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Self-consistent cluster calculation of binding energy and potential for positive muons
in copper and copper-impurity systems

Changxin Guo* and D. E. Ellis
Department of Physics, Northwestern Uniuersity, Euanston, Illinois 60201

(Received 20 August 1984)

The binding energy, potential profile, and electronic structure for positive muons in copper are
calculated with the use of a molecular-cluster model in the framework of the self-consistent local-
density theory. Spin polarization was considered in calculations on finite clusters including Cul4
and an interstitial positive muon. Different positions of the muon along the body diagonal [111],
and slightly displaced from the diagonal, covering the path between octahedral 0 to tetrahedral T
sites, were considered. Both the binding energy bE„t(r) and the muon potential V (r) exhibit a dou-
ble minimum, with the 0 site more stable. The effects of Cu vacancies and Ni impurities on the
muon in copper are considered also. Binding-energy curves show the attraction of the Cu vacancy
and Ni impurity for the muon. Valence-charge-density distribution profiles for different positions of
a muon along the [111]direction in p-Cu&4, p-Cu|3, and p-Ni-Cu|3 clusters are calculated.

I. INTRODUCTION

The electronic structure and associated properties of
impurities in metals, in particular for light impurities,
such as hydrogen and muons, is an extensive problem
which has become a topic of great current interest. Some
important technical applications, such as magnetic, super-
conducting, and mechanical properties have a direct rela-
tion to the impurity-induced properties. The muon-spin
rotation (pSR) technique has been used for over ten years
to study the diffusion of the muon in metals and alloys,
and also emerged as a powerful probe to study spin densi-
ties, crystallographic position, etc. ' The physics of
muons, i.e., muon diffusion and trapping in solids and the
quantum behavior of a light atom, is one more important
topic in this area.

A series of experiments has been made for measuring
the positive muon (p+) linewidth in "pure" and doped
copper samples. ' " They analyzed these results within
the framework of the quantum theory of diffusion and
concluded the following.

(1) In pure copper, p+ is at an octahedral site in the
0.1—80 K temperature region. The fit of the experimental
results and theoretical curves of linewidth for octahedral
site assignment is good for 2, 20, and 80 K; however, the
0.1-K data do not fit the octahedral assignment as well.
The tendency is nevertheless in favor of that site.

(2) In copper doped with nickel, the results indicate
positive muon trapping in nonperfect regions caused by
the Ni impurities.

Clawson et al. have also done experiments to explain
the phenomena of low-temperature mobility of positive
muons in copper. In order to explain why the mobility of
position muons in Cu increases when the temperature de-
creases from 5 to 0.7 K, Seeger proposed a model assum-
ing that in the case of Cu, the stable sites are octahedral
interstices. The tetrahedral sites are assumed to be meta-

stable, with a thermally activated (phonon-assisted tunnel-

ing) transition to the octahedral sites beginning at 0.7 K.
Instead, Clawson suggested that the p+ site does not vary
with temperature between 0.7 and 5 K, but that a dif-
fusion process occurs which is limited by static disorder
below 0.7 K and by thermal disorder above 5 K.

In brief, microscopic-theoretical predictions require de-
tailed knowledge of the surrounding electronic structure
and potential of the muon in the host lattice. Since a pro-
ton or a lighter muon with no core electronic structure is
the simplest kind of impurity that can be implanted into a
solid, the electronic structure associated with these parti-
cles in metals is perhaps also simple. A number of
theoretical models have been developed, ' such as dif-
ferent kinds of jellium models and molecular-cluster and
band-structure calculations, to treat this case. The
Hartree-Pock-Slater theory has been developed to calcu-
late the binding energy, hyperfine fields, and electronic
structure of small particles in transition metals, ' " and
this theory represents a feasible first-principles approach.

In this paper, we use the molecular-cluster model in the
framework of the Hartree-Fock-Slater self-consistent
one-electron local-density theory to calculate the electron-
ic structure, binding energies, and potential for positive
muons in copper. Spin polarization was included in the
calculations of finite clusters consisting of Cu&4 and an in-
terstitial positive muon. In order to get the binding ener-
gies of the cluster and potential profiles seen by the muon,
we chose several differerit positions of the muon along the
body-diagonal direction [111]and slightly displaced from
the diagonal, covering the path including octahedral 0 to
tetrahedral T sites in the fcc structure. For every p+ po-
sition, we made a separate self-consistent field (SCF) cal-
culation. Similar calculations were done for the Cu-
vacancy and Ni-impurity systems. In these cases, a
cubic-corner copper atom was changed to a Cu vacancy or
an Ni impurity.
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II. THEORETICAL MODEL
AND COMPUTATIONAL PROCEDURE

V(r)= Vc(r)+ V„,(r) . (2)

Here the Coulomb potential Vc(r) is the sum of nuclear
and electronic contributions

Vc(r)=- g + fZv p(r')dr'
fr —R„f fr —r'f (3)

where the first term is the electron-nuclear attraction, R
is the nuclear position of the vth atom, and the second
term is electron-electron repulsion; p(r') is the total elec-
tronic charge density at position r'.

For a spin-polarized approach, one must consider the
spin-dependent exchange and correlation potential in some
approximate form. The simplest form is the Kohn-
Sham-Slater potential '

V„, ~(r) = —3a[3p (r)/4m]'~ (4)

where p is the density at point r of electrons with spin
direction o. Here a is a constant which is normally
chosen as —', (e( 1; in this study we chose o.=0.7.

As in the usual linear combination of atomic-
orbital —molecular-orbital (LCAO —MO) method, the
molecular-orbital eigenfunctions are expanded in terms of
symmetry orbitals,

The theoretical basis for the electronic-structure calcu-
lations used here is the self-consistent one-electron local-
density formalism in the Hartree-Fock-Slater (HFS)
model. ' The essential point of this theory is the re-
placement of the nonlocal Hartree-Fock exchange opera-
tor by a potential depending only on the local electron
density.

In a nonrelativistic approach the one-electron Hamil-
tonian for the molecule can be written (in Hartree atomic
units) as

H(r)= ——,V + V(r) .

The first term is kinetic energy; V(r) represents the
molecular potential, which is taken to be a sum of
Coulomb and exchange and correlation potentials

where e is the eigenvalue.
The Hamiltonian matrix H and the symmetry orbital

overlap matrix S are obtained in the discrete variational
method (DVM) as a weighted sum over a set of sample
points,

IV(r/, )x;'"(rk )HxJ"(rJ, ),

K

(9)

where W(rk) is a weight function at point rk.
The sample points set used in our study includes not

only a pseudorandom diophantine points set, ' but also
a regular spherical-volume mesh. We map the diophan-
tine distribution onto an infinite domain representing the
region exterior to atomic spheres of some arbitrary radius,
using a Fermi distribution. In order to get good wave-
function accuracy in core regions near the nucleus, we use
an optimized Gaussian surface mesh in conjunction with a
radial Simpson's-rule method in spheres around the nu-
clei.

After solving secular equation (7) to find coefficients
CJ", , and using formula (5), we can get molecular-orbital
eigenfunctions 4," (r). In order to determine the Fermi
energy and occupation numbers f; (e') for each molecular
orbital (MO), Fermi-Dirac statistics were used on these
MO eigenstates. The cluster charge density was then con-
structed by summing over all MO's:

N

p~,.iuste. (r) = g f;~ f g;~(r)
f

' . (10)

In order to calculate the potential by ohe-dimensional
integrations, this charge density was cast in a multi-
center —overlapping-multipolar form,

which can be obtained by group-theoretical projection
operators.

In formula (5) the expansion coefficients (variational
coefficients CJ~«) are obtained using standard procedures
by solving the matrix secular equation

(H es—)C=O,

4'," (r) = QX&&(r)CJ"; (5) p~, m.d.~(r)= g d,I~(~)p, (r„)I'Im(~. ),
njim

where g=(kA, ) denotes row A, of representation k of the
molecular point group. The symmetry orbitals XJ(r) are
chosen here as linear combinations of atomic orbitals lo-
cated on the different atoms in the molecule correspond-
ing to the cluster point group symmetry, i.e.,

X~j(r)= g WJ U„I(r, )F~ (r,), (6)
v, m

where U„~(r„) is the atomic radial wave function centered
on the vth nucleus, with principal quantum number n and
orbital quantum number I. U„~ is obtained numerically
by solving a self-consistent free-atom or ion problem, and
I"Im is a spherical harmonic function with magnetic quan-
tum number m. 8'~ are symmetrization coefficients

where r„=r—R„, R„are atomic sites, and jim denotes
multipoles centered on various nuclear sites at r„.

The coefficients I dz~ I were determined by least-
squares fitting to the eigenvector density of Eq. (10) with
controled accuracy. The radial density basis set of Ipj I
was constructed from spherical atomic densities calculat-
ed from the wave-function variational basis, and from
several radial functions for each 1=0 (or 1(1, 2, . . .) in
the fully symmetric representation of molecular point
group. The potential can be calculated from this least-
squares self-consistent multipolar (SCM) procedure accu-
rately and efficiently.

The total energy in the spin-polarized case can be writ-
ten as'
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E«&(r)=g gf; e;. =,
' f, d rd r' —f p(r)[V„,.(r) E„—, (r)]d r

CT l r —r'
pv p&

(12)

Eg(r) =EE„,(r) =E„,(r) —E,",,(r) . (13)

Binding energies Eb are on the order of a few electron
volts per atom. When we calculate the binding energies,
the numerical noise still must be kept under control in or-
der to obtain useful results. Systematic errors are estimat-
ed to be a few tenths of an electron volt, which is suffi-
cient to determine binding site preference of the muon.

III. RESULTS

A. Muon in Cu&4 cluster

Copper has the fcc structure with a lattice constant
(bulk) of ac ——3.615 A. In these calculations, we treated
an isolated cluster including 14 copper atoms and an in-
terstitial muon. In order to study possible binding sites,
the muon was put at different positions along the body di-
agonal. Figures 1 and 2 show the p-Cu~4 geometries and
coordinate systems for the Oq (p at center) and C3„clus-
ter symmetries. In these figures, numbers 1 to 13 denote
the p+ positions, calculated at equal intervals. Positions 1

and 7 are octahedral (0) and tetrahedral (T) sites, respec-
tively. When the muon is put at position 1, the point-
group symmetry of the cluster is O~, and at positions
2—12 the symmetry is C3„. The muon was also slightly
displaced from the body diagonal to check muon stability

where E„,~(r) is exchange and correlation energy,

V„, (r) is the exchange and correlation contribution to
the chemical potential (or so-called exchange potential)
with spin direction cr E. „,~(r) = —,

'
V„, (r) for the effec-

tive potential of Eq. (4). Total energies of our clusters
are on the order of 10 eV, and not calculated accurately
enough to directly check the energy difference, when we
change the position of muon in the copper lattice. The in-

tegration errors in Eq. (12) are larger than the accuracy
which we need. Fortunately, the main interest we have is
not in the large total energy, but rather in more accurate
binding energies with respect to some reference system,
e.g., the dissociated molecule

with respect to [111]positions. For example, several posi-
tions were chosen displaced from the tetrahedral position
7, along the coordinate axis x direction (see Fig. 2). In
that case, the symmetry is only C&~, i.e., there is one mir-
ror plane.

The atomic orbitals used in the molecular-orbital ex-
pansion were obtained by solving the self-consistent free-
atom problem using the Hartree-Fock-Slater scheme.
Spherical wells of varying depth and radial extent were
added to the atomic potentials to confine diffuse orbitals.
For the muon, as in previous hydrogen impurity studies,
basis sets consisting of 1s, 2s, and 2p orbitals were calcu-
lated with a well depth of 2 a.u;, with a sloping wall be-
ginning at a radius of 5 a.u. For copper, the same kind of
potential we11 was used: the Cu variational basis set con-
sisted of 4s, 4p, and 4d orbitals with the 1s, . . . , 3d core
frozen. The spectroscopic and binding-energy properties
of pure Cu~ clusters, X(79, were described in Ref. 13;
the top of the 3d "band" lies -2 eV below the Fermi en-

ergy and resembles that found in band-structure calcula-
tions. En preliminary studies on p-Cu~4 we included the
Cu 3d orbitals in the variational space, and found them to
be completely occupied, as is expected. These orbitals
were treated in the frozen-core approximation in all subse-
quent calculations; they are of course included properly in
the binding-energy algorithm. Both 2s and 2p orbitals in
the muon case and both 4p and 4d orbitals in the copper
case were empty orbitals of atoms, included in the basis
set in order to ensure variational freedom sufficient to cal-
culate accurate binding energies.

The integration mesh used for this cluster consisted of
300 diophantine points per atom, augmented by regular
grids in atomic spheres. Six angular points times 30 radi-
al points were used in the Cu cores, and a more accurate
12&(40 mesh was used for the p region to guarantee an
accurate representation of the cluster region critical to
binding-energy comparisons.

~r, ,

FIG. 1. p-Cu~4 (Oq) cluster geometry: An interstitial p is at
the center of fcc Cu14, the octahedral site. The large black cir-
cles indicate Cu atoms; the small one indicates the p. The lat-

0

tice constant ao ——,3.615 A.

FIG. 2. p-Cul4 (C3„) cluster geometry: An interstitial p is
placed along the body diagonal. Numbers 1—13 denote the p+
positions, calculated at equal intervals from the center 1 to the
body corner 13. The symmetry for the muon at sites 2—13 is
C3„, site 7 is the tetrahedral position. The large black circles in-
dicate Cu atoms; the small black circle indicates the muon. Lat-

0
tice constant a0=3.615 A.



31 SELF-CONSISTENT CLUSTER CALCULATION OF BINDING. . .

For comparison with host properties, calculations were
made for the "bare" Cu~4 cluster with Oh symmetry
without the muon present. Figure 3 shows the Coulomb
potential V' for an unscreened +1 test charge in the
bare. cluster, versus the distance D from the center of the
cluster to the field point r along the [111]line. From this
figure, we can see that the Coulomb potential curve
displays two minima, corresponding to the 0 site and the
T site. The 0-site potential is about 2 eV lower than that
of the T site.

In order to find the most stable site for p+ in Cu, we
should calculate the potential acting on muon, V" (r) or
the total binding energy Eb(r) for the Cu cluster, includ-
ing an interstitital muon when the muon is at different
places. The potential acting on a positive muon depends
in turn upon the p+ position and its portable screening
charge, Our molecular calculation directly gives the po-
tential acting on the muon at position r„, in terms of the
electron Coulomb potential Vc(r):

-24

qp -25

+
+g -26

-28
0 I.O

I I

2.9
D (A)

50

FIG. 4. Coulomb potential seen by the positive muon along
[111]in the p, -Cu~4 cluster scheme. Each dot indicates an indi-
vidual HFS-Xe-DVM calculated result. D is the distance from
the center of the cluster to the p site. The 0 and T indicate oc-
tahedral and tetrahedral sites for p.

(14)

Here
~

r —r„~ is the distance between the field point r and
the muon site r . Equation (14) simply represents the re-
moval of the p self-interaction and the choice of sign for
its positive charge.

The resulting V" potential in p-Cu]4 for the muon
placed at different sites along the [111]direction is shown
in Fig. 4. Calculated points are indicated by dots. For
every indicated point, we made a complete molecular
SCF-Xo.-DVM calculation. From Fig. 4, the V" curve
is seen to have two valleys like the unscreened +1 charge
Coulomb potential in the pure Cu cluster, corresponding
to 0 and T sites. The V" of 0 and T sites are —27.65
and —26.40 eV, respectively; the 0 site thus exhibiting
greater binding. Since the zero-point motion of the p+ is
rather large, it is necessary to consider dynamical effects
at least to low order. This has consequences, for example,
for the hyperfine field seen by a muon even at low tem-
perature. Zero-point energy eo of the muon was estimated
as follows: A harmonic approximation was considered
near the minimum of the muon potential. Using the for-

mulas (in atomic units)

N
CO=0 2

(15)

[where k, co, and m& are force constant, vibration fre-
quency, and mass of muon (m„=206.77m, ), respective-

ly], the estimated value of the muon zero-point energy at
0 site is 0.2 eV. The zero-point energy of the T site is
even smaller than this. These zero-point energies are con-
siderably less than the difference of the two potential
minima (about 1.25 eV), so we conclude that, even consid-
ering the muon vibration, the 0 site is the most stable site.
This conclusion is in agreement with interpretation of the
experimental results of Chappert et al.

Figure 5 shows the binding energy cur-ve for p-Cu~4,
when the muon is placed at different sites along the [111]
direction. This curve, like the p+ potential curve, shows
two minima corresponding to 0 and T sites; 0 is again
found to be the more stable site. The calculated binding
energies of the cluster are also listed in Table I, and are
seen to amount to more than 3 eV/atom. The binding-
energy difference of 0 and T sites is 1.2 eV, with an es-

-46-

-48-

+

O -52-

I.O T 2Q
D [A]

3.0

FIG. 3. Unscreened +1 charge Coulomb potential V' vs
the distance D from the center of the cluster Cu[4 along the
[111]direction.

l.O
I I

g
20 3.0

FIG. 5. Binding-energy curve of p-Cu~4 for various p posi-
tions along the [111]direction. Each dot indicates an individual
HFS-Xa-DVM calculated results, D is the distance from the
center of the cluster to the p site.
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TABLE I. Binding energies of the p-Cu]4 cluster for dif-
ferent sites of muon along [111]. D is the distance from the
center of the cluster to the muon site. The numbered positions
are shown in Fig. 2.

TABLE II. The electronic charge Qz found in the nearest
volume surrounding the muon in the p-Cu]4 cluster. D is the
distance from the center of cluster to the muon site. The posi-
tion numbers are as shown in Fig. 2.

Muon position number

1 (0 site)
2
3
4
5
6
7 (T site)
8
9

D (A)

0.000
0.261
0.522
0.783
1.044
1.304
1.565
1.826
2.087

—Eb (ev)

51.8
50.7
50.0
49.2
49.4
50.5
50.6
50.3
47. 1

Muon position number D (A)

0.000
0.261
0.522
0.783
1.044
1.304
1.565
1.826
2.087

1.36
1.34
1.37
1.43
1.37
1 ~ 32
1.31
1.33
1.30

timated computational uncertainty of +0.2 eV. An ener-

gy barrier is found between 0 and T sites, the difference
between the top of the barrier and the T site being about
1.4 eV; and the 0 site is about 2.6 eV. So the 0 site is
more stable than the T site along the [111]direction. The
T site is a metastable position for the muon. This con-
clusion tends to support the model proposed by Seeger
for the observed temperature dependence of muon dif-
fusion.

We also calculated binding energies for p positions near
the body-diagonal site. In these low-symmetry clusters,
spin polarization was suppressed to simplify the calcula-
tion and reduce computer time. Figure 6 shows the
binding-energy curve versus muon distance from
tetrahedral site 7 along the x-coordinate direction (see
Fig. 2). This curve shows the minimum energy to be at
the body diagonal (site 7). The spin-restricted binding en-

ergy at site 7 in C3, symmetry is —50.84 eV. Compar-
ison with Table I shows that the spin-stabilization energy
is -0.24 eV, a reasonable value. Extrapolation of the
binding-energy curve of Ctl, symmetry near site 7 is
—50.68 eV. That difference (0.16 eV) provides a measure
of calculation error, arising from the low cluster sym-
metries when the muon is at site 7 (C3, ) and off the body
diagonal (Ctl, ). The binding curve along the x direction
is flatter than along the [111]direction. This means that
the muon can move more easily along this direction than
along [111],for small displacements. Although computa-

tional errors of -0.2 eV are indicated, we can still decide
that body-diagonal muon sites are more stable than off-
diagonal sites.

Electronic screening of the muon implanted in Cu is of
crucial importance for understanding both hyperfine
fields and dynamical behavior. The electronic charges
Q&(D) found by integration over the nearest volume sur-
rounding the muon placed along [111]are given in Table
II. For positions 1—9 the electronic charges range from
1.30e to 1.43e, indicating that the muon is over-
screened. Since the screening is short ranged, the muon
can thus move essentially as a neutral particle.

B. A vacancy and an impurity in the p-Cu system

Because of the recent interest in impurity trapping of
the muon, we also calculated the binding energy when a
muon interacts with a vacancy or a nickel atom substitut-
ing for a cubic-corner Cu atom. This means that in Fig. 2
we use a vacancy or a Ni atom instead of a copper atom
at site 13. The clusters considered now become p-Cu/3
and p-Ni-Cuq3, with symmetry C3„ in both cases.

The binding-energy curve found for the p-Cu&3 cluster
is given in Fig. 7. Comparing Fig. 7 with Fig. 5, we find
large changes due to the vacancy. VA'th a vacancy at site
13, the binding-energy curve also has two valleys; howev-
er, the T site is no longer a minimum, and the 0 site is no

~ -50.2-

-50.6-
hl

-0.4 -l.2 0 l.O

I I

2.0
D (A)

5.0

FIG. 6. Binding-energy curve of p-Cu[q with the muon near
the body-diagonal site T along the transverse direction —X (see
Fig. 2). The dots indicate the individual HFS-Xa-DVM calcu-
lated result. (Spin polarization was not included. )

FICz. 7. Binding-energy curve of p-Cui3 (C3„) for various p
positions along the [111]direction. Each circle indicates an in-
dividual HFS-Xa-DVM calculated result. D is the distance
from the center of the cluster to the p.
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octahedral (position 1), position 4, and tetrahedral (posi-
tion 7) sites along the body diagonal, respectively. These
maps reveal the bond formed between muon and its Cu
near neighbors. The muon environment is seen to be only
slightly distorted from spherical shape when the particle
is at the octahedral site. But when the muon moves along
[111]towards the body corner Cu atom, the environment
becomes significantly distorted. When the muon is at po-
sition 4, it mainly has one bond connecting with the
nearest-neighbor Cu atom, and at position 7, it has two
bonds connected to near neighbors. These nonlinear re-
laxation processes of electronic response to different muon

positions have consequences for the potential field V"
controlling the muon dynamics. Recently Puska and
Nieminen carried out wave mechanical solutions for light
impurity distributions in metals, using a potential derived
from atomic superposition models. We suggest that the
present approach is capable of providing necessary im-
provements to their effective-medium approach, which
would make the dynamics completely self-consistent.

The corresponding Cu-vacancy case is shown in Fig.
10. The near muon environment is also only slightly dis-
torted from spherical shape, when the muon is at the 0
site, and weakly bonded to neighboring atoms. The relax-

(b)

(c)

FIG. 10. Valence charge-density maps for the (110)plane (see

Fig. 2, ABCD plane) in p-Cu~3. (a) p at the octahedral site (po-

sition 1). (b) p at the tetrahedral site (position 7). (c) p at posi-

tion 10. The linear-step contour interval and the first contour is

0.0540 e/A . The unit of distance is in atomic units.

FIG. 11. Valence charge density maps for the (110) plane (see
Fig. 2, ABCD plane) in p-Ni-Cuj3. (a) p at the octahedral site
(position 1). (b) p at the tetrahedral site (position 7). (c) p at po-
sition 9. The linear-step contour interval and the first contour is

0
0.0540 e/A . The unit of distance is in atomic units.
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ation of the screened muon into its minimum energy con-
figuration can be visualized by comparing Fig. 10(b) (site
7) with 10(c) (site 10).

Valence charge maps are shown in Fig. 11, for the p-Ni
impurity cluster. These maps show the muon at different
sites along the [111]direction. When the muon is at the
0 site, two bonds of the muon connect with two near
copper neighbors, and a polarization toward the distant
Ni is already visible. %'hen the muon moves to
tetrahedral site 7 and site 9, the main bonding of the
muon develops toward the substitutional Ni impurity.
Figure 11(c) shows the stablest position for muon in the
p-Ni-Cu~3 cluster, where a dimer p-Ni clearly has formed.
Because the atomic numbers of Ni and Cu are 28 and 29,
respectively, it is easy to understand how, from the
viewpoint of a conduction electron, the p+-Ni dimer can
minimize the energy of the system by essentially restoring
the crystal "ionic cores" to their unperturbed state. Such
qualitative arguments are, of course, most useful after the
fact of detailed energy calculations.

IV. SUMMARY

The electronic structure and associated properties of
light impurities in metals is an interesting problem, with
extensive implications for applications. Experimentally,
the muon-spin-rotation (pSR) technique has given a large
amount of data on the muon motional behavior, which
has to be correlated with microscopic-theoretical predic-
tions. We thus require detailed knowledge of the electron-
ic structure, potential energy, and binding energy of
muons in the host lattice. In this paper, the Hartree-
Fock-Slater one-electron local-density theory has been
used to calculate binding-energy and potential-energy
curves for muons in small Cu clusters, and in clusters
containing either a vacancy or a Ni impurity.

In treating clusters with an interstitial muon differment
positions of the p+ along the body diagonal [111],and
slightly displaced from the diagonal, covering the path in-
cluding octahedral and tetrahedral sites were considered.
Vixen the muon is translated along the body-diagonal
direction, both binding energy AE„,(r) and muon poten-
tial V" (r) exhibit a double minimum at 0 and T sites.

The 0 site is more stable (in the low-temperature, frozen
lattice limit treated here); the T site is metastable. When
slightly displaced from the body diagonal, the p+ binding
energy decreases, suggesting that the body-diagonal line
does indeed represent a minimum energy configuration
for the system. The preceding conclusions are in good
agreement with interpretations of the pSR experiments.

The cases of Cu vacancy or Ni impurity were also in-
vestigated. In the Cu-vacancy case, the binding-energy
curve along [111] still has two minima, but the more
stable site is no longer 0, changing to a position between
T and the vacancy site. In the Ni case, the binding-energy
curve again shows two minima, this time shifted toward
the impurity Ni and forming a p+-Ni dimer. This means
that vacancy and impurity Ni both attract muons in ac-
cordance with previous interpretations. %'e have quanti-
tatively determined the binding energy and equilibrium
geometry in each case.

From the contour maps of the valence charge densities
in p-Cu~4, p-vacancy-Cu]3, and p-Ni-Cu~3 clusters, the
muon environment is seen to be only slightly distorted
from spherical shape when the p+ is far from a metal
atom. The electronic screening length is seen to be quite
short, and a nearest volume integration indicates over-
screening. When the muon is moved along the [111]
direction, the bonding of the muon to near neighbors be-
comes evident. In the Ni-impurity case, the formation of
a strong p-Ni bond for the stablest position is quite ap-
parent. It is suggested that a combination of a self-
consistent electron response, as calculated here, with
lattice-relaxation muon distribution models, as given in
Ref. 30, can lead to quantitative understanding of self-
trapping and diffusion.

ACKNOWLEDGr MENTS

This work was supported by NSF Grant No. DMR82-
14966. We thank B. Lindgren and E. II arlsson for help-
ful discussions. Calculations were carried out in part in
the Minicomputer Facility of the Northwestern Universi-
ty Materials Research Center, supported in part under the
NSF-MRL program, Grant No. DMR82-16972.

'Permanent address: Department of Physics, University of Sci-
ence and Technology of China, Hefei, Anhui, The People' s
Republic of China.

J. H. Brewer, K. M. Crowe, F. N. Gygax, and A. Schenck, in
Muon Physics, edited by V. W. Hughes and C. S. Wu
(Academic, New York, 1975), Vol. II.

J. Chappert, A. Yaouanc, O. Hartmann, E. Karlsson, L.-O.
Norlin, and T. O. Niinikoski, Solid State Commun. 44, 13
(1982).

C. W. Clawson, K. M. Crow, S. S. Rosenblum, and S. E. Kohn,
Phys. Lett. 51, 114 (1983).

4A. Seeger, Phys. Lett. 93A, 33 (1982); A. Seeger, Appl. Phys. 7,
85 (1975).

5A. M. Stoneham, Hyperfine Interact. 17-19, 53 (1984); S. Es-
treicher and P. F. Meier, ibid. 17-19, 241 (1984); M. Doyama,

N. Nakai, and R. Yamamoto, ibid. 17-19, 231 (1984); S.
Tanigawa, K. Ito, Y. Iwase, S. Terakado, K. Nagamine, N.
Nishiyama, and T. Suzuki, ibid. 17-19, 235 (1984).

V. G. Grebinnik, K. Nagamine, N. Nishiyama, and T. Suzuki,
J. Exp. Theor. Phys. 68, 1548 (1976); V. G. Grebinnik et al. ,
Zh. Eksp. Teor. Fiz. 68, 1548 (1975) [Sov. Phys. —JETP 41,
777 (1976)].

O. Hartmann, E. Karlsson, L.-O. Norlin, T. O. Niinikoski, K.
W. Kehr, D. Richter, J.-M. Welter, A. Yaouance, and J. Le
Hericy, Phys. Rev. Lett. 44, 337 (1980).

H. Schilling, M. Camani, F. N. Gygax, W. Ruegg, and A.
Schenck, Hyperfine Interact. 8, 675 (1981).

O. Hartmann, L. O. Norlin, A. Yaouanc, J. Le Hericy, E.
Karlsson, and T. O. Niinikoski, Hyperfine Interact. 8, 533
(1981).



5014 CHANGXIN GUO AND D. E. ELLIS 31

~DO. Hartmann, Phys. Rev. Lett. 39, 832 (1977).
M. Camani, F. N. Gygax, W. Ruegg, A. Schench, and H.
Schilling, Phys. Rev. Lett. 39, 836 (1977).
R. M. Nieminen, Hyperfine Interact. 8, 437 (1981).
B. Delley, D. E. Ellis, and A. J. Freeman, Phys. Rev. B 27,
2132 (1983).
B. Lindgren and D. E. Ellis, Phys. Rev. B 26, 636 (1982).
J. C. Slater, Phys. Rev. 81, 385 (1951).
J. C. Slater, Phys. Rev. 91, 528 (1953).
J. C. Slater and K. H. Johnson, Phys. Rev. B 5, 844 (1972).

tsJ. C. Slater and J. H. Wood, Int. J. Quantum Chem. 4S, 3
(1971).
E. J. Baerends, D. E. Ellis, and P. Ros, Chem. Phys. 2, 41
(1973).
E. J. Baerends and P. Ros, Chem. Phys. 2, 52 (1973).

'J. C. Slater, The Self consistent Field for Molecules and Solids
(McGraw-Hill, New York, 1974).

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
D. E. Ellis and G. S. Painter, Phys. Rev. B 2, 2887 (1970).
T. Parameswaran and D. E. Ellis, J. Chem. Phys. 58, 2088
(1973).

25C. B. Haselgrove, Math. Comput. 15, 323 (1961).
2sD. E. Ellis, Ent. J. Quantum Chem. 2S, 35 (1968).

B. Delley and D. E. Ellis, J. Chem. Phys. 76, 1949 (1982).
2sHandbook of Chemistry and Physics, 63rd ed. (Chemica1

Rubber Co., Cleveland, Ohio, 1962).
2~D. S. Larsen and J. K. Norsk@v, J. Phys. F 9, 1975 (1979).

M. J. Puska and R. M. Nieminen, Phys. Rev. B 29, 5382
(1984).


