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Radius, self-induced potential, and number of virtual optical phonons of a polaron
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The self-induced polaron potential, the polaron radius, and the number of virtual optical phonons
are calculated within the Feynman description of the polaron. The dependence of these quantities
on the temperature, the magnetic field strength, and the electron-phonon coupling constant is inves-
tigated analytically and numerically.
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Frohlich polarons' have been the subject of continuous
interest during the last forty years. Most of the studies in
polarons can be subdivided into two categories: (i) calcu-
lation of static quantities such as, e.g., the polaron
ground-state energy and the polaron effective mass, '

and (ii) the calculation of dynamical quantities such as,
e.g., dc and ac mobility and the nonlinear response to an
electric field. Relatively little attention has been devoted
in the past to the calculation of the self-induced polaron
potential, the polaron radius, and the number of optical
phonons present in the virtual-phonon cloud surrounding
the electron. To the best of our knowledge such a calcula-
tion is only partially available in the literature in the
case of zero external magnetic field and zero (or very
small) lattice temperature. In the present paper we study
the self-induced polaron potential, the polaron radius, and
the number of virtual optical phonons using an exten-
sion' of the Feynman polaron theory for arbitrary values
of the electron-phonon coupling constant (ct), temperature
( T), and magnetic field strength (A ).

An electron interacting with the vibrational modes of a
crystal and a constant uniform magnetic field is described
by the Hamiltonian

2
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where we used standard polaron notations (see, e.g. , Ref.
2). The magnetic field is chosen along the z axis, and the
vector potential will be written in the symmetrical
Coulomb gauge: A= —,A ( —y, x, O). In the following we
will need the partition function Z =Tre ~, which, in a
path-integral formulation of the trace, becomes

I
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with co, =e~/mc the cyclotron frequency and

G„(u)= ,' (n)c(oe'" '+—e"'t' ~" ~') (3c)

the phonon Green's function, where n (co) =1/(et'~ —1) is
the occupation number of phonons with frequency co.

The present paper is organized as follows. In Sec. II,
we calculate, within our extension' of the Feynman pola-
ron model, the following quantities: (i) the self-induced
polaron potential, (ii) the number of virtual phonons as a
function of wave vector and the total number of virtual
phonons, and (iii) the polaron radius along and perpendic-
ular to the magnetic field. The results are intended to be
valid for arbitrary electron-phonon coupling, temperature,
and magnetic field strength. In Sec. III we present a nu-
merical analysis of the above quantities, and explicit ana-
lytic expressions are obtained for limiting values of a, T,
and A . In Ref. 10 we found that as a function of the
magnetic field strength, the polaron can exhibit a transi-
tion from a dressed to a stripped polaron state. At this
transition the effective electron-phonon interaction per-
pendicular to the magnetic field decreases dramatically.
The consequence of this transition on the above quantities
is also investigated. The conclusion is presented in Sec.
IV.

where (i) we have dropped the contribution of the free
phonons to the partition function Z, and (ii) the phonon
variables are eliminated exactly. The action S[r(t)] in
Eq. (1) is given by' S =S,+S;, where
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II. GENERAL RESULTS

V( x)= (@(r—x)), (4)

which is defined as the therrnodynamical average over the
electrostatic potential operator

4(r) = ——g ( Vkake'"'+ V],a],e '"'), (5)

A. The self-induced polaron potential

The electron interacting with the longitudinal-optical
(LO) phonons induces a potential

with k~ ——k +k, and
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By inspection of Eqs. (2) and (3a)—(3c), we can write B],
as a path-integral average,

and which is proportional to the interaction term in the
Frohlich Hamiltonian. " Inserting Eq. (5) into Eq. (4)
shows that one must calculate the average

Bk ——(ake'"') = (a],e ' ') (6a)

which can be expressed in terms of the partition function
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and the eigenfrequencies s& (s2 &s3 are the roots of the
cubic equation

s(s —v] )+(—1)'co, (s —u]i ) =0 .

The parameters (v~~, w~~, vz, w] ) were determined in Ref.
10 by a variational calculation of the polaron free energy.

Inserting the expression (6d) for Bk into the potential
(4) results in

1
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The approximation consists of replacing the weight
function e (') in the path-integral average, denoted by ( )

Sm [']in Eq. (6c), by the weight function e, where S [r] is
the generalized Feynman polaron-model action introduced
in Ref. 10. We then obtain (see Appendix A of Ref. 10)

P u —k D(u) —k D (u)

0

Note that eV(x=0) =2(SI )/p equals twice the contribu-
tion of the average of the electron-phonon interaction part
to the free energy. Limiting ourselves to the case of the
optical polaron, i.e., ~~——~0 and

4~+ (~o)'

(6d) we are able to reduce Eq. (8) to

V(r],z) =
' 1/2

0 2a
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where r] ——x +y, H(u)=D(u) —D~(u), and n=n(coo)
is the occupation number of LO phonons. In Eq. (9), z
and r] are in units of RD ——(A'/m[vo)' and temperature
is in units of TD ——~p/kz, with kz Boltzmann's con-
stant.

and the explicit form of the Hamiltonian (1), we can write
Eq. (10) as

1 1 BZ
prza „'

B. The average num. ber of virtual phonons or in terms of a path-integral average,

First we calculate the average number of virtual pho-
nons with a wave vector k,

N], (a„a],), —— (10)

(BS[r]
l

(12)

where the number of free LO phonons is subtracted [see
Eq. (2)]. From the definition of the partition function Z

Inserting the explicit form for the action, Eqs. (3a) and
(3b), we find
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In the case of the optical polaron, this expression becomes
' 1/2

4~a 1 +nfi
2ppz cop

I3 —u k D(u) ki2DH(u)x f du(u+Pn}e "e * e

The average in Eq. (13) is the Fourier transform of the
electron density-density correlation function for imagi-
nary times. We have calculated this correlation function
in Ref. 10 for the case of our generalized Feynman pola-
ron model. The result was

(expIik [r(u) —r(s)]] )

=exp[ k&DH—(u s) —k, D—(u —s)],
which we may insert in Eq. (13),

P
[1+n (cok)] f du [u +Pn (cok)]

(19)

In the case of a spherically symmetric probability dis-
tribution [i.e., co, =0 and, therefore, D(u)=DH(u)], we
can define a radius RH,

(20)

where the average is over the function p(r). One easily
finds

1 1 ~~2 1 cosh(/3/2 —u)
dQ

RH V ~ o v'D (u) sinh(P/2)

where RH is expressed in units of RD ——QA'/mcoo. When
a magnetic field is applied, the spherical symmetry is bro-
ken and the problem has cylindrical symmetry. Then we
can define a radius, respectively, along (R

~~
) and perpen-

dicular (R~ ) to the magnetic field. In such a situation it
is no longer meaningful to define a radius RH in the sense
of Eq. (20). For example, if one defines 1/R

~ ~

z
~
), one finds 1/R

~~

= co.
Therefore we have adopted another definition for the

polaron radius which measures the mean-square deviation
of the electron from the polaron center; explicitly,

(zz)
II
= (22a)

(22b)

man polaron model (with units for which A'=m =coo——1),

1+n e
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which has the following limit,
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valid for all a.
The average total number of phonons is

Using the probability function (19), one obtains
P
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P
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which, in the case of the optical polaron, becomes
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which can be written in closed form,
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C. The polaron radius

3

R,'=2 g d
1+s; 1+ [s;n (s;)—n]

2

SI —1
(24b)

The polaron (in contrast to the electron) is not a point-
like particle, but it has a finite extension in space. The in-
duced polarization charge density p(r), which was calcu-
lated in Ref. 12, is a measure for the polaron probability
distribution

p(r)=p(r) f drp(r)

around the polaron center. From Eq. (6) of Ref. 12, we
obtain, for the optical polaron, within the extended Feyn-

where RII and Rz are in units of RD.

III. NUMERICAL RESULTS AND ANALYTIC
RESULTS FOR LIMITING VALUES

OFa, T, AND@

To analyze the behavior of the potential V(x), the
number of phonons X~, N, and the polaron radius R

I I,R J

as a function of the electron-phonon coupling constant a,
temperature T, and magnetic field A, we proceed in the
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following way. First, the case T=A =0 is considered
and the a dependence is studied. Next, the T dependence
is studied for A =0 and fixed a. Finally, we consider the
case T=O, a fixed, and study the magnetic field depen-
dence. Special attention is paid in the last case to the re-
cently predicted' stripping transition of the polaron. We
will use units such that 15=m =cop=1.

A. Dependence on the electron-phonon coupling strength

If one chooses ~=0, it follows that vz ——v
~ ~

——v,

wq ——w~~=w, which implies that D(u)=DH(, u). In this
limit, V(r) and N can be simplified considerably,

&~0 v 2a 7"

V(r)= (l+n) f du e "erf, (25)
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where erf(x) is the error function.
In Fig. I the self-induced potential V(R) = V(r)e/

2am coo at T =A =0 is plotted as a function of the dis-
tance from the polaron center for different values of the
electron-phonon coupling constant. The number of virtu-
al phonons, scaled by

1
0 V m~p

' 1/2

k

is shown in Fig. 2(a) as a function of the wave vector.
The wave vector is in units of k~ ——(meso/A)' . The
average total number of virtual phonons as a function of
a is plotted in Fig. 2(b). The polaron radius (in units of
RD) for two different definitions of the radius [see Eqs.
(20) and (22a)] and for the Feynman polaron model itself
(dashed curve) is plotted in Fig. 3 as a function of the
electron-phonon coupling for T=A =0. The radius of
the Feynman polaron model was obtained by Schultz,

10

0

CL

C)

~ 01E

0.01

0.01 0.1

FIG. 2. (a) Number of virtual phonons as a function of the
wave vector for the same situation as in Fig. 1. (b) Average to-
tal number of virtual LO phonons as a function of the electron-
phonon coupling a for T=O and m, =O. Xp ——(A/mco )' /k V
and kD ——(mcop/A)'

T/To =0

(dL/(do = 0

2.0
'~SCHULTZ
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FIG. 1. Self-induced polaron potential V(R) as a function of
the distance from the polaron center at zero temperature and
zero magnetic field, and for different values of the electron-
phonon coupling constant. V(R ) = V(R )e /2am cop and
RD = ($/m~p)

FIG. 3. Polaron radius, in units of RD ——(A/mcop)' ', as a
function of the electron-phonon coupling at T=O and co, =O,
and for three different definitions of the polaron radius.
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3 UR
2 v2 —w2

1/2

(27)
—(9'/sa~)k'

1
~ k2

k 4~2
(33)

with v and w the variational parameters of the Feynman
model.

The behavior of the different curves in Figs. 1—3 will
be discussed in terms of the analytic expressions for the
limiting behavior for a «1 and a g&1.

(a) a«1. Then v=w and, consequently,

D(u) =DH(u) =(u/2)(1 —u/P) .

For T=O we find, for the potential,

which gives, for the total number of phonons,

N=2a /3m. .

The polaron radius is given by

3K 1
RH ——

and

R =R~= ,'(V'vr/a—),

(34)

(35a)

(35b)

(28)
r

which is finite at the polaron center, i.e., V(0) =2a, and
which is exactly twice the polaron ground-state energy.
At large distances from the polaron center, Eq. (28)
reduces to a Coulomb potential V(r)=v 2a/r which can
be written as

which have all the same u dependence, but have different
coefficients. From Eq. (32) we observe that, for a»1, a
new scale is introduced in coordinate space, namely
r —V'2/v =Pm/2(3/a), which is also apparent from
Eqs. (35a) and (35b). In wave-vector space the scale [see
Eq. (33)] is given by k = —,V2/ma.

V(r)=e 1 1 1
B. Dependence on temperature

2~277a
k'(1+k'/2)' (29)

from which one obtains, for the average total number of
phonons,

X =n/2, (30)

which is a result already obtained by Lee et al. in Ref. 6.
For the polaron radius, we find

[6'0 (e ) is the static (high-frequency) dielectric constant].
This is the result to be expected from classical electrostat-
1cs.

The average number of virtual LO phonons with wave
vector k equals

In Fig. 4 the self-induced potential is plotted for dif-
ferent values of the temperature for a=3 and A =0. The
potential becomes deeper as the temperature increases.
Presumably, this is a consequence of the fact that with in-
creasing temperature the lattice becomes more easily po-
larizable. This result is consistent with the results of Ref.
12 for the temperature dependence of the polarization
charge density around the electron.

The number of virtual phonons as a function of the
phonon wave vector is shown in Fig. 5(a) for a=3 and
A =0, and for different values of the lattice temperature.
The average total number of phonons for A =0 and a= 1

and 3 is plotted in Fig. 5(b) as a function of temperature.
The increase of the number of short-wavelength phonons
with increasing temperature is apparent from Fig. 5(a).

R~= ——= (1——„a+.. . ),1 ) 1

I' 2
(31a)

R =((r )/3)'i =1—a/18+. . . (31b)

and

RF ———,(3/2a)' (31c)

RH and R are limited by the quantum fluctuations of the
Lo-phonon field. RF diverges for o, ~O, because in this
limit it measures the extent of a quasifree particle.

(b) a»1. In this limit, w-l, v-4a /9m, and
D(u)=(1 —e "")/2v. The potential becomes

—-'I
CL

I

fQ

—2
CU

C)
Cl p= 0

V(r)=2a(v/m)' e "' ~F&(.1;—,; —,vr ), (32)

with ~F&(a;b;z) the degenerate hypergeometric function.
At the center of the polaron we find V(0)=4a /3',
which is 4 times the polaron ground-state energy. For
large distances from the polar on center, i.e.,
r»(~/2)'~ (3/a), the same result is found as in the case
of weak electron-phonon coupling, namely V(r) =~2a/r
The average number of phonons with wave vector k is

0 4 8 12 16 20 24

R /RD

FICx. 4. Same as Fig. 1, but now for a fixed electron-phonon
coupling constant, i.e., ca=3, but for different values of the 1at-
tice temperature. TD —AcoLQ/kg.
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0.8
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=1/&1 &
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3 4

I I I I I I I I I I I I I I I I I i i

1 2
T/ TD

FIG. 6. Polaron radius, in units of R& ——(R/mcoo)', as a
function of the lattice temperature at zero magnetic field, for
two values of the electron-phonon coupling, i.e., a=1 and 3,
and for two different definitions of the polaron radius.

1
V(r) =2u 1+ +

4p
(1+ . . )

T 3+
3

1 —4p+'' + (36)

l l I i I l l l l I l l l l

'I 2

T/ TD

FICi. 5. Same as Fig. 2, but now for a fixed o, value and for
variable lattice temperature.

The total number of virtual phonons increases with tem-
perature, and the increase is more pronounced if the
electron-phonon coupling is larger, as is seen in Fig. 5(b).

The polaron radius decreases with increasing tempera-
tures, as is shown in Fig. 6. This trend, although surpris-
ing at first, is consistent with the temperature behavior of
the self-induced polaron potential (Fig. 4) and the induced
polarization charge density (see Ref. 12).

Analytically, we will consider only the limit for small
electron-phonon coupling strength and for small (P»1)
and high temperature (/3 « 1).

(a) p»1. From Eq. (25) we obtain, for the low-
temperature correction to the zero-temperature potential
of Eq. (28),

15 k
P2 (1+k /2)"

(37)

From Eq. (26) we obtain, for the temperature dependence
of the number of phonons in the weak-coupling limit,

K=uv ~p (1+n)e ~~ [ —,Io(p/2) —2Ii(p/2)

+nIp(/3/2)],

which is valid for arbitrary temperature [the I„(x) are
Bessel functions of an imaginary argument]. In the low-
temperature limit, Eq. (38) reduces to

cx 3 I+ + ~ ~ ~

2 4 P

For the polaron radius we obtain the following results:

(39)

1
RH ——~ 1

4p

Note that the r=O temperature correction to V(r) is iden-
tical to the temperature correction to the polaron free en-
ergy [see Eq. (79) of Ref. 10].

For the number of virtual phonons with wave vector k,
the following low-temperature expression is obtained:

N(k) = 2M2~a
1

1 k
k2( 1 +k2/2)2 P ( 1 +k2/2)2

(1+V 2r)e
2

which leads to the following expression for the potential
around the polaron center: and

2a 511+——+'' +
81 6P
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A 1

18 3/3

(40b)

(b) P « 1. At the polaron center the potential is finite,
-1/2 t

V(0) =2a /3 (41a)1+ +.

V(r)=~2a(1+n )(1/r) .

For the number of phonons, we find

(41b)

k k
N (k) = 1 —/3 +/3'

12 240
(42a)

which is valid for k «&2//3. The average total number
of phonons becomes

av ~ /3'

vP 48
(42b)

At large distances from the polaron center, such that
r »~2P, the potential reduces to a Coulomb potential,

a magnetic field strength corresponding to co, j'coo ——3.
The potential is plotted in the direction parallel, i.e.,
V(R~=0,z), and perpendicular, i.e., V(R&,z=O), to the
magnetic field. For comparison, also the result for
co, /con ——0 is plotted. We remark that at (R~ =0, z=O)
and at large distances from the polaron center, there is no
asymmetry. The number of virtual LO phonons is plotted
in Fig. 8(a) as a function of the wave vector for a=3,
T=O, and co, /coc ——3, both for parallel, i.e., N(kz ——O, k, ),
and perpendicular, directions, i.e., N(kt, k, =O). Perpen-
dicular to the direction of the magnetic field, the number
of short- and intermediate-wavelength phonons is
enhanced because of the increasing localization of the
electron in this direction. The average total number of
virtual phonons increases with magnetic field, as is illus-
trated in Fig. 8(b). The polaron radius decreases with in-
creasing magnetic field, as shown in Fig. 9. The decrease
is faster in the direction perpendicular to the magnetic
field. In the perpendicular direction, the magnetic field
localizes the electron, and in the limit of large magnetic
fields there is almost no dependence on o.. The decrease
of R }}

is a consequence of the electron-phonon interaction
which tends to restore the spherical symmetry of the pho-

In the high-temperature limit the polaron radius,

RH v'/3/2vr+ ——.

R =v'/3/6+

(43a)

(43b) 0.8

TD= 0

is essentially determined by the temperature fluctuations
and not by the electron-phonon coupling constant.

C. Magnetic field dependence

A magnetic field breaks the spherical symmetry and the
resulting problem has axial symmetry. The self-induced
polaron potential is plotted in Fig. 7 for o.=3, T=O, and

~ 06

~ 0.4

2.5

0 2
I }

6 8 10 12 '14- 16
]Ro

0.5

FIG. 7. Self-induced polaron potential as a function of the
distance from the polaron center at a=3 and T=O, and for two
values of the magnetic field, i.e., co, /coo ——0 and 3. For
co, /coo ——3 the potential is plotted in the direction parallel (~ ~)

and perpendicular |,'l ) to the magnetic field.

FIG. 8. Same as Fig. 2, but now we fixed a and varied the
magnetic field. For co, /coo=3, X(k) [panel (a)] is plotted for
wave vectors parallel (~~) and perpendicular (J. ) to the direction
of the magnetic field.
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T/Tp= 0
where C =0.5772. . . is the Euler constant. The polaron
radii for co, /coo && 1 is given by

0.8
R

ii
=(1+ . ) — ( I++co,+ . ), (46a)

toe 41R, = 1 — + . . ~ — (1+—c0 + . ) (46b)
2 18 I5 c

0.5

and, for m, /~0&&1, it becomes

Rt =1/+1+co, . (46c)

(dc/(dp
2 3

FIG. 9. Polaron radius in the direction parallel (R
~~

) and per-
pendicular ( Rq ) to the magnetic field as a function of the mag-
netic field strength for T=O at a= 1 and 3.

k~

k'(1+ k'/2)' 2 (1+k'/2)'

(44a)

non cloud and, as a consequence, R
~~

depends strongly on
CX.

In the weak-coupling limit and for T=O, we have
D(u)=u/2 and DH(u)=(l —e ' )/2', . The analytic
expression for the potential for limiting values of co, will
not be given here because of its complexity, which is a
consequence of the double integral in Eq. (9). The number
of LQ phonons with wave vector k for co, /~0&&1 is
given by

Recently, ' we found, within the Feynman approxima-
tion and using an anisotropic Feynman polaron model,
that for a well-defined critical magnetic field the polaron
exhibits a discontinuous transition from a dressed polaron
state to a two-dimensional "stripped" state when e &4.2
at T=O. The transition is accompanied by a dramatic de-
crease of the effective electron-phonon interaction in the
plane perpendicular to the magnetic field. The influence
of this transition on the different quantities characterizing
the polaron and under study here, is shown in Figs.
10—12. In these figures we considered, as an example, the
situation for a =7, T=O, and co, /coo ——4.33. For these pa-
rameters the potential is depicted in Fig. 10 for the
"stripped" state [solid curve gives V(R~,z =0) and the
dashed curve gives V(R~ =O,z)] and the dressed polaron
state [dashed-dotted curve, V(Rq, z =0); dotted curve,
V(Rt ——O, z)]. Note that in the "stripped" state the poten-
tial is not as deep as it is in the dressed state, and that in
both states the potential is asymmetrical. The number of
virtual LO phonons is plotted as function of the wave vec-

and

2v 27la —ki~/2'~
e

k (1+.k, /2) 2',
1

~ ~ ~

(1+c0,+k, /2)

(44b)

for co, &&I, where k~ =k„+k». The axial symmetry of
the problem is apparent from Eqs. (44a) and (44b). We
also note the enhanced number of virtual LO phonons
with wave vector directed perpendicular to the magnetic
field when the magnetic field increases. The average total
number of phonons is given by

r
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4
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FIG. 10. Self-induced polaron potential in the direction
parallel (

~ ~
) and perpendicular (l ) to the magnetic field for

+=7, T=O, and co, /co0 ——4.33 when the polaron is in the
dressed state ( D) and in the stripped state ( S).
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0.8

0.6

0.4

S 0 tor in Fig. 11(a). In this figure we used the same nota-
tions for the different curves as in Fig. 10. The average
total number of LO phonons is shown in Fig. 11(b). From
Figs. 11(a) and 11(b) we note that at the transition point
from the dressed polaron state to the "stripped" polaron
state, the number of virtual phonons decreases suddenly
and the polaron radius (see Fig. 12) increases. The
"stripped" state is therefore less confined than the dressed
polaron state, which is, e.g., reflected in a small number of
virtual LO phonons present.

IV. CONCLUSION

1 2 3

10

C:
D
c) 9

C)

~ 8

4

FIG. 11. (a) Number of virtual LO phonons as a function of
the wave vector for the same situation as in Fig. 10. (b) Average
total number of virtual LO phonons as a function of the mag-
netic field for +=7 and T=O. Solid lines correspond to the
stable state.

0.44

0.42

2~ 0.4

0.38

In the present paper we studied the self-induced polaron
potential, the average number of virtual LO phonons, and
the polaron radius within a generalization of the Feynman
polaron model. The dependence of these quantities on the
electron-phonon coupling constant, temperature, and
magnetic field strength was studied analytically and nu-
merically.

The temperature dependence of the present results is
contrary to intuitive expectations (see, e.g., Ref. 9). Intui-
tively, one might expect that the contribution of the
electron-phonon interaction to the different quantities de-
creases with increasing temperature due to a loss of coher-
ence between the electron and the phonons because of the
increase of random temperature fluctuations. The results
plotted in Figs. 4, 5(a), 5(b), and 6 indicate that this is not
so: the contribution of the electron-phonon interaction in-
creases with increasing temperature.

What one overlooks in the intuitive argument is the fact
that the contribution of the electron-phonon interaction to
V(r), Xk, X, and A is a measure of the coherence be-
tween the motion of the electron and the phonons only
when the temperature is zero. For nonzero temperature,
another aspect of the problem comes into play: (1) the
crystal can be polarized much easier, and (2) the electron
can also interact with real phonons. The number of real
LO phonons increases with increasing temperature and, as
a consequence, 'the electron can interact with more pho-
nons, which probably leads to the observed increase of the
contribution of the electron-phonon interaction to V(r),
Xk, and N with increasing temperature.

The decrease of the polaron radius with increasing tem-
perature (see Fig. 6) is due to the temperature fluctuations
of the phonon field and is not a direct consequence of the
electron-phonon interaction. These fluctuations hinder
the electron motion, which leads to a reduction of the po-
laron radius.
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