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Resonant light scattering from a randomly rough surface
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A theory that describes the resonant scattering of light from a randomly rough surface is

developed, based upon the rearranged vector Rayleigh equation obtained in previous work. Flux
conservation in the intermediate states is ensured by deriving a Ward identity for the self-energy and
irreducible vertex function. Approximate closed-form expressions for the differential reflection
coefficients of a rough surface for p- and s-polarized light are given, and the results of numerical
calculations are compared with some recent experimental results.

I. INTRODUCTION

The simplest of all optical phenomena involving the
resonant excitation of surface polaritons is the scattering
of light from rough surfaces. Experimental data for Ag
and Au have been available for some time, ' but a
comprehensive and consistent theory of such scattering is
still lacking, even for weakly corrugated surfaces.
Lowest-order perturbation theory gives an adequate
description of polarized scattering (s~s and p~p), but
cannot explain depolarized scattering (s ~p and p ~s),
which is due predominantly to the resonant excitation of
surface polaritons. For stronger corrugations, the fre-
quency dependence is not explained by perturbation
theory, even for polarized scattering. Hunderi and
Beaglehole recognized that the inclusion of higher-order
resonant effects was necessary in order to explain their
data. The process which they describe phenomenological-
ly as the excitation of surface currents can in fact be iden-
tified, as we shall see, with the excitation and subsequent
reradiation of surface polaritons.

A theory of resonant excitation of surface polaritons on
rough surfaces has been presented by Arya, Zeyher, and
Maradudin. The theory which we present here, and ap-
ply to scattering, is in many ways equivalent to theirs, but
it is based on expansions that. can be extended to all orders
in the surface corrugation and satisfy, to each order, the
requirements of reciprocity and unitarity (in the absence
of dissipation). We find that it is important to satisfy
these requirements in order that the transfer of elec-
tromagnetic energy into and out of the surface polaritons
be taken into account correctly.

We have recently developed a vector theory of light
scattering from rough surfaces; here, we will begin with
the expressions for the S matrix and T matrix from that
work and treat the scattering from a randomly rough sur-
face. In what follows the scattered beams are labeled by
their momentum parallel to the mean surface, K, and a

polarization index a which specifies p polarization (a= 1)
or s polarization (a=2). Except where clarification of the
polarization dependence of a certain quantity is necessary,
we will omit e; it is to be assumed that each K is associ-
ated with a polarization index, and a sum over K implies
a sum over a. For example, the S matrix, S(K,KO), is a
2&2 matrix, and the fractional intensity scattered in the
p~p transition is S~~(K,Ko)

~

The relevant formulas from Ref. 6 are

S(Kf,Kp) =R(KI, KO) —2i(pfpp)'r

G' '(Kf, K2) T(K2, Ki)
Kl, K2

XG' '(Ki, Ko),

T(Kf, Ko) = V( KI, KP)

+ g T(KI,K2)6 (K2, K~) V(K~, KO) ~

Kl, K2

(1.2)

R(K,K') is the matrix of Fresnel reflection coefficients
for a smooth surface:

R (K,K') =5(K,K')5 R (K)

R, (X)=R~(K) =(ep —q)/(ep+q)

R2(IC) =R, (K)=(p —q)/(p+q) .

6' '(K, K') is the surface matrix Green function, whose
elements are defined by

6' '(K, K')=5(K, K')5 6' '(K)

with GI '(IC) =i@/(ep+q) and 62 '(IC) =i /(p +q).
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The momentum of a reflected beam perpendicular to
the mean surface which appears in the above expressions
is denoted by p(K) or simply by p, and satisfies the
kinematic condition, for frequency co,

K +p =(0)/c) (1.5)
(

For the evanescent beams, it is convenient to define
p=iP S. imilarly, the perpendicular momentum of a re-
fracted beam, denoted by q or by i y, satisfies

On-Shel I States
Ky

light cone

s.p. r ( ng
K +q =e((0/c) (1.6)

where e=e&+i@2 is the complex, frequency-dependent
dielectric constant of the substrate. The momentum of
the incident beam is (Kp, —p(K0))=(K0, —pp), and we
define qp to be the solution of (1.6) when K=Kp. I't
should be noted that for a metallic substrate (e) & 0) the
denominator of GI '(K) can vanish; in fact, ep+q=0
gives the dispersion relation for surface polaritons on a
smooth surface. The summations over K) and K2 in (1.1)
and (1.2) extend over all values of the parallel momenta,
including evanescent states, and also states on the surface
polariton "ring" (see Fig. 1).

The matrix T(K, K0), defined by the integral equation

FIG. 1. At a given frequency co, the polaritons having paral-
lel momentum K lie on the surface polariton (s.p.) "ring. "

(1.2), is the transition matrix. Only energy-conserving (on
shell) elements enter, because we have been able to intro-
duce the effective on-shell potential V(K, K0), which is
analogous to the K matrix in conventional scattering
theory. The exact equation for V(K, K0) in terms of the
surface profile is given in Ref. 6, Eq. (3.8). In this paper
we will use only the lowest-order approximation:

V(K„Ko)=gK —rc,

[EKK0 —(k Kp)qqo]/e —(0)/c )q(K Xkp),
—(~/c)(kxk, ),q, e(~/c)'(k k, )

Here, K and Kp are unit vectors, and g& K is the
0

Fourier transform of the two-dimensional surface corru-
gation function g(R):

I

for the non-specularly-scattered intensity, and in Sec. IV
this equation is used to derive the differential reflection
coefficients for normal incidence

(1.8)

where i. is the area of the mean surface. As discussed in
Ref. 6, V(K, K0) is self-reciprocal, and for an opaque,
nondissipative medium (e) &0, eq ——0), it is also Hermitian.
These formal properties hold to each order in the expan-
sion for V(K, K0) in powers of g(R).

Thus, we find that (1.2) is analogous to a two-
dimensional scattering problem, and many results from
conventional scattering theory can be utilized. In particu-
lar, a T matrix obeying Eq. (1.2) will automatically satisfy
the generalized optical theorem (see Appendix B):

T Tt Tt[G{0) (G(0))1')T

[1+Tt(G(o))tj(V Vt)(1+G(o)T) (1 9)

If V is Hermitian, the last term in (1.9) vanishes and the
energy flux is explicitly conserved at all intermediate
steps. This in turn leads to the unitarity of the S matrix,
i.e., SOS=1.

Since the surface is assumed to be randomly rough, the
intensities

~

S (K,Kp)
~

are statistically averaged over
the surface profile. Diagrammatic techniques for com-
puting these averages are developed in Sec. II, and
Dyson's equation for the renormalized Green function is
obtained. In Sec. III, a Bethe-Salpeter equation is written

(g(R])g(R2) ) = w(
~
R) —R2

~
) (2.1)

that depends only on
~

R) —R2
~

. We will make use of a
Gaussian two-point correlation

IV(
I
R) —R2

I
) =~'exp(

I
R) R21'«'»

where o. is the mean-square height

~'= (g'(R) )

(2.2)

(2.3)

and a is the correlation length. Most of the treatment
that follows, however, does not depend upon the particu-
lar form (2.2) for 8 (R). The Fourier transform of (2.2)
1s

IV(g)= d'& e ' "IV(&)==1 2 2
2 2

I 2 L 2

(2.4)

In practice, we will be averaging products of the

II. SCATTERING FROM A RANDOMLY
ROUGH SURFACE: DYSON'S EQUATION

The surface corrugation function g(R), or its Fourier
transform (1.8), completely specifies our problem once the
dielectric constant e(0)) is given. We take g(R) to be nor-
mally distributed with a correlation function
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Fourier coefficients g~. , For these averages, the following
rules apply.

(1) &gq, gq ) = W(Q)5g g.
(2) The average of a product of an odd number of gO

vanishes.
(3) The average of a product containing an even number

of g& factors into a sum of a products of pair averages,
with the pairing taken in all possible distinct combina-
tions.

We apply these rules first to the averaging of the T ma-
trix, or equivalently the exact Green-function matrix 6,
which satisfies

6(K,Kp) =6 (K,K0)+ g G (K,K2) V(K2, K) )

K),K~

Kf K1 Ko

c) ( f 3 2 1 0 ) 0 2 0 1 0

0 1 2 1 0
r

0 3 2 1 0

FIG. 2. Rules for averaging a pair of g are illustrated for the
lowest-order strings; each line represents a free propagator G' ',

a dot represents a factor of V, and a dashed line indicates a con-
traction.

X 6(K),K()) (2.5)

T= V+ VGV (2.7)

and

G"'Z.=GV,

m"~=VG .
(2.8)

When averaged, (2.5) gives

&6)=6' '+6( '& VG) . (2 9)

If we now insert (2.5) for 6, a series expansion for &G ) is
obtained. It is convenient to rewrite this series in terms of
the self-energy operator M, defined in Appendix A. The
important property is that from (A13)

& VG) =&M) &6),
so that & 6 ) satisfies Dyson's equation

& 6) =6'"+6"'&M)&6),
and also, using (2.8),

(2.10)

(2.11)

(2.12)

The explicit expansions for G, T, and M can be
described graphically in terms of diagrams, in which
6(K) is represented by a line and V(K, K') is represented
by a dot. For example, the second-order term in the ex-
pansion for G is given by the string

6' 'VG' 'VG' '= Q 6' )(Kf ) V(Kf, K))G( '(K) )

Ki

X V(K, K.,)6"'(K,), (2.13)

and is represented by the diagram shown in Fig. 2(a).
These diagrams may be visualized as a succession of ele-
mentary scatterings beginning on the right-hand side with
Ko and ending on the left-hand side with K~.

or, symbolically

G =G' '+ G' 'VG

6(0)+6(0)VG(0)+ 6(0)VG(0)VG(0)+. . . (2 6)

From a comparison of (1.2) and (2.5) it follows that

The ensemble average of a given string is determined by
rules (1)—(3). To apply these rules we note that 6' '(K) is
a nonstochastic quantity [independent of g(R)], while

V(K, K') is proportional to g~ z and is stochastic. In
the above example, the string average is found easily from
the average of two V(K, K'). According to rule (1), an
averaged or "contracted" pair & JOAN& ) vanishes unless the
total momentum transferred is zero, Q+Q'=0. This re-
sult is a consequence of the fact that the averaging re-
stores translational invariance to the surface. The restric-
tion on the momentum transfer associated with an aver-

aged pair is indicated by joining the two V(K, K') by a
dotted line, as shown in Fig. 2(b) for the string in (2.13).
Furthermore, the average of a string containing an odd
number of V(K, K') vanishes by rule (2), while the aver-
age of a string containing an even number of V(K, K')
reduces to the sum of products of averaged pairs, where
each term in the sum represents a distinct pairing com-
bination. An illustration of this is given in Fig. 2(c). (No-
tice that the contractions in the last term give the addi-
tional restriction K3——Kp+ K2 —K).)

Because an averaged pair of V(K, K') can transfer no
net momentum to the string, its initial and final momen-
tum must be equal. The initial and final polarizations are
also the same, as a consequence of the conservation of an-

gular momentum. Thus we are led to define

6(Kf K()) ) =
& G(Kp) )5(Kf Kp)

& M(Kf, K()) ) =
& M(K() ) )5(Kf Kp)

(2.14a)

(2.14b)

In general, any contracted segment of a string in which all
contractions are fully contained within that segment must
begin and end with the same momentum and polarization.
These segments, referred to as self-energy insertions, are a
function of the initial momentum only. Thus, the aver-
aged propagator & 6(K) ) consists of free propagators
G' '(K) which are linked together by self-energy inser-
tions. The self-energy &M(K)) can be identified with the
sum of all irreducible diagrams, which cannot be divided
by a single cut of a propagator line [see Fig. 3(a)].

The sum of irreducible diagrams which define &M(K) )
is generated by the integral equation (AS) for the self-
energy operator (see Appendix A). The physical interpre-
tation of Dyson s equation is obtained, as usual, by rewrit-
ing (2.11) as
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(a)

(b)

/ /+o 1 0 P 1 2 'I

/

0 3 2 1 o

Kp

/ X, /, / 5 X /+ -' +

K&

~ ~ ~

"skeleton" diagrams which contain no internal renormali-
zations.

The self-energy (M(K) ) is generated from the skeleton
diagrams by replacing the bare propagator lines G' '(K)
with renormalized propagators (G(K)) [see Fig. 3(b)].
The complete expansion of (M(K)) in skeleton diagrams
is generated by the integral equation (A17). In this paper
we keep only the lowest skeleton diagram for (M(K));
the higher-order corrections are small by virtue of the fact
that they contain nonresonant factors [see Fig. 3(c)]. The
equation for (M(K) ) then becomes

FIG. 3. (a) Self-energy (M ) is the sum of all irreducible dia-
grams. (b) Series for (M) can be written in terms of skeleton
diagrams by replacing the bare propagators G' ' with renormal-
ized propagators (G); this series is generated by the integral
equation (A17). (c) Crossed diagrams contain nonresonant fac-
tors in the intermediate states, as a consequence of the momen-
turn restrictions that result from the averaging.

(M(K))=g (V(K,Kt)V(Ki, K))(6(Kt)) . (2.16)
Ki

This approximation for the self-energy, when used in
Dyson's equation (2.11), yields a nonlinear integral equa-
tion for the averaged Green function (G(K) ).

(G(K)) =[[6' '(K)] ' —(M(K)) I

Recall that the poles of 6' '(K) determine the smooth
surface eigenmodes; in particular,

[6' '(K)] '= f3+@/a=0

(2.15)

gives the dispersion relation for surface polaritons.
Dyson's equation implies that the polariton modes on a
rough surface behave as quasistates defined by the altered
dispersion relation P+y/e —(M(K')) =0. The real part
of (M(K)) shifts the location of the resonance, and the
imaginary part of (M(K)) broadens the resonance. This
broadening reflects the decreased lifetime of the polariton
in a state with parallel momentum K, due to its coupling
with other polaritons and to outgoing radiation via the
surface roughness.

As can be seen in Fig. 3(a), the self-energy insertions
themselves may contain internal renormalizations; for ex-
ample, the Kt line in Fig. 3(a) contains a renormalization
part, which may be removed from the diagram by cutting
two propagator lines. We thus can define the more basic

III. AVERAGED SCATTERED INTENSITY:
THE BETHE-SALPETER EQUATION

-(3.1)

The ensemble average of (3.1) reduces to the average of
l
T (Kf,KQ) l

. A general formalism for obtaining di-

agrammatic expansions of this quantity is discussed in
Appendix A; here we summarize the important equations
and describe the results graphically.

From the equation for the exact Careen function 6,
written as

G G(0) G(0)TG(0) (3.2)

and its complex conjugate, along with Eq. (1.4), we find

In terms of the T matrix defined by (1.2), the nonspecu-
lar scattering intensity for incident polarization ap is
given by

l S,(Kf, KQ) l =4PfPQ l
G~'(Kf)

l

I

l
6(Kf,KQ)

l
=5(Kf,KQ)[6*(Kf,KQ)6' '(KQ)+6' *(Kf)6(Kf,KQ) —

l

G~ l(KQ)
l

5(Kf, KQ)]

+
l

G' '(Kf)
l l

T(Kf, KQ)
l l

6' '(Kp)
l

(3.3)

Apart from terms that contribute only to speeular
scattering, the right-hand side of (3.3) is precisely what we
need in (3.1). The averaged non-specularly-scattered in-
tensity is then

I

we then find that the quantity (
l
6(Kf,KQ)

l ), which
appears in (3.4), satisfies the Bethe-Salpeter equation:

(
l 6(Kf KQ)

l
)=

l
(6(KQ))

l 5(Kf Kp)

& IS«f Ko)
I

) 4pfpo(
I
6(Kf Kp)

I
) . (3.4) +g l

(6(Kf))
l

(I (Kf K)))
In Appendix A we have derived a Bethe-Salpeter equation
for the quantity

(6*(Kj,KQ)G(K/, KQ)) .

If we set Kp =Kp and Kf =Kf in Eq. (A36) and define

( I'(Kf Kf Kp Kp) ) =5(Kf Kf ) ( I'(Kf Kp) ) (3.5)

x(
l
6(K„K,) l') . (3.6)

Just as G may be represented by a series of strings,
G*G may be represented graphically by a series of two-
line diagrams, where the upper line represents a complex
conjugate string and the lower line is the usual string.
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(a)
V V V

f 2

(a)
CG&I,O)G&f, O)h

f 0 f 0

I«&l l«&I
1 0

+ 0 ~ ~

(b)
/

0 f 2 1 0

ICG& I and ]CI &[ —(I (f,o)&

l&r I I~G~i
FIG. 4. (a) One of the lower-order two-line diagrams in the

expansion of G*(f,O)G(f, O). (b) The average of the double
string in (a). Note that the third diagram is irreducible, whereas

the first two diagrams are not.

Figure 4(a) shows a typical diagram from this series. The
same rules as before apply to the construction of the aver-
aged diagrams, and in addition rule (1) implies

&~eh & =~p&a, p (3.7)

IV. SCATTERING CROSS SECTIONS
FOR NORMAL INCIDENCE

As shown in Appendix A, the Bethe-Salpeter equation
(3.6), which gives the non-specularly-scattered intensity,
may also be written as the pair

because P~ ——g p. If the two-line diagram contains an
odd number of gp, its average vanishes according to rule
2. When averaging a diagram having an even number of
g~, the gp are paired off in all possible distinct combina-
tions. This will now include pairing gp on different lines.
According to (3.7), gp that are paired on different lines
transfer the same amount of momentum to each line. As
before, we indicate this pairing, or contraction, by a dot-
ted line connecting the gp. The average of the term in
Fig. 4(a) is shown in Fig. 4(b).

The averaged two-line diagrams contain two basic
features: interaction parts between lines and renormaliza-
tion parts confined to a single line. For example, the first
diagram in Fig. 4(b) shows a renormalization on the lower
line, followed by a simple interaction between lines; the
second diagram shows an interaction part followed by a
renormalization; and the third diagram shows an interac-
tion part only.

We note the further restriction that an interaction part
consists of a closed set of pairings. Since any given con-
traction between lines must transfer the same momentum
to each line, any interaction part transfers . the same
momentum to each line. Upon defining the irreducible
interaction (I (Kf,KQ)) as the of all interaction parts
which cannot be divided into two pieces by a cut on each
line, the sum of diagrams for (6t6 ) can be represented
schematically by the series in Fig. 5(a). The series is gen-
erated by the Bethe-Salpeter equation (3.6), which is
represented diagrammatically in Fig. 5(b).

and

(
I
6(Kf,KQ)

I
) =

I
(G(KQ)) 5(Kf, KQ)

+
I
(6(Kf))

I
(r(Kf K ))

x I(6(K, )& I' (4.1)

(1(Kf,KQ}=(r(Kf,KQ))+y (r(Kf, K, ))
I
(6(K, )) I'

Kl

x (r(K„KQ)), (4.2)

where (r(K~, KQ)), the reducible vertex function, is de-

fined in terms of the four-momentum quantity of Appen-
dix A as [see also (3.5)j

(r(Ki, K'i', KQ, KQ) ) =5(Ki,K'i)(r(Ki, KQ) ) . (4.3)

We can simplify the subsequent analysis by observing
that for normal incidence, the light may be considered
either p or s polarized; for convenience, we take the in-
cident beam to always p polarized. We also noted earlier
that G~ '(K) has a pole at the polariton resonance, and for
e2 «e& it is a strongly peaked function of K. On the oth-
er hand, 6,' '(K) is a monotonically decreasing function
of K. We therefore neglect the contribution due to 6, in(0) ~

the summations over K, which amounts to considering
only p-polarized intermediate states. Furthermore, since
the averaged Green function is diagonal in K and a, the
first term in (4.1) does not contribute to the nonspecular
intensity. What remains, then, are the following com-
ponents of ( I

G(Kf Ko)
I

'&:

&I'
I

+ I&I"&i

FIG. 5. (a) Expansion of the Bethe-Salpeter equation (3.6),
with (1 & defined as the sum of all irreducible two-line dia-
grams. (b) Bethe-Salpeter equation can be written in terms of
the irreducible vertex function (I'), or the reducible vertex
function (r&.

&
I
6(Kf Ko)

I
&»=

I
&Gp(Kf)&

I
&r(Kf Ko)&ii+g &r(Kf Kl)&11 I

&ap(Ki)
K)

x (r(K),KQ)) )( I
(6~(KQ) )

I

(4.4)
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&1«&f &o) I'&xi=
I

&G.«f)& I' &r«f Ko)&li+X&r«f, &i)&ll
I &G, (K»& I'

Ki

X&r(Ki, Ko)&ii
I &Gq(Ko)&

I (4.5)

where

&r(Kl, Ko)&ii ——&r(Kl, Ko)&ll+ g &I (Kl, Kl)&il I
&G (Kl)&

I
&r(Kl, Ko)&il . (4.6)

In (4.4) and (4.5) the first term within large parens
represents the direct scattering, and the second term in-
cludes the contributions of p-polarized intermediate
states; these states are surface polariton modes which have
been modified by the surface roughness.

Equations (4.4)—(4.6), along with (2.15), can be solved
once & I & and &M & are specified. As is often the case in
problems of this type, approximations for these functions
cannot be made independently. In Appendix B we have
derived a Ward identity which relates the irreducible ver-
tex function &I & to the self-energy &M &; this relation is a
direct consequence of the optical theorem and ensures flux
conservation in the intermediate states. In the calculation
that follows we use the lowest-order approximations to
&I"

& and &M& which satisfy the Ward identity when
ez ——0. From (A39), (A22b), (A20), and (1.7) we find
& I &

—
I

V I, or more explicitly,

eKKi+(K K 1)y«)y(Ki )
I

' (4 '7a

t

and then carry out the angular integrations analytically.
The details are given in Appendix C. In addition, we can
replace the exact Green functions appearing outside the
brackets in (4.4) and (4.5) by their zero-order approxima-
tions, because the main modifications to & G & occur near
the polariton resonance.

Differential reflection coefficients for the scattering
may be obtained by the correspondence

y IS...(~,X.o)I'= fdn "
K IGr 0

We let
'2

fdgdKK
2 IU

(4.8)

and then set K= (co/c )sin8 and dK = (co/c)cos8 d 8,
where 8 is the angle between the scattered wave vector
and the outward normal of the mean surface. We find
that

2
Q) fdQcos8,
c 277

2

x(kxki),
I
y(Ki)

I

&r(K,K, )&„=Ig„„,I' ' 2

(4.7b)
cosO .

and it follows from (3.4) that the differential reflection
coefficient for nonspecular scattering is obtained by mul-
tiplying (4.4) and (4.5) by

2
L
2'

The self-energy, in turn, is approximated by (2.16). In or-
der to carry out the computation required by (4.4)—(4.6)
and (2.16), we first let

In addition, we will divide by the smooth surface reflec-
tion coefficient at normal incidence,

2

fdgdK'K'2' The results are

)/(1+ l/e

dR

I
R 'o'

I

'4

I
1+l e I'

2 I /2(e—sill 8) (cope) a si—n e/4e cos 0
e cos8+ (e—sin 8) '

o. a 1 —e2 2

cos P+ 2 E2

2

fdK'K'e ' ' ' ~
I

y(K')
I I

&G~(K') & I H, (K', Ko) (4.9)

1 dR
'4 2

I
1+veI (co/c) a sin 8/4COS2g

C cos8+(e —sin 8)'

sin p+ l fdK'K'e i i ~
I

y(K')
I I

&Gz(K')&
I

Rz(K', Ko)
E

(4.10)
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with

H](K', 8,P) =g'P'(K') {—,Iz(a)+2Re(g)I](a)+[ —,
' +

~ g ~
]Ip(a) I

+g' '(K')cos(2$) {—,
' [I&(a)+Ip(a)]+2Re(g)[I](a)+I3(a)]+2[—,+

~
]1

~
]I2(a)j,

H2(K', 8,$)= —,'X' '(K')[Ip(a) —Iq(a)]+X' '(K')cos(2$) {I2(a)——,
' [I4(a)+Ip(a)] I,

where

K'(co/c)a sin8 eK'sin8
y(K')(sin 8—e)'~

The function X' ' satisfies
2

0 a 1 —6' —E2u 2/4X' '(K')=
]

(K')
[ e ' '' —'5 +—'5 + fdK K e '

(
(K )

[ [(G (K )) [~
E

(4.11)

(4.12)

(4.13)

&& I] ' '(K', K] )X' '(K] ) (4.14)

(K',K])= 4 [I +z(a')+I z(a')]+Re(ri')[I +](a')+I ](a')]+(—, +
~

g'
~

)Iyg(a'),

where

KVC a
I 1 Ia=

2

(4.15)

(4.16)

The angle P which appears in the above expressions is the angle between the final parallel wave vector, K/, and Kp,
which in the limit

~
Kp

~

~0 (normal incidence) is the polarization vector for the incident beam. The quantities I„(a)
are modified Bessel functions.

We obtain the differential reflection coefficients for p~p and s~p scattering by setting /=0 and P=n. /2 in (4.9).
Similarly, by setting P =0 and P =m. /2 in (4.10), we find the p ~s and s ~s scattering.

The averaged Green function appearing in (4.9)—(4.14) is the modulus squared of (2.15); M(K) is determined by (2.16),
which reduces to the following when the resonant contribution only is retained:

(M(K)) = [eKK'+ (k.K ')y(K)y(K')]
2m 13(K')+y(K')/e (M(K'))— (4.17a)

Using (2.4) and proceeding as in Appendix C, we obtain the one-dimensional equation

2 2

(M(K)) = e ' fdK'K'e
2 g2

&& { 2 y (K)y (K')I2(a")+2ey(K)y(K')KK'I](a")

+[(eKK') + —,y (K)y (K')]Ip(a") I K' +y K' /e —M K' (4.17b)

where a"=KK'a /2. We can find an approximate
closed-form solution to (4.9)—(4.17b) by noting that in the
evanescent region

Im(G(K') ) =Im[P(K')+y(K')/e —(M(K') ) ]

is strongly peaked about the polariton resonance. If we
expand [G' '(K')) ' about

K,z =[ei/(e]+1)]' (co/c)

we find that

[Gp '(K')] '=P(K')+y(K')/(e]+i')
=C '[(K' —K,~ ) i b,,], —

where

e]( —&])1/2

C=
2

1 —e)

e2E,p
2e](1+e])

(4.18a)

(4.18b)
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The width 6, represents the decay of polaritons due to
the fact that the dielectric medium is dissipative (e2&0).
Im(M(K')) gives the additional decay of the state with
parallel wave vector K' due to the roughness; this width
includes decay into other evanescent states as well as con-
tinuum states. In what follows we neglect the radiative
decay in comparison with A„which amounts to restrict-
ing the integration in (4.17b) to the interval (co/c, oo).
Furthermore, if we take

lm(M(K') ) =C-'a„
to be constant in the vicinity of the pole, and also neglect
Re(M(K') ), we have

L(z) = —,
' Iq(z) —2I((z)+ —', Io(z) . (4.21)

With this result, the modulus squared Green function can
be approximated as

i
(Gq(K'))

i
=Clm(Gp(K'))/b, „,

Cm 5(K' Kq—) . (4.22)
E+ sp

We can now solve (4.14) for X( '(K,z ) and X' '(K,z ); using
(4.22) and setting e=e( in (4.14) (i.e., neglecting the imagi-
nary part e2 wherever useful to simplify the expression),
we find

I

Im(G (K')) = '" C775(K' K, ),—(K' Kp) +—g„
(4.19)

where b,„,=b„+4,~. The solution to (4.17b) is then

lm(M(K„) ) =C-'S„
2 2

(1+m()

—z/2—7E imp e

——'e K'e
y(2) K

1 P(z)h,~—/b, „,
with z=Kzpa /2 and

—„[Io(z)+I4(z) ] I( (z) —I—3 (z) + —,I2 (z)
f(z) =

L (z)

(4.23a)

(4.23b)

(4.24)

where z =K,z a /2 and

(4.20)
We now use (4.22) and (4.23) in (4.9) and (4.10) to obtain
the differential reflection coefficients. The results are

1 dR
i~(o) i' dII

4
O' Q CO

2 2 2 1/2
1+ (E—sin 8) '

( y&i2+2 2ey4
~ 2 &/2

e
ecos8+(e —sin 8)'

0& &sp
Xcos 8 cos (t—

4
e( —,

' I2(y)+2xI((y)+( —, +x )Io(y)

(&(+1)'

—,[Io(y)+Is(y)l+2x[I((y)+I2(y)]+2[ —,
' +x ]I2(y)

b„+[1—P(z) ]b,,~
(4.25)

and

1 dR
i~( 'i' dQ

2
oa co —(co/c )2g 2gj112g/4 2g

c cos8+(e —sin 8)'i

2 20 Q Kgp
sin (t—

—,
' [I (y) —I (y)], I2(y) —, [I (y)+I (y)]-

e ' + —,
' cos(2$)

b,,+ [1—(t (z)]h,p

(4.26)

where

y =EX,pa 2/2,

x =e(KK,p /y(K)y(K, p ),
K=(ar/c)sin8,

(4.27)

and P(z) is given by (4.24).

V. NUMERICAL CALCULATIONS
FOR A SILVER SURFACE

The results of numerical calculations of polarized
(p~p, s~s) and cross-polarized (s~p, p~s) differential
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reflection coefficients are presented in Fig. 6, along with
experimental data from Ref. 2. The substrate is a silver
film that has been evaporated onto CaF2 crystals, and the
wavelength of the incident light is I(.=4579 A. The value
of the dielectric constant that was used in the calculation
e= —7.5 + 0.24i was taken from Ref. 7, and the remain-
ing parameters o. and a were adjusted by trial and error to
achieve a best fit to the scattering data.

The overall magnitude of the direct scattering is fixed
by the product o.a, whereas the magnitude of the resonant
scattering depends in addition upon the factor
exp(X,&a /4). The ratio of resonant to direct scattering
can be found approximately by taking the ratio of the
cross-polarized reflection coefficient and the polarized re-
flection coefficient, since direct processes are absent from
the former and are dominant in the latter. When compar-
ing the theoretical cross-polarized reflection coefficient
with the experimentally measured one of Ref. 2, it should
be noted that the angular dependence of the scattering
predicted by the theory corresponds fairly well to the
data, and this dependence has not previously been ac-
counted for except in phenomenological ways. The
overall magnitude of the cross-polarized scattering does
not compare as favorably with the data, however, and we
describe the size of the discrepancy by a scale factor X
that multiplies the theoretical cross-polarized reflection
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FICz. 6. Comparison of experimental data (open circles) from
Ref. 2 and the results of numerical calculations for light nor-
mally incident upon a rough Ag surface. The wavelength of the
light is A. =4579 A, and the dielectric constant from Ref. 7 is
e= —7.5 + 0.24i.

APPENDIX A

The diagrammatic analysis of wave propagation on
rough surfaces can be established by purely algebraic
methods. Two techniques are employed: one is to project
out averages by the operators P and Q, defined by

PX= (X),
gX=X—(X)

(Al)

for any X; the other is to rewrite the typical integral equa-
tion

X=Xp+Xp(L i +L2 )X (A3)

coefficients and brings the overall magnitude of the
cross-polarized scattering into closer agreement with the
experimental data. As can be seen from Fig. 6, X de-
creases as a decreases, although the angular distribution
of cross-polarized scattering seems to favor a large value
for a.

It is possible that deviations from a normally distribut-
ed surface profile could have been significant for the sam-
ples used in Ref. 2; and this could account for some of the
disagreement. There is recent evidence that shows that
higher-order moments of the surface profile may be larger
than those implied by a normal distribution. In addition,
other recent studies have shown that the correlation func-
tion (2.4) may not be adequate; there may, for example, be
a component of the correlation function that has its max-
imum displaced away from Q =0, so that the Gaussian
form of (2.4) may not be correct. We believe that it
would therefore be profitable to use the techniques of
Refs. 8 and 9 to characterize the roughness of samples
used in optical experiments of the kind studied here. In
any case, it is desirable to establish the predictions of a
theory based on a simple Gaussian correlation function,
whether or not there is perfect agreement with the small
amount of existing data.

It should also be noted that the resonant terms in the
differential reflection coefficients (4.25) and (4.26) are
essentially proportional to [Im(e)] '. By using a smaller
value for Im(e), the calculated cross-polarized scattering
would be enhanced; in fact, in a more exact calculation
that includes radiative decay, it is found that resonant
scattering dominates for Im(e)=0. There does not, how-
ever, seem to be any justification for using a value for
Im(e) smaller than the one used here.

The upturn in the polarized reflection coefficients that
occurs at small angles can be explained by assuming that
the roughness contains a "wavy" component, with long-
range correlations on the order of 7000 A. We omit this
contribution here, since it has been previously discussed.
This wavy component will not affect the cross-polarized
scattering, because the changes in parallel wave vector re-
sulting from it are too small to excite surface polaritons.

In conclusion, we express the hope that, in addition to
providing closed-form expressions for the differential re-
flection coefficient of a randomly rough surface from first
principles, this work will serve as the foundation on which
future studies in light scattering fr'om rough surfaces will
be made.
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as the two coupled equations

X=XI +X]L2XO,

X) ——Xp+XOLiXi .

(A4a)

(A4b) M= V+M&G)(V —&M &) . (A17)

The skeleton equation for M can be derived from (A16)
by multiplying it from the left by V and using Eq. (A13).
The result is

The result (A4) is proved most easily by first rewriting
(A3) as

(1 XpL—) )X=Xp+XpL2X . (A5)

T= V+ VG"'T, (A6)

and set O' '=O' 'P+G' 'Q. We have an equation of the
type (A3), where G' 'Q and O' 'P are identified with L,
and L2, respectively. We then find the following coupled
equations, which are analogous to (A4):

T=m+mG"'I T,
M= V+VG( )QM .

(A7)

(AS)

One then prem ultiplies by the inverse operator
(1 Xp—L) )

' and defines (1 XpL—) ) 'Xp ——X).
Our first task is to derive the equation for the self-

energy operator M. We start from the equation for the T
matrix,

We now turn to the evaluation of the averaged nonspec-
ular intensity, which according to (3.4), can be expressed
in terms of the modulus squared of the Green function.
This quantity is a particular case of

G (K') K() )G(K) Kp) = 8 (K') K) 'Kp K() )

or, in a more compact notation

G*(1',0')G(1,0)=$(1,1',0,0') .

(Alga)

(A18b)

An equation for ( 9 (1,1';0,0') ) can be obtained by multi-
plying together the following equations for G and G* [see
(A 16)]:

G(f,0)= (G(f,0) ) + g(O(f, 2) )v(2, 1)G(1,0), (A19a)
1,2

G*(f', 0') = ( G*(f', 0') )

+ g (G'(f', 2') )v*(2', 1')G*(1',0'), (A19b)
Jl pt

G=G' '+G' 'VG, (A9)

and is related to T by T= V+ VGV and G=G' '

+G' 'TG' '. From these equations it follows that

The diagrammatic expansion for (M ) is obtained by
iterating (A8) and then averaging.

We can also express the exact Green function G in
terms of M. G satisfies

where

v( K2, K) ) = V( K2, K) ) —(M( K2, K ) ) ) .

From (A13) we see that (vG ) =0; we then find

( S(f,f', 0,0') ) =8' '(f,f';0, 0')

9 (0)(f,f';2, 2')

(A20)

(O) G(0)+G(0)(T)G(0)

TG"'= VG .

(A10)

(A 1 1)

X ( ~' '(2, 2'; 1, 1')

By multiplying (A7) from the right by G' ' and using
(A10), we find

with

X $(1,1',0,0') ) (A21)

TG'"=M(G")+G'"(T)G'")=M(G ),
which implies, using (Al 1),

(A12) $(0)(ff'2, 2') = (G*(f',2') ) (G(f,2) ),
7 ' '(2, 2', 1, 1')=v*(2', 1')v (2, 1) .

(A22a)

(A22b)
VG=M(G) .

Dyson's equation

& O& =O"'+O"'&M
& &O&

is obtained by averaging

G=G'"+O'"M&G&,

(A13)

(A14)

(A1S)

which is a consequence of (A9) and (A13).
We can also convert (A9) into a pair of equations such

as (A4) by setting L) ——(M) and Lz ——V—(M). The
first equation of the pair is simply Dyson's equation
(A14); the other equation,

G=&G)+(G&(V—(M))G=(G&+G(V —(M))(G),
(A16)

We note the formal correspondence between the two-
polariton equation (A21) and the average of the one-
polariton equation (A9). Thus, we will introduce opera-
tors ~ and I that are the analog of T and M in the one-
polariton case, and proceed to derive the Bethe-Salpeter
equation, which is the analog of the Dyson equation
(A14). Formally, it is convenient to regard G, ( S ), 9'' ',
P ' ', ~, and E' as matrices, according to the example

(S(ff';0,0')) =(S)ab t

where the composite index a =(f,f') labels the rows, and
b—:(0,0') labels the columns of the matrix ( S ).

We start by deriving an equation for ~: This is most
easily accomplished by first introducing an operator t
which satisfies

is the starting point for the development of "skeleton" ex-
pansions, which contain (G ) as intermediate propagators.

vG=t(G),
from which it follows, using (A16) and (A20), that

(A23)
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6=(6)+&6&t(6),
t=u+u(G)t .

(A24)

(A25)

we may now obtain an equation for r in terms of (r), as
was done for T in (A7). By using the same technique that
led to (A7) and (A8), we find

From (A23) we see that (t) =0. Furthermore, when
(A24) and its complex conjugate are written out like
(A19), and the two resulting equations are multiplied and
then averaged, we find

r=l +r9(0)(r),
r=x +mw(0)gr .

The average of (A33),

(A33)

(A34)

(g ) g(0)+ y(0)(r) y(0)

where

(A26)
( )=(r)+(r)$'"( ), (A35)

r(K, K';K0, K())=t*(K',K())t(K,K()) . (A27)

Equation (A26) implies that (r) is the full (reducible) ver-
tex function, as described in the main text.

From (A25) and its complex-conjugate relation, written
as

shows that (I ) is the irreducible vertex function, which
is defined in the main text as a series of diagrams [see Fig.
5(b)]. If we multiply (A35) from the right by 9 (0), multi-

ply (A26) from the left by (I ), and then subtract the re-

sulting equations, we find that (w) 9'' '=(1 )(8 ); Eq.
(A26) then gives the Bethe-Salpeter equation

(1—U(6))t=U,
(1—U'( 6 )*)t*=v*,

we obtain

(A28a) &9&=$")+s")&r&&S&.

(A28b) Comparison with (A21) shows that

( )S"'=(r)(S)=(m'"8 & .

(A36)

(A37)

where

W(f,f'; l, l') =5(f', 1') g U(f, 2)(6(2, 1))

+o(f, 1 ) g U'(f', 2')(6'(2', 1') )

(A29) We have thus obtained in the coupled equations (A32)
and (A34) a way of generating I, and hence (I"). These
two equations may be combined into the single equation

I =F ( )+(A —F ( )S' ))I +P ( )S( )Qr, (A38)

which can also be written as

—y U(f;2)0*(f', 2') ( 6(2, 1))
22'

X &6'(2', 1') & . (A30)

y"(0)+~r y (0)y(0)(r)

APPENDIX B

(A39)

An equation for P can be obtained by multiplying (A29)
from the right by (1—9" )P ) and using (A31). We find

y (0)+(~ y (0)g(0))y (A32)

The advantage of writing (A29) in the form (A31) is that

%'e now define an operator P that is related to ~ in the
same way that Vis related to T:

(A31)

Tt[6(0) (6(0))t]T VtG(0)T Tt(6(0) )tV

+ Tt(6(0))t( Vt V)6(0)T

The first two terms on the right-hand side are rewritten

(B1)

The generalized optical theorem, Eq. (1.9) is a conse-
quence of the Lippman-Schwinger equation for T, Eq.
(1.2). By multiplying Eq. (1.2) from the left by Tt(G' ')t
and multiplying its complex conjugate from the right by
GT and subtracting the two equations, we obtain

VtG(0)T Tt(6(0))tV ( Vt V)6(0)T+ VG(0)T Tt(6(0))('( V Vt) Tt'(6(0))tVt

=( V V)6'"T+ T V —T(G'")t( V —V—') T+ V', — — (B2)

which, when substituted into Eq. (Bl), yields Eq. (1.9).
Various versions of the Ward identity are obtained by

taking suitable averages of Eq. (1.9). For our purposes it
is easier to start from the equation

i

t t =t ((6)——(6) )t+(1+t (6) )(U —U )

analogous to that of Eq. (1.9).
We now multiply Eq. (B3) by (6)t from the left and

by (6 ) from the right. After using t (6 ) =UG,

(6)+ (6)t(6 ) =6, and their Hermitian conjugates, we
obtain

(G) (t —t )(G)=G"Ut((G) —(G)t)UG+Gt(U —Ut)6 .

X(1+(6)t), (B3)

where, as in Appendix A, U= V—(~) and t obeys Eq
(A25), t=U+U(6)t. The proof of Eq. (B3) is completely

The average of the left-hand side of this equation vanishes
because (t ) =0 [see Eq. (A13)]. The average of the
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right-hand side then gives

&Gt t(&G& —&G)t) G&+&Gt(V —Vt)G&

=&G (&M) —&M) )G) . (85)

The first term on the left-hand side of Eq. (85), which we-
we shall call & & ), can be written in terms of the irreduci-
ble vertex function & I ) . Explicitly, using the notation in-
troduced by Eq. (A18), we have

&B(1',I))= g &G*(2', 1')U*(3',2')U(3, 2)G(2, 1))
2, 2', 3

& &( I', 1)) = g & P ' '(3, 3';2, 2') S(2,2', 1, 1') )
2 2', 3,3'

X [ & G(3', 3) ) —
& G(3,3') )*]

or, by using Eq. (A37) which defines & I ),
&B(1',I))= g &I (3,3';2,2')) &$(2,2';l, l'))

22', 3 3'

x[&G(3'3))—&G(3,3'))'] .

(87)

(88)
X [&G(3', 3) ) —

& G(3,3') )'] . (86)

With the definition (A22), Eq. (86) can also be written as
We now substitute Eq. (88) into Eq. (85) and find the

generalized %'ard identity:

2, 2' 3 3'
&I (3,3',2,2')) &9(2,2';l, l'))[&G(3', 3)) —&G(3,3'))*]+g&G(2,2';l, l')[V(2', 2) —V (2,2')])

2,2'

=g & S(2,2', l, l'))[&M(2', 2)) —&M(2, 2'))"] . (89)

If V is Hermitian, the second term on the left-hand side of Eq. (89) vanishes identically. In this case we can multiply
Eq. (89) by &8(1,1';4,4') ) ', defined by

g & 8'(2, 2', l, l')) & 9(1,1',4,4')) '=5(2,4)5(2', 4') (810)

and sum over the indices (l, l ). We find the usual Ward identity, which can be simplified further by the use of Eqs.
(2.14) and (3.5):

1m&M(E)) =Q lm&G(X))) &I (K),K)) . (811)

APPENDIX C

We can perform the angular integrations in Eqs. (4.4)—(4.6) by making use of the well-known identity

eacosP g I (iz)eimP (C 1)

where I~ (a) is a modified Bessel function. In order to Fourier analyze Eq. (4.6), we let
'2

f dp2O f dK2Kp,

A A
with the notation K; Ki ——cosgij. If Eq. (2.4) is taken to be the form of the correlation function, Eq. (4.7a) becomes, us-
ing Eq. (Cl),

2 2 2 +2g 2/4
&I (K K )) &I (IC„Q, )) = e '

~
y(K)y(0)

~

cos P,
~KO~ ~0 6 L

2
1 ma. a —&+2i+K22)'2/

e
e L

2 2eKiK2 E IE2a
X

~
y(~~)y(&~)

~

' +cos$~2yÃ) yE2 2

The expansion for &r(K), KO)) (), written as

& r(K(, KO) )„=g & r(K~ ) )'g'e

ilgi2e

(C2a)

(C2b)

(C3)

is then substituted into Eq. (4.6), along with Eq. (C2). The result is
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~ I

g (r(Ki))~P| 'e
n'

I
y(0)

I

cos Pip+
—K2a 2/4f dK, K,

I
(G, (K, ))

I

'e '
I y(K, )

I

'

X f df2pt I

g'
I

+2Re(q')cosg&2+ —,
' [1+cos(2$&z)]]

X Q Ii(a') (r(K2) ) I i 'e "e
l, m

(C4)

where g'=eK& K2ly(K& )y(K2 ) and a'=K, K2 a i2.
Since P&p=gi2+$2p it is convenient to change the integration variable to Ptz. We also introduce X'"'(K,Kp), defined

2 2

( (K) )'"'=
I

(0)
I

'X'"'(K)
2 L2

0

After multiplying Eq. (C4) through by (2') 'e "and integrating over P&p, Eq. (C4) reduces to

(C5)

K2a 2/4X'"'(Ki)=
I y(Ki) I'e "" —„'S„+,+-,'S„p-

(2m )

2 2 2E' —1 cT Q

g2

2' io 2
2 K2a /4

&&+ f, drip f, ddi2 f «zK21)'«2) I"
l, m 10

&&
I

(Gp(K2) ) I [ I

r/'
I

+ —,
' +2 Re(g')coslP|2+ —,

'
cos(2/12)]

Xe " e " I(~')X' '(K ) (C6)

Equation (4.14) follows after performing the angular integrations in (C6) and using the fact that I~(a)=I (a).
From the form of Eq. (C6) it is clear that only three Fourier components of X'"'(Ki) are nonzero, and that
P' '(K&)=X' '(Ki). With X' '(K, ) known, Eqs. (4.4) and (4.5) can be analyzed in the same way; the result is Eqs.
(4.9)—(4.12).
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