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Localization effects in the scattering of light from a randomly rough grating
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We calculate the resonant scattering of p-polarized light incident on a randomly rough grating
ruled on a medium characterized by a dielectric constant. e(co)=e&(co)+i@2(co), where e~(co) & —1

and
~

ez(cv)
~

&&
~

e&(co)
~

. Particular emphasis is placed on determining the contribution to the
scattering that arises from the localization of surface polaritons due to the surface roughness. This
localization is found to contribute a maximum to the angular dependence of the intensity of the non-
specularly reflected light in the antispecular direction.

Recent work on disordered systems of d (2 dimensions
has identified the terms in a diagrammatic expansion in
the spatial disorder that are responsible for the localiza-
tion of elementary excitations of the system. ' These
maximally crossed, or fan, diagrams were originally asso-
ciated by Langer and Neal with nonanalytic terms in the
expansion of the electrical resistivity of an electron gas in
the impurity concentration. Only more recently has a
fuller understanding of the relationship of maximally
crossed diagrams to localization phenomena been ob-
tained, culminating in the self-consistent calculation by
Vollhardt and Wolfle of the electrical conductivity and lo-
calization length of the two-dimensional electron gas.

In this paper we apply the above-mentioned diagram-
matic techniques to calculate the resonant scattering of
light from surface polaritons on a randomly rough dielec-
tric grating. The surface polaritons of the grating exhibit
localization due to the surface roughness, i.e., they cease
being propagating surface excitations. The localization in
this case is an example of one-dimensional Anderson lo-
calization, because the electromagnetic field of the surface
polariton decays exponentially with increasing distance
from the dielectric-vacuum interface into each medium
with a decay length that is smaller than its wavelength
along the interface. The effects of this localization on the
resonant scattering of light are obtained by including
maximally crossed diagrams as intermediate states be-
tween the incident and reflected rays. The expansion in
the surface roughness that we make is based on the
unitarity- and reciprocity-preserving formulation of the
problem given by Brown et al. '

We consider a grating whose profile is given by
x3 ——g(x t ). The region x3 )g(x & ) is vacuum, while the
region x3 & g(x, ) is filled by an isotropic dielectric medi-
um characterized by the complex dielectric constant
E(co) =Et(co) + l e2(co ), 'with e~(co) & —1 and

~
E2(co)

~
&&

~
e&(co)

~

at the frequency co of the incident
light.

The surface profile function g(xt ) is assumed to be a
Gaussianly distributed random variable, with the follow-
ing properties:

(g(x, )) =0,
r

X) —X)
(g(x ) )g(x ') ) ) =o exp

Q

(la)

(lb)

The angular brackets denote an average over the ensemble
of the realizations of g(x&), and o =(g (x, )) is the
mean-square deviation of the surface from flatness. In
evaluating higher-order moments of g(x& ) we assume 'that
it is a Gaussianly distributed random variable.

The light in our system is taken to be p polarized and
the plane of incidence is the x&x3 plane. The magnetic
field vector is then in the x2 direction, H(x, t)
=(O,H2(xtx3

~
co),0)exp( icot), and —its single, nonzero

component satisfies the equations

67
H2 (xix3 co)=0, x3) g(xi) (2a)

BX) BX3 C
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2 +e(co) H2 (xtx3
~

co)=0, x3 &g(x)) .
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where

ao(qco) =
1 /2

CO

q (
C

(4a)
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2

q )
C

while ao(kco) is real (k &co /c ). A similar expansion

(2b)

The solution of Eq. (2a) in the region x3 & g(x t ),„that
satisfies the boundary condition at infinity can be written
in the form

ikx& iao(kco)x3—
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can be written for the refracted field in the dielectric
medium. However, in a diffraction problem we are in-
terested in only the electromagnetic field in the vacuum
above the dielectric. It is therefore convenient to elim-
inate the field in the dielectric medium and to work with
only the field in the vacuum. This can be done by an ap-

plication of Green's theorem, the extinction theorem, and
the Rayleigh hypothesis, in a manner described in Refs. 5
and 6. It is found in this way that the field in the dielec-
tric medium enters the problem only indirectly, viz. ,
through the boundary condition that H2 (x &,x3

i
co),

given by Eq. (3), satisfies on the surface x3 ——g(xi )

f dxi f dp e ' ' ' ' H2'(xix3
i
co)[—g'(xi)ip —ia(pco)]

a(pco)

8—e(co) '—g (xi ) + H2 (x |x3 i
co)

x~ Bx3 'X3 ——/{Xi )

=0,
x3 &g(x'| ) (5)

where a(pco) = [«co)(co /c )—p ]'i, with Re[a(pco)] & 0, Im[a(pco)] & 0. When the expansion given by Eq. (3) is substi-
tuted into Eq. (5), we obtain the integral equation satisfied by the reflection amplitude R (q i

k),

I(a(pco)+ao(kco) i p —k)
[a(pco)ao(qco) +pq]R (q/k) = [a(pco)ao(kco) —pk], (6)2~ a(pco) —ao(qco) a(pco ) +ao(kco )

where

e(co)ao(pco) —a(pco)
Ro(p) =

«~)ao(p~)+ «pco)

is the Fresnel coefficient for reflection of p-polarized light
from a flat dielectric surface, and

G ( )
le(co)

e(co)ao(pco) +a(pco)
(10)

is the surface-polariton Green's function for g(x&)=0.
The scattering matrix T(p

i
k) is postulated to satisfy the

equation

T(p
I
k) = V(p

I
k)+ f "'

V(p
I
q)Go(q)T(q

I
k) .2'

Equations (6), (8), and (11) serve to define the effective
scattering potential V(p

i
k). To leading order in g(xi)

we find that

V(p
i
k) =

2 g(p —k)[e(co)pk —a(pco)a(kco)]
e(co) —1 ~

e(co)

+o(g'), (12)

with g(p)= f dx g(x)exp( ipx) It is a—lso co.nvenient to
introduce the surface-polariton Green's function G(p i

k)
for the rough surface as the solution of the Dyson equa-
tion

where

I(a
i
Q)= f dxie

' "'e

Equation (6) can be recast as a standard scattering prob-
lem by writing '

R(p
i
k) =2/75(p —k)RQ(k) —2iG0(p)T(p

i
k)GO(k)aQ(k),

=2m'5(p —k)GO(k) +Go(p) T(p
I
k)GO(k) . (13b)

The scattering efficiency (the total scattered flux in the
x3 direction normalized by the total incident flux in the
x3 direction), averaged over the ensemble of realizations
of g(x&), is

2

I(q (k)= ( (R(q ik) ( ), qIi ao kco C

where Li is the length of the surface x3 ——0 in the x&
direction. From Eqs. (8) and (14) we see that the efficien-
cy for diffuse (i.e., nonspecular) scattering can be written
as

4ao(qco)ao(kco)
I(q

I k)d fr=
I Go(q) I'

L]

&&( i T(q ik) [ )diff' GO(k) (15)

where ( i T(q
i
k) i )d;rr is the contribution to

( i T(q
i
k) i ) that contains no factor of 2m5(q —k).

From Eq. (13b) we see that this result can be reexpressed
in the form

4ao(qco)ao(k~) { i G(q ik) [')d;g, (16)

so that we need only to obtain ( i G(q
i
k)

i ) from Eq.
(13a) to determine I(q

i
k).

We note that ( i G(q i
k) i ) is similar in form to the

k —+0 and ~~0 limit of the configuration-averaged prod-
uct of two one-electron Green's functions

( G (p+kl2, p'+k/2;EF+co)

X G "(p' —k/2, p —k/2;EF ) )

G(p
i
k)=2m5(p —k)G0(k)+Go(p) f V(p

i
q)G(q i

k)dq
2&

(13a)
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considered by Vollhardt and Wolfle. The calculation of
& I G(q

I
k)

I ), as we shall see below, can be carried out
by summing the same ladder and maximally crossed dia-
grams that were found to be relevant to the determination
of the two-electron Green's functions. Unlike the electron
calculations, however, the sums in the calculation of
& I G(q

I
k) I ) are not divergent due to the nonzero value

of e2(rp). The latter gives the surface polaritons a finite
lifetime independent of any processes associated with the
surface roughness. This situation is analogous to the el-
imination of the divergence in the k~O, co—&0 limit of
the density response function of a two-dimensional gas of
noninteracting electrons in a random distribution of im-
purity potentials, when time-reversal symmetry is broken
by the application of an external dc magnetic field. 's

In order to calculate & I G(q
I
k)

I ) we first need to
know the average of the single-particle Green's function
& G(q

I
k) ). This can be obtained by the procedure of Ref.

6. Since averaging restores infinitesimal translational in-
variance to our system we find that & G(q

I
k) )

=2m5(q —k)G(k), where G(k) satisfies the Dyson equa-
tion

G(k)=Gp(k)+Gp(k)M(k)G(k) . (17)

The self-energy M(k) in the lowest-order self-consistent
approximation is given by the pair of equations

&M(q I
k))= f & V(q lp)G(p)V(p

I
k)),

& M(q
I
k) ) =2~5(q —k)M(k) .

(18a)

(18b)

The average appearing on the right-hand side of Eq. (18a)
is found from Eqs. (16) and (12) to be

& V(q
I p) V(p

I
k) )

The result given by Eq. (20) combined with Eq. (17)
suggests the following approximation for G(k):

G(k) =
k K p ihtot k +K p + ihtot

(22)

where the irreducible vertex function is given by the solu-
tion of

I (q, r lp, s)—=vp(q I
r)vp(p ls)

+ Uoq yuo p zGyG*z

X [I (y, r
I
z,s) —

& I (y, r
I
z,s))]

where b,«, ——5,+5» and b,»=C&1m[M(K»)]. From the
solution of Eqs. (18) we find that

'2

b., =2m. acr C, K»exp( —a K») . (23)1/2 2 2 i 4 2

6) CO)

In Eqs. (22) and (23) 6» describes the damping of the sur-
face polariton by its roughness-induced conversion into
radiative modes.

Using the averaging procedure outlined in Appendix A
of Ref. 6 we can now write a Bethe-Salpeter equation for
& G(q

I

k)G*(p
I

k

& G(q
I
k)G'(p

I
k) )

2m5(q k)2'rr5(p k)
I
G(k)

+G(q)G"(p) f "f ' «(q, r lp, s))

&&&6(r lk)G"(s lk)), (24)

'2
=2~5(q —k)m' a cr

e (co)
'

2

X [e(co)kp —a(kco)a(pcs)] exp — (k —p)4

(19)

with

vp(q r) = V(q
I
r) —&M(q

I
r)) .

If we write

& G(q
I
k)G (p

I
k) ) =(2') 5(q p)F(p I

k)—

(25)

(26)

(27)

C)
Gp(k) =

SP E'

where for Ks »5,
E'((co )Q —E)(cv )

Ci ——
2

1 —e~(co)

E2( CO )K»
2e&(cv)[er(rv)+ 1]

1/2

C)
1+K p+ih, ' (20)

(21a)

(21b)

To solve the coupled Eqs. (17) and (18) we first note the
result that follows from Eq. (10) in the limit eq~O,

and

& I (q, r
I p, s) ) =2~5(q r —p+s)I p—(q, r

I p, s), (28)

we have from Eq. (24) that

F(p
I
k) =5(p —k)

I
G(k)

I

+ I«»I'f "' l.(p, Ip )F(
277

=5(p —k)
I
G«)

I
'+1«p)

I

'r(p
I
k)

I
«k)

I

',
(29)

where
rv

K,p
———

c ei(co)+ 1
(21c)

In Eq. (20) 6, describes the damping of the surface polari-
ton on a flat surface due to the loss mechanisms in the
dielectric medium, i.e., to e2(co).

r(p
I

k)=l.p(p, k lp, k)

+f 2
"o(» Ip»l«) I' (

From Eq. (22) we see that as 6«,~0
(30)
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2

I
G(k)

I

'~ [6(k —K„)+5(k+K„)].
~tot

(31)
where

When we use this approximation in Eq. (30) we find that

r(p
I
k) = I o(p, k

I
p, k)

C2
[I"o(p,K,p I p,K,p)r(K, p I

k)
26„t

+ro(p, K„—Ip, K,„—)~( K„—Ik)],

(32)
I

r(+K,p, k)

I (+K, , k
I
+K, ,k)+HI (+K, , k

I
+K, ,k)

1 —3
(33)

with 3 =(C~/2b, „„)io( K, ,—K,
I

K,—,K, )

To lowest order in g(x & ) we find from Eq. (25)

2

(I (q, r p,s) ) = ( V(q, r) V*(p,s) ) =2m5(q r ——p+s)m' ao. [E(ro)qr —a(qco)a(re)]
e (co)

2

&& [g(co)ps —a(pc@)a(sro)]'exp — (q —r)
4 (34)

This interaction can be represented diagramatically as in Fig. 1(a). Using Eq. (34) in Eqs. (32), (29), (27), and (16) we find
the corresponding contribution to I(q

I
k)d'ff,

I"'(q Ik)dff=8~ao(q)ao(k)
I
G(q) I'I G«) I'

C& 1
X K(q, k)+ . . 2 K( q, Kp) K( Kp, k)+K(q, —K,p)K( K,p, k)—

tot

[K(q,K,p )K( —K,p, k ) +K(q, —K,p )K(K,p, k) ]
tot

(35)

q, r
I

I
Ip's

pI k
I

I

X
I

Ip'k

p i

I

p
I

, k

+ etc.

where
2

K(q, k) =~'r ao.
I
e(co)qk —a(qro)a(kco)

I&'(ro)

2

X exp (k —q)'
4

(36)

p, ,- k

+ +,

q' k

p =, ~ k
Np X

Pj
I

q' 'k
+ etc.

and (b,,~/b, „„) is the perturbation-theory expansion pa-
rameter. This result represents the sum of the so-called
ladder diagrams ' depicted in Fig. 1(b). The irreducible
vertex part entering this sum together with the approxi-
mation given by Eq. (18) satisfies the Ward identity (for
@2~0) relating the self-energy and the irreducible vertex
function

(c) dk(
1m[M(k)]= f Im[G(k~)]I o(k~, k

I
k~, k) .

2m
(37)

FICr. l. {a) Diagrammatic representation of (I"{q,r
I p, s)) in

the lowest order of g{x}[see Eq. (34)]. (b) Ladder-diagram sum
[see Eq. {35)] for the reducible vertex function in terms of the
(I ) shown in {a). Upper and lower solid lines are G and G~,
respectively. I,

'c) Contribution from the maximally crossed dia-
grams to the irreducible vertex A{p,k

I q, k) expressed in terms
of the interaction (I ) represented in {a}.

The ladder diagrams summed to obtain Eq. (35) corre-
spond to the q~O, io~O limit of Eq. (16) in Vollhardt
and Wolfle. For our case, however, the result is finite be-
cause e2(io)&0. However, if we let E2(co)=0 in Eq. (35),
the expression becomes divergent as expected, because
then (b„p/b, „,) = 1.

We now turn to the diagrams in ( I ) that contain inter-
mediate states contributing to localization of the surface
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polaritons. These are the maximally crossed diagrams
represented in Fig. 1(c). If we represent the irreducible
vertex function corresponding to the sum of these dia-
grams by

where

A(s,p l q, t) = ( V(s
l p) y (q l

t) &

(1(q,r
l p, r)&=A(q, r lp, r),

then A(q, p l qo,p) is given by

«q p I qo p) = J "' f "«(q s) V'(t
l
p) &

(3&) + Vs r y t

XG(r)G'(y)A(r, p l q,y) . (40)

XG(s)G'(t)A(s, p l qo, t), (39)
Upon solving Eqs. (39) and (40) we find (when

b,,p/b, „,((1)

4at.tC',
A( q,p l qo,p) =2vr5(q —qo )

(q+p) +46,„,'" 1—

1
2

~tot

X K(p, K,p)K(p, —K,p)+ —, I [K(p,K,p)] +[K(p, —K,p)] I =2m'5(q qo)Ao(q—,p l q,p),
tot

(41)

where we have used the result that

25tot
lim ~rr5(q+p) .

o (q+p) +4+„,
(42)

pO

The perturbation-theory expansion parameter for both
ladder and maximally crossed diagrams is (b,,~/b, „,). Set-

ting

I o(p» p s) =Ao(p»
l p s—)

in Eq. (30), we find

&(p k)=Ao(p k
l p, k) .

(43)

(44)

Then the contribution to I(q
l
k)(f,ff from the maximally

crossed diagrams is

I"(q k)dtt

= 877(xo(qco)(xo(kco) G(q)
l l

G(k)
l Ao(q, k

l q, k)

(45)

From Eq. (41) it is easy to see that the contribution to the
scattering efficiency from I"(q

l
k)d'ff ls greatest for

q = —k, i.e., for reflected light in the direction opposite to
that of the incident beam.

The differential reflection coefficient, BR/00, is ob-
tained from I(q

l
k) and is found to be given by

pO

R
cosOI(q

l
k),ae 2~&

where 0 is the angle between the scattered wave vector
and the outward normal to the mean surface. In what fol-
lows we will ignore the specular contribution to BR/BO
and concentrate only on the diffuse scattering obtained as
the sum of I' '(q

l
k) and I"(q

l
k) given in Eqs. (35) and

(45).
%'e present some results for BR /BO for the case of light

FIG. 2. (a) Plot of BR /Bg in rad ' vs 0 for 4579-A light in-
cident on an Ag grating [e(co)=—7.5+0.24i] with a=1000 A
and o.=50 A. Curves for angles of incidence of 20' (solid line),
40 (dashed line), and 50 (dot-dashed line) are shown. Direction
of the incoming light for each curve is indicated on the figure by
an arrow. (b) Plot of BR/BO in rad ' vs 6I for 4579-A light in-

cident on an Ag grating [e(ar) = —7.5+0.24i]. The angle of in-

cidence of 40' is shown by an arrow. Curves for a=2500 A,
o.=31.62 A (solid line); a=5000 A, o.=22.36 A (dashed line);
and a =10000 A, o.=15.18 A (dot-dashed line) are shown.
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0
of wavelength A, =4579 A incident on a rough silver grat-
ing. The dielectric constant of silver at this wavelength is
e(co) = —7.5+0 24. i . We find in general that BR /t)0 ex-
hibits two qualitatively different types of behavior de-
pending on the ratio a/A, . For a/A, «1 localization ef-
fects are significant, but for a/1, & 1 the localization con-
tributions are negligible. We illustrate the a/A, «1 limit
in Fig. 2(a) where BR/BO versus 9 is plotted for a =1000
A, cr =50 A, and angles of incidence of 20', 40', and 50'.
Note that the peaks in BR/BO in the antispecular direc-
tion that arise from polariton localization are found to in-
crease as the angle of incidence is decreased. The general
form of the antispecular peaks is Lorentzian. Their width
increases with increasing e2(co). In the opposite limit
6«,~0 they become singularities.

The a/A, ) 1 region is illustrated in Fig. 2(b) for an an-
gle of incidence of 40' and for several values of a and cr
From Eqs. (35), (36), (41), and (45) we see that ao sets

the scale of M/t)8. Hence, to facilitate comparison of
the results obtained, a and o. were chosen such that
ao =2.5&(10 A for all curves in Fig. 2(b). We see that
as a increases relative to A, the diffuse scattering concen-
trates around the specular direction. In addition, the an-
tispecular contribution to BR/ibad froxn localization effects
is so small that it cannot be seen on the scale of our fig-
ure,

Thus, we conclude that under suitable conditions, indi-
cated above, effects of surface polariton localization
should be observable in the angular dependence of the
light scattered nonspecularly from a randomly rough grat-
ing.
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