution from the exchange polarization be-
comes larger than the Fermi contact term.

Finally in Tables VII and VIII the differences in the or-
dering energies AE for LiTl and NaT1 are shown. In
Table VII the results of b,E on the basis of Eq. (22) are
given, and in Table VIII the different energy terms from
Eqs. (20) and (21) are listed.

We have performed the SCF calculations for both
structures, 82 and 832. However, for the data given in
Table VII, one needs only one muffin-tin potential (see
Sec. II). Therefore, we have listed in Table VII the calcu-
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TABLE VII. Differences in the ordering energy AE =E(82)—E(832) in eV per formula unit for
LiT1 and NaT1 on the basis of different self-consistent muffin-tin potentials using the scalar relativistic
(SRAPW) as well as the full relativistic (RAPW) procedure.

Line Compound

LiT1

LiT1
( a =7.075ao)
Na Tl

Potential

LiT1( 82)

LiT1( 832)
LiT1( 82)

Na Tl( 832)

Na Tl( 82)

Method

SRAPW
RAPW
SRAPW
SRAPW

SRAPW
RAPW

SRAPW

8 (E2)—E (832)

—0.278
—0.300
—0.181
—0.159

0.058
0.010'

—0.001b
0.022

"'Defect phase" Na Tl.
"Stoichiometric Na Tl.

TABLE VIII. Total energy Eq, the kinetic energy Tq of the electrons treated as band electrons (5d electrons of Tl and valence elec-
trons), and the distant energy term C,„, [see Eqs. (17) and 118)] for LiT1 and Na Tl for the B2 and the B32 structures.

Lattice constant a/ao
Kinetic energy Tb/Ry
Tg (82) —Tg (832)
Total energy Eq/Ry
Eb(8 2)—Eb(832)
Distant term C „,/Ry
C „,(B2) —C,„,(832)

LiT1( 82)

6.472
228.30

.—99.266

—0.812

—0.59

—0.032

—0.144

LiT1( 832)

12.944
228.89

—99.232

—0.668

Na Tl( 82)

7.075
228. 14

—99.282

—0.359

+ 0.09

+ 0.011

—0.040

Na Tl( 832)

14.15
228.05

—99.293

—0.319

lated values AE as a function of the used muffin-tin po-
tential. The influence of the different procedures,
SRAPW or RAPW, can also be seen from Table VII. All
data in Table VII show the same trend, that is AE is nega-
tive for LiT1 and positive for NaT1. However, for the
RAPW calculation for NaTl one obtains the "correct"
sign for AE only for the "defect-phase" NaTl.

The shape of hE as a function of the Xvz can be stud-
ied in Fig. 6. Here AE is plotted as a function of the

upper limit (Fermi energy) of the integral; see Eq. (22).
Since the Fermi energy is a function of X~z,

X(E)dE. b,E is displayed directly as a func-

tion of X~E.

IV. DISCUSSION

A. Chemical bond

0.2
C)
Cl

UJ
0

0 1,0 3.0
NVE

FICi. 6. Differences in the energy hE, Eq. (22), between
the 82 and B32 structure as a function of the number of occu-
pied states [number of valence electrons per unit cell co&21%&z ) ],
where the DOS are calculated using the muffin-tin SCF poten-
tials of LiT1 and NaT1, respectively. For stoichiometric LiTl
and NaTl the N~E is equal to 4.

As pointed out in the Introduction, the chemical bond
in LiTl should be dominantly metalliclike, whereas in
NaT1 covalent contributions to the chemical bonds and a
charge transfer from the Na to the Tl atoms are expected
to be important. The results given in the preceding sec-
tion confirm these general observations. However, it was
found theoretically that the charge transfer from the Na
to the Tl atoms is much less than the charge of one elec-
tron and no saturated sp hybrid could be found for the Tl
sublattice. The calculations show that in NaTl the 6s
electrons of Tl form covalent valence bands, which are
separated by a band gap from the upper valence bands.
The wave functions of the states of the lower 6s bands are
predominantly s-like functions. The valence states of the
upper bands are sp-hybrid bands of Tl and Na, and the
character of the chemical bond of these states is similar to
those of the B2-phase LiTl.

It is interesting to note that a covalent Tl—Tl bond and
a charge transfer from the alkali atoms to the Tl atoms
were also found for a hypothetic phase LiT1(B32). How-
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ever, these effects are not so pronounced as in NaT1.
In analyzing the stability of Zintl-phases AB, it is ar-

gued that the nearest neighbors should be in contact, and
therefore the size of the atoms 3 and B should be the
same. In Table IX covalent bond radii r„„ionic radii
r; „, and metallic bond radii r „are listed together with
the half distance length r&3q of the atoms in NaT1 and
LiT1(832). These values r+32 should be the radii of the
atoms in the corresponding compounds. For Na Tl,
r&32(T1) is smaller than r „(Tl) and larger than r„„(T1),
as is expected for a mixture of covalent and metallic
bonds. Also r~32(Na) is smaller than r „(Na) because the
Na atoms in NaT1 carry less charge than in Na metal. On
the other hand, for LiT1(832), r+32(T1) is nearly equal to
r„,(T1) and a distinct compression of the Tl atoms in
LiT1(832) should result. This point is discussed in more
detail below.

B. Knight shift

For LiT1 the theoretical and the experimental results
for K, (Li) and K, (T1) agree quite well. Therefore, we con-
clude that the orbital and diamagnetic contributions to the
Knight shift are not important for this compound. Dis-
cussing the results for LiT1 in more detail, one can see
that K, (Tl, theor. ) calculated from the simple integration
over the Fermi surface is larger than K, (Tl,expt. ) because
the large negative exchange polarization of the lower
valence bands is missing if one integrates only over the
Fermi surface. In addition to this exchange polarization
effect, the value for K, in LiT1 shows the normal behavior
of metals and alloys with dominant sp character for the
valence electrons. The value K, (Li) is very small, because
the partial s density for the Li sphere is small for the
states at the Fermi surface.

For NaTl the situation is different. The theoretical re-
sults for the stoichiometric phase NaT1 for K, (T1) and
K, (Na) are similar to the results in the corresponding met-
als, which, however, are not found experimentally in
NaT1. The mechanism which leads to this large positive
calculated hyperfine field is the contribution of the 5th
valence band, which has a large s character.

For the defect-phase NaT1 one obtains for K, (Na) in
NaTl the correct order of magnitude, that is, the Knight
shift is nearly 0. This result is caused by the extremely
small density of states at the Fermi surface and because of

TABLE IV. Atomic radii for Li, Na, and Tl (Refs. 48 and
49) and half bond length Li—Li, Na —Na, and Tl—Tl in
NaTl(832) and LiTl(832) {in A).

the small partial s charge (not total charge) for these
states. For K, (Tl) in NaT1 the theoretical result has the
'same sign as the experimental one. However, the absolute
value of K, (T1, theor. ) is much smaller than K, (Tl,expt. ).
Therefore we conclude that the large negative value K, (T1,
expt. ) in NaT1 is caused by the extremely small density of
states at the Fermi surface, the large exchange polariza-
tion contribution of the lower valence bands (the 6s bands
of Tl) and by a diamagnetic contribution, which has the
same order of magnitude as the exchange polarization ef-
fect. The diamagnetic contribution is large, because in the
defect-phase NaT1 the 4th valence band is nearly filled
and a small effective mass is expected for the states at the
Fermi surface.

C. Ordering energy

The differences in the ordering energy hE listed in
Table VII are smaller in magnitude than those'deduced
from pseudopotential theory, and the values of b,E(NaTI)
are within the order of magnitude, which one expects for
differences in the ordering energy for real phase transi-
tions. However, the values which one obtains from the
SCF energies (Table VIII) are much larger. The reasons
for this result are as follows: (a) The procedure to calcu-
late AE for fixed lattice constants a(+32) —2a~zz~ instead
of using the lattice constants of the minimum in energy
should influence the result in AE given in Tables VII and
VIII differently; (b) the muffin-tin approximation affects
the one-electron energies e; and the integral equation (22)
and the total energy according to Eq. (21) differently; (c)
the influence of the Sd electrons of Tl is only included in
the values given in Table VIII; (c) hE has always been cal-
culated by a difference of two large numbers. These large
numbers are by a factor of 100 larger for the values given
in Table VIII than those of Table VII.

Nevertheless all data from Tables VII and VIII show
the same trends. The most reliable theoretical values for
AE should be those in Table VII deduced from the full
RAPW procedure.

Next we shall consider two different aspects of the
problem of the size of AE, namely, the role of the size of
the atoms and the role of the details of the electron bands.

It can be seen from Table VII that the absolute value of
b,E is significantly larger for LiT1 than for NaT1. Look-
ing at the kinetic energy (Table VII) one finds that for
LiT1, Tb(832) is much larger than Tb(82). This larger
value of T for the B32 phase is accompanied by a gain in
potential energy V according to the virial theorem

(45)

Li Na V'= V —6 I p(e„,—p„,)d~. (46)

Metallic bond radius
for 8-coordination I" „

Covalent tetrahedral
bond radius r„„

Ionic radius Me+ r;,„
Half bond distances r+32

Me —Me in LiTl(B32)
in NaTl (B32)

1.52

0.78

1.49

1.86

0.96

1.62

' 1.66

1.47

1.49
1.62

However, as discussed above, the Tl atoms. are compressed
in LiT1(832). Then [in addition to the second term in Eq.
(46)] the gain in b, V=Vb(832) —Vq(82) is less than
—26TI„because the internal pressure p is larger for the
B32 phases than for the B2 phase. Therefore, the large
positive values of AE for LiT1 follows as a consequence of
the fact that the Tl atoms are larger than the Li atoms.

It would be interesting to calculate AE as a function of



5026 P. C. SCHMIDT 31

the lattice constant a. Since the 5d electrons of Tl have to
be included in such SCF calculations, these calculations
become very time consuming within the RAP& pro-
cedure and could not be performed in this work. Howev-
er, using the muffin-tin potential of LiT1 (a=6.472), we
have calculated the band structure and AE for LiT1 for
the larger lattice constant 2a&2 ——a+32 —14.15ao
= a(NaT1). The results are given in Table VII (line 4). As
expected, AE is smaller for the larger lattice constant
(compare lines 1 and 4 of Table VII).

The situation is different in NaT1. Taking the size of
the atoms into consideration we can draw the following
conclusions: (a) in pure metallic bonds the more electro-
positive element Na is larger than Tl. Because a charge
transfer takes place in Zintl phases (see above), the sizes of
the partly ionic Na atoms in NaTl are expected to be
smaller than in Na metal; (b) the Tl atoms are not
compressed in the 832 phase, because the Tl-Tl nearest
distance is just as large as one expects for a mixture of co-
valent and metallic electron bonds; see above. As a conse-
quence the differences in the kinetic energy terms for
NaT1 are much smaller than for LiT1; see Table VIII.
Therefore, in NaT1 the size effect is riot important in dis-
cussing the favored structure 82 or 832.

It is very difficult to find one single physical mecha-
nisms, which gives an explanation for the difference in the

electronic energy between the 82 and the 832 phase for
NaT1. The differences in the various energy terms given
in Eqs. (20) and (21) are much larger than b,E, and b,E is
not caused by one single term. As an example the distant
terms C „, are listed in Table VII. One finds
C,„,(82)—C,„,(832)= —0.04 Ry, whereas AE is only
0.01 Ry. It can be seen that the term C,„„which includes
the Madelung energy, favors the 82 structure in accor-
dance with the general observation that the ionic contribu-
tion to the lattice energy favors an arrangement of the
atoms, for which the nearest neighbors are of unlike type

Comparing the band structure and density of states of
NaT1 and NaT1(82), one finds that the bands for the 832
structure are narrower and steeper than the bands for the
82 structure, and that the bands of the B32 structure
show a smaller overlap than those for the B2 structure. It
follows that the energy difference AE as a function of the
Fermi energy or as a function of the number of occupied
states is an oscillating function for NaT1 (see Fig. 6) and
AE ~ 0 for stoichiometric NaT1.
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