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The Anderson model at zero temperature is studied as a function of the f-level position ef and the
f-level —conduction-electron hopping matrix element V. The f-f Coulomb interaction U is assumed
to be finite, and double occupancy of the f level is taken into account F.or a large value of the f
level degeneracy Nf, there is an important asymmetry between f0 and f2 configurations. Even for
"symmetric" parameters, 2sf+ U=2eF ——0, the f2 weight is much larger than the f0 weight if Vis
small. The effect of this asymmetry on other properties is studied for Nf —+ oo. The static suscepti-
bility is primarily determined by the f weight, while the shape of the valence photoemission spec-
trum close to the Fermi energy sF also has an important dependence on the f2 weight. The valence
photoemission spectrum can have a pronounced two-peak character, with one peak close to cf and a
second structure close to c~. For cf well below c~ ("spin-fluctuation" limit) the weight of the second
structure can be strongly enhanced compared to the U= Oc limit, and its shape and position depends
on the conduction density of states. This structure can therefore have a peak below cF. The brems-
strahlung isochromat spectroscopy spectrum shows an f ' peak with an energy separation from sF
which is determined by the "Kondo" temperature. The tail of this peak contributes to the structure
in the valence photoemission spectrum below c~. Ground-state properties are calculated variational-

ly, treating 1/Xf as a small parameter. A new technique for performing these calculations is
developed. This technique makes it possible to include such a large basis set that accurate results
are obtained for the ground-state energy and the f-level occupancy in the limit Nf =1. To calculate
the spectra we introduce a time-dependent method which facilitates the inclusion of f configura-
tions in the valence photoemission spectrum.

I. INTRODUCTION

Ce mixed-valence compounds are often described by the
Anderson model. ' Traditionally, it has been assumed that
the f and f ' configurations are almost degenerate and
tnuch lower in energy than the f configuration. The An-
derson model has therefore often been studied in the limit
where the Coulomb interaction U between two f electrons
is infinite and the f, configurations are entirely
suppressed. The Bethe ansatz has, for instance, been
used to calculate certain properties of the Anderson model
exactly in the limit U=ac for an infinitely broad and
structureless conduction band. These calculations have
been performed for different values of the degeneracy Xf
of the f level. Recently, there have been strong indica-
tions that the f ' configuration may be a few electron
volts lower than the f configuration. Since U is of the
order of 5—6 eV, the energy of the f and f configura-
tions are then comparable, and the assumption U= ~ is
not really justified for these systems. The thermodynamic
properties of the Anderson model for a finite U and
Nf ——2 have been studied extensively using the
renormalizatiori-group technique or the Bethe ansatz.
In a recent paper, ' referred to hereafter as paper I, we
found that the extension to Xf )2 leads to many new
features. The aim of this paper is therefore to study both
the ground-state and spectroscopic properties of the An-
derson model at T=O for a finite U and a large NI We.

consider the Anderson impurity Hamiltonian'

Ng

H= g f sg, g„ds+sfP„P„

+ f ds[V(s)f g,„+H.c.] +U g n n„.
V,P

&(pi

We have introduced a combined index, v, for the orbital
and spin degeneracies. The spin-orbit and multiplet split-
tings are neglected. The first term describes the conduc-
tion states, with energies s, and the second term the f lev-
el with the (bare) energy sf. The third term leads to hop-
ping between these states and the last term includes the
Coulomb interaction between the f electrons. As was dis-
cussed in paper I, Eq. (1.1) is obtained from the normal
form of the Anderson model by a linear transformation of
the conduction states. This transformation also leads to
states which do not couple to the f level and which are
therefore not included. In V(s), a factor v'p(s) is ab-
sorbed, where p(s) is the conduction density of states. In
the following we set the Fermi energy equal to zero,
cF——0. The special choice 2cf + U=O has been given par-
ticular attention for Nf =2 and a symmetric choice of
V(s) around sF. This so-called symmetric Anderson
model has electron-hole symmetry and the f and f con-
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figurations have equal weight. For Nf &2 the electron-
hole —pair symmetry is lost, even for a symmetric"
choice of the parameters. To study this we present an ex-
act solution for the limit of an infinite Nf. This solution
shows that the f weight can be much larger than the f
weight, even for 2e~+U=O and a "symmetric" V(e).
The aim of this paper is to study further the influence of
the f and f weights on various properties, such as the
ground-state energy, the magnetic susceptibility, and the
valence photoemission spectrum. We find that the in-
clusion of f states leads to important effects for the
photoemission spectrum and that, in contrast to the
Xf ——2 case, the susceptibility is mainly determined by
the f weight.

In Sec. II we present a new method for calculating
ground-state properties, treating 1/Nf as a small parame-
ter." The idea that 1/Nf is a small quantity has earlier
been used to calculate ground-state properties. ' ' In pa-
per I we developed a method for calculating spectroscopic
properties for U= ac and, to a certain extent, for U & ac

as well. Alternative methods for obtaining spectra were
later developed for U= oo and T)0.' In Sec. III we test
the accuracy of this method for finite Nf by comparison
with exact results for Nf =1 and, to some extent, for
Nf ——2. In Sec. IV we study some ground-state properties,
in particular the fo and f weights and the susceptibility.
In Sec. V a new method for calculating the valence photo-
emission and the bremsstrahlung isochromat spectra (BIS)
is presented, and the interference between transitions in-
volving f and conduction electrons is discussed.

into the f level. The states
~

e & couple to

(2.4)

I
Ee& = ' g 0,'A, „l 0& .

Nf v
(2.5)

FIG. 1. Schematic representation of the basis states used.
Solid circles show electrons; open cia'cles, holes. In each part of
the figure the conduction states are to the left and the f level to
the right. The arrows show which states couple to each other
and the strength of the coupling. A solid line indicates a
strength —V and a dashed line a strength V/~N~.

For the states
~

Es'& (b in Fig. 1) another conduction elec-
tron has hopped into the f level, and the states

~

EE & (c in
the figure) describe how the f electron in

~

F& can hop
into an unoccupied conduction state with the energy
E ( ~ EF). The remaining states in Fig. 1 are constructed
in a similar way. States with more than two f electrons
are assumed to have such a high energy that they can be
neglected. Alternatively, we could introduce an infinite
three-body interaction. The neglect of states with more
than two f electrons is, then, not an approximation. The
states

~

0& and
~

e. & above were introduced by Varma and
Yafet' in a variational calculation. To perform a
ground-state calculation, the matrix elements of the Ham-
iltonian between the basis states are needed. In paper I we
obtained

II. GROUND-STATE PROPERTIES

In this section we extend the method used in paper I for
calculating some ground-state properties, with particular
focus on cases where the f-level degeneracy Nf is large.
The quantity 1/Nf can then be considered a small param-
eter. "To see this we study the limit of large Nf with the
subsidary condition

(2.2) (E iH i
0& = V(e), (2.6)v=1 E(Bp

QNf V(e)—:V(E), (2. 1)

where V(E) is independent of Nf, which allows us to
choose basis states in a systematic way. This is indicated
in Fig. 1. Since the ground state is a singlet (for Nf 2), ——
we only consider singlet basis states. We introduce

N~

~

0 &
= g + itt,

~

vacuum),

with the f level empty and all conduction states below the '

Fermi energy, cz ——0, filled. We have used the normaliza-
tion

If, P, ~[ =5(E—e')5

(ee'
i
H

i

E"
& = f—1

[ V(E')5(E —E")

+ V(E)5(E' —E")], (2.7)

The state (2.2) is represented by the left-hand part (0) of
the uppermost row: It couples via H to the states (a in
Fig. 1)

(2.3)

in which one conduction electron below cz has hopped

(EE iH i
E'&= 5(E—c,'),V(E) (2.8)

Nf

where V(e) was defined Eq. (2.1). For a large Nf, the
states in the first row of Fig. 1 couple with a strength
which is independent of Nf, while the coupling between
the states in the first and second rows varies as 1/QNf.
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(2.9)

where
i
i ) are (some of) the basis states in Fig. 1. We

must then solve the eigenvalue problem

Hi/c/ Ep( N)c;, ——
J

(2.10)

where the H;i are the matrix elements of H, and Eo(N) is
the ground-state energy. The energy scale is
transformed' linearly, so that the eigenvalues of the
transformed matrix H lie in the interval [a,b], where
a & —1 and b & 1. We guess an approximate ground-state
Vp of H, which can be written as

Since states with more than two f electrons are neglected,
the states in the first row are the only ones which couple
(indirectly) to

i
0) with a finite strength as Nf ~ oo.

Similarly, the second and third rows contain all the states
which couple with. a strength -I/QNf to the states in
the row above. In the actual calculations, the states h are
neglected for numerical convenience. For a finite (but
possibly very large) system, the states in the first, second,
and third rows give contributions to the total energy,
Eo(N), of the order of Nf, Nf ', and Nf, respectively,
in the limit of a large Nf. This shows how 1/Nf can be
treated as a small parameter, and we will refer to this ap-
proach as. the 1/Nf method. The analysis also justifies
our choice (2.1) for V(s), since an Nf dependence of this
type is needed to obtain a well-defined limit as Nf ~ oo.
The ground-state properties are calculated variationally.
In paper I we performed calculations by "folding" the
Hamiltonian matrix, which is a very efficient method if
not too many of the sets in Fig. 1 are included in the
basis. If the matrix is written in a block form, the blocks
in the diagonal are diagonal, and it is initially trivial to
use the folding technique. In most cases, however, the
folding produces nondiagonal elements in the remaining
blocks and further folding of the matrix quickly becomes
impractical. This technique is therefore simple only if the
basis contains at most the states 0, a, b, and c or (for
U= co) the states 0, a, c, and d. For a larger basis set the
method presented below is more efficient.

The ground state is written as

Vp ——g a,v (2.11)

where the U, are the eigenvectors of H. The quantity

V„—= T„(H ) Vo g——a „T„(e.„)U (2.12)

Vi ——H Vo,

V„=20V„]—V„2, n &2 .

(2.14)

(2.15)

To obtain a matrix H of a finite size the energy variable
is discretized into a finite number of points. The size of
the matrix is essentially determined by the set of basis
states with the largest number of continuum variables (E
or E). In this set, each state only couples to a few other
basis states, and the matrix is very sparse.

The calculation of (2.14) and (2.15) is therefore relative-
ly fast and the effort is essentially proportional' to N, if
the matrix H has the size N XN. This is in contrast to a
diagonalization of H, for which the work is proportional
to N . The present method, in addition, makes the
storage of an NXN matrix unnecessary, which for the
basis sets discussed here would be quite unfeasible.

III. RESULTS FOR THE NONDEGENERATE
AND SPIN-DEGENERATE CASES

The basis set in Fig. 1 is intended for a large degenera-
cy, Nf, and its suitability for a small Nf is less clear. For
instance, it does not automatically lead to equal f and f

is calculated, ' where T„ is a Chebyshev polynomial of
the order n, and s is an eigenvalue of H. For large
values of n and 0 &

~

x
i

—1 && 1,

T„(x)- ,' ex—p[nv'2(
i
x

i

—1)], (2.13)

and (2.12) therefore approaches exponentially the eigen-
vector corresponding to the eigenvalue with the largest ab-
solute value. ' Because of the transformation of the ener-

gy scale, (2.12) gives the ground state. Owing to rounding
errors, this is, in general, true, even if Vo is orthogonal to
the lowest eigenvector of H The .calculation of (2.12) is
greatly simplified by the recursion formulas for the Che-
byshev polynomials,

TABLE I. The energy lowering, hE —af, for different values of the f-level energy ef, in the nonde-
generate (1Vf ——1) Anderson model. The notations for the basis set refer to Fig. 1. The results (Ref. 18)
on a given row were obtained using the set indicated in the leftmost column together with the ones in
the rows above. For instance, the results in the third row were obtained with the basis sets a, c, and d.
The states b and e do not enter for ¹f——1, since they describe double occupancy. The parameters are
V= 1.5 and 8 =6 (5=0.75), and the energy unit is eV.

Basis
set

d

Ff =2
—0.263
—0.290
—0.293
—0.293
—0.294

—0.534
—0.679
—0.714
—0.723
—0.726

KE—cj
Cf = —1

—0.054
—0.359
—0.408
—0.415
—0.416

—0.001
—0.264
—0.291
—0.294
—0.294

cf———4

—0.000
—0.177
—0.188
—0.189
—0.189

Exact —0.294 —0.726 —0.416 —0.294 —0.189
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TABLE II. The f occupancy (Ref. 18), nf, for different values of ef in the nondegenerate (1Vf 1)——
Anderson model. The parameters are V=1.5 and 8 =6 (b =0.75). For the basis-set notation, see Fig.
1 and Table I. All energies are in eV.

Basis
set

d

Ef =2

0.065
0.081
0.083
0.083
0.084

cf ——0

0.283
0.444
0.487
0.499
0.497

P1f

ef ———1

0.813
0.853
0.833
0.824
0.822

0.996
0.934
0.919
0.916
0.916

cf———4

1.000
0.971
0.967
0.967
0.967

Exact 0.084 0.500 0.822 0.916 0.967

weights for the symmetric Anderson model. The Nf =1
and the (symmetric) Nf =2 models are, however, good
test cases, since the method should be least accurate for
small values of Nf and since these two cases are best
known from other calculations. The accuracy of the
1/Nf expansion in a slightly different formulation has
been discussed thoroughly for U = ao by Rasul and
Hewson, ' who concentrated on properties other than
those discussed below.

We first study the Xf——1 model, which is a one-body
problem and therefore can be solved exactly. The exact
solution is compared with results obtained using different
basis sets. In Table I we show results for hE —cf, where

b.E=E (N) (0 iH
i
0), — (3.1)

[ V(s)]'=+(E)—=2V2(B' —s')'~'/(m8'),
~

c.
~

&8 (3.2)

where 2B is the bandwidth, and the band is assumed to be
symmetric around sz ——0. We also define

b, =Nfh=Nf+V (sp)=2Nf V /B (3.3)

as a simple measure for the strength of the coupling be-
tween the f level and the conduction band.

and Ec(N) is the ground-state energy. When the hopping
matrix elements V(s) are turned on, the energy is lowered
by b,E sf relative to—a state with one f electron and no
hopping. The results for the f occupancy, nf, are given in
Table II. These results are obtained using a semielliptical
form for [V(s)]2,

For Nf =1 the basis set I ~
0),

~
s) I [Eqs. (2.2) and

(2.3)], referred to as a in Tables I and II, leads to rather
inaccurate results, and for —Ef » b, =0.75, it fails
dramatically. However, basis set c, which also includes

I ~

EE) ] [Eq. (2.5)], already gives much more accurate re-
sults. As the size of the basis set is increased, the results
rapidly approach the exact results. For basis set g the er-
rors in AE and nf due to the limited basis set are usually
smaller than the numerical accuracy of the calculation.

It is also interesting to study the spin-degenerate
(Nf ——2) model, where the states describing double occu-
pancy enter. Although we generally expect the accuracy
of the 1/Nf method to increase with Nf, the accuracy is
not necessarily better for Nf =2 than for Nf = l. The
reason is that, for Nf 2, new ba——sis states enter, since
states with two conduction holes can have these holes in
different channels v for Nf &2. We focus on the sym-
metric case, 2sf+ U=O, for which the exact f and f
weights are equal. The convergence with the size of the
basis set is illustrated in Table III. Also for Nf 2, the-—
basis set corresponding to the first row in Fig. 1 (first row
in Table III) is not very good. For small values of V, the
f weight is much smaller than the f weight, and for
large values of V the opposite is true. As the size of the
basis set is increased, the total energy is lowered and the
f and f weights approach each other, as they should.
The results are compared with the results from a quite
different method, which is particularly suited for the
Xf——2 case. This is also a variational method, where the
basis states are obtained by projecting out appropriate

TABLE III. The energy hE —ef and the fo, f', and fi weights (Ref. 18) for the symmetric (Nf =2) Anderson model. The param-
eters are cf———2.5, U=5, and 8=6, and two values of V are considered. For the basis-set notation, see Table I. The lowest row
(Proj. ) shows results of a projection-operator method described in Appendix A. All energies are in eV.

Basis
set

V= 1, 6=0.67
fo f 1 f2

V=2, 5=2.67
fo fl f2

0+a+b
C

f
d+e

—0.108
—0.210
—0.238
—0.243
—0.245

0.001
0.024
0.031
0.033
0.034

' 0.974
0.953
0.938
0.934
0.931

0.025
0.024
0.031
0.033
0.034

—0.628
—0.899
—1.126
—1.185
—1.217

0.141
0.150
0.140
0.138
0.137

0,778
0.779
0.745
0.736
0.732

0.081
0.072
0.115
0.126
0.132

Proj. —0.214 0.033 0.933 0.033 —1.226 0.140 0.719 0.140
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, TABLE IV. The energy hE s—f and the fo, f', and f2 weights (Ref. 18) in the symmetric Anderson
model according to the 1/Nf and projection-operator methods. The parameters are af ———2.5, U=5,
and B=6, and the energy unit is eV.

fO

1.0
1.5
2.0
3.0

—0.245
—0.639
—1.217
—2.692

Proj.

—0.214
—0.618
—1.226
—2.737

1/Nf

0.034
0.088
0.137
0.186

Proj.

0.033
0.096
0.140
0.184

0.931
0.825
0.732
0.637

Proj.

0.933
0.808
0.719
0.632

1/Nf

0.034
0.087
0.132
0.177

Proj.

0.033
0.096
0.140
0.184

parts of the Hartree-Fock solution of a related model
problem. By construction this method gives the same f
and f weights for the symmetric Anderson model. The
method is described in detail in Appendix A. In Table IV
we compare the results for b,E ef and —the f,f ', and f
weights obtained in the 1/Nf and projection-operator
methods. The projection-operator method is particularly
well suited for large values of V, where a Hartree-Pock
solution is a good starting point. For V=2 and 3 this
method gives a slightly lower total energy, while the 1/Nf
method gives a somewhat better total energy for V= 1

and 1.5. In all cases, however, both methods give similar
results.

The accuracy of the 1/Xf method may seem surprising
in view of the orthogonality catastrophe. ' This theorem
states that if a local perturbation is introduced in a system
of electrons, the overlap between the unperturbed and per-
turbed ground states varies as CX, where X is the
number of atoms of the system and a is related to the
phase shifts of the perturbation. For the present problem
the theorem implies that the overlap between the approxi-
mate and exact ground states goes to zero as N~oo.
This has led to doubts' about the present approach, and
below we therefore discuss in detail why in the limit
Nf + oo exact results are obtained for the physical proper-
ties studied.

We first considered a linear chain with N atoms. Each
atom has a nondegenerate level at the energy zero and a
hopping matrix element t to the nearest neighbors. This
represents the unperturbed problem. The perturbed sys-
tem has an additional atom with a nondegenerate level at

ef and a hopping matrix element V to the last atom of the
unperturbed chain. The unperturbed and perturbed sys-
tems both have N electrons. In the limit N~~ this
model goes over to the model described by Eq. (3.2). In
Table V results are shown for the occupancy nf of the ad-
ditional atom and for AE —cf +a~, where sF is defined as
the energy of the highest occupied orbital in the unper-
turbed system. The quantity AF. —cf+cz corresponds to
the energy lowering due to hopping, which was studied in
the preceding tables. The table also shows the weight

g,.
~

(i
~ P )

~

of the ground state
~ P ) in some of the

spaces I ~
i ) I defined by Fig. 1. Table V shows the rapid

convergence of the "local" properties b,Z —sf + a~ and nf
with N. Both quantities converge as 1/N, and for
N =200 they only differ by a few percent from the N = oo

results. Simultaneously, the reduction of the overlap be-
tween the exact ground state and the larger basis sets is
rather small. Even for %=200 the exact ground state has
only 0.2% of its weight outside the space defined by the
two uppermost rows in Fig. 1. Thus the basis set in Fig. 1

can describe rather accurately the change of the wave
function as N is increased up to some quite large value. If
N is further increased, a larger basis set is required to
describe the changes in the waue function Howev. er, "lo-
cal" properties, such as nf and AE —vf+cF, change little
as N is increased from a large value to infinity. The basis
set of Fig. 1 can therefore describe these properties well
even for an infinite system. This is confirmed by compar-
ing Table V with Tables I and II.

We now generalize the linear chain and introduce a de-
generacy Nf and a Coulomb interaction U between two

TABLE V. The energy b,E—sf +eF, the f occupancy nf, and the weight of the exact ground state,
~
P), in various subspaces for a linear chain with %+1 atoms. The columns 0, a, c, and d show the

weight of
~ P) in the spaces defined by the states 0, 0+a, 0+a+c, and 0+a+c+d, respectively, in

Fig. 1. The parameters are t =3, V= 1.5, and cf———1. All energies are in eV.

6E—Ff +SF0

10
18
26
38
50
70

100
150
200

—0.838
—0.635
—0.563
—0.514
—'0.489
—0.468
—0.452

0.440
—0.434
—0.416

0.566
0.676
0.725
0.757
0.774
0.788
0.799
0.807
0.811
0.822

0.385
0.244
0.183
0.136
0.110
0.086
0.066
0.050
0.041

0.950
0.920
0.901
0.883
0.871
0.856
0.842
0.826
0.815

0.999
0.997
0.994
0.990
0.987
0.982
0.976
0.968
0.962

0.999997
0.999 98
0.99994
0.9999
0.999 8
0.9996
0.999 3
0.999
0.998
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TABLE VII. The energy b.E—ef and the fo, f', and f2 weights (Ref. 18) for Nf =14. The parame-
ters are cf———2.5, U=5, 8 =6, and V=0.8 (5=2.99). For the basis-set notation, see Table I. All en-
ergies are in eV.

Basis set

0+a+6
C

d+e

—1.094
—1.132
—1.202
—1.206
—1,211

fO

0.128
0.130
0.128
0.128
0.128

0.738
0.738
0.730
0.730
0.730

0.134
0.132
0.142
0.142
0.143

leads to the exact ground state. In addition to the ground
state, we discuss "magnetic" states of the system. The
main points of this section are (i) the definition of a
"Kondo temperature, " 5„[Eq. (4.12)], (ii) results for 5„
[Eqs. (4.15) and (4.16), and Table IX], (iii) results for the
f, f ', and f weights in terms of 5„[Eq. (4.17) and the
following discussion], and (iv) an equation for the spin
susceptibility [Eq. (4.18)]. The ground state in the limit
of infinite degeneracy is of the form

0
io)+ f a(e)ie, )

+ f de f de'b(ee ,)i's, s') (4.1)

where the basis states
~

s ) and
~

s, E') are defined in (2.3)
and (2.4). With the matrix elements (2.6) and (2.7) and
the definition (3.1), the Schrodinger equation for the
ground state reads

0
b.E= f V(E)a(s)de,

o V(s&)a(s&)
[Ef s bE —(Nf—1)l—(2ef+—U —e —b,E)]a(e)+ V(E) 1 — 1—

Nf —& 2pf+U —c,—5E—g]

(4.2)

del ——0, (4.3)

where

~( ) f o [V(s)] d
z —c.

and the coefficients

QNf 1—
b(e, s') =—,[V(e)a(e')+ V(e')a (e)]2'+ U —AE —p —g'

(4.4)

(4 5)

describing the double occupancy have been eliminated using ( se'
~

(H Eo)
~ Po) =0.—

In these equations we have not yet replaced expressions like Xf—1 by Xf because the above equations also describe
the exact ground state for finite Nf if the valence band is completely filled.

In contrast to the limit U —+ oo, Eq. (4.3) is an integral equation for a(e), which only in the limit B && U is of a separ-
able form. In this limit we have

fo V(sl)a(sl) 1 0 b,E
dG)~ V(el )a (El )d e l

———B 2'+ U Qp p 6) 2'+ U QE —8 2'+ U —5E
Inserting (4.3) into (4.2) and using (4.6), we obtain the transcendental equation for b,E,

(4.6)

TABLE VIII. The energy b,E—ef, the f,f ', and f2 weights, and the susceptibility (Ref. 18) for the
Anderson model with the degeneracy Nf ——14. The parameters are cf———2.5, U=5, and 8=6. The
susceptibility is calculated for j=

2 and the results are given in units of (gp&) . All energies are in eV.

0.3
0.4
0.5
0.6
0.8
1.0

hE —cg

—0.138
—0.249
—0.407
—0.626
—1.211
—1.918

fO

0.003
0.011
0.035
0.070
0.128
0.162

0.967
0.937
0.885
0.824
0.730
0.672

f2

0.030
0.052
0.080
0.107
0.143
0.166

4 X 10'
5.2 X102
1.66X 10'
4.93X 10'
2.64X 10'
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Nf V'(e)
AE= — 1 — 1—

2ef + U b—E — sf b,E— (N—f 1)I—(2ef +. U b—.E e—) s—

1 hE
1 NfI (ef b,E— (N—f —1)I (2'+ U b,E—)) .

2'+ U —AE
(4.7)

In the second line we have again used U»B. Before we
discuss this equation, it is useful to consider also "mag-
netic" eigenstates, i.e., those eigenstates that are not total-
ly symmetric with respect to permutations of the v label.
Such states can be constructed starting from basis states

(4.8)

with g„(C'„') =1 and g„C,"=0. These states do not
couple via H to

~

0), but couple to the f ' ' states,

~
e, e'm~;~) = g g„g,„C',"P g, ~

0),
QNf —1

(4.9)

with B&e, —e' & 0, but no restriction on the sign of c,—e'.
In the limit Xf~ oo these states are orthonormalized and
produce no indirect coupling between the

~
s, m~;~) with

different energies s. Then the energy lowering b,E,
due to the hybridization of the states (4.8) and (4.9) can
easily be calculated for arbitrary U and is determined by

hE. . ,.
= —I (ef + U —b E, ~, , ), (4.10)

V2

From this state we can generate states with one and two f
electrons and form linear combinations. If E and e are
sufficiently close to zero, we obtain "magnetic" states
with a lower energy than in the approach above. These
states do not, however, couple to the Xf—+ 00 ground state
via operators of interest here [e.g., Sz in Eq. (B1)j. We

AE~,z
——hE, ~ is independent of c. and of the specialE,, Nl( )

choice of C,".The f occupancy of the magnetic states is
given by

—I '(sf+ U —bE,s)
2 lllSg (4.11)

1 —I '(sf+ U —b,E,s)

where I '(s)=dl (e)/de. The f occupancy of the mag-
netic states vanishes identically, and for (P2 ),s « 1 the
f occupancy varies quadratically with V. The lowest-
energy magnetic state of this type is obtained by setting
e =eF in (4.8), which leads to an energy
(O

~

H
~
O)+ef+bE .,

Magnetic states with a lower energy can be obtained by
starting with

cf +AE,g—r(5„)= =—e,(u) .
1 (sf+b,E, )/e— (4. 14)

For a constant band density of states [V(s)=const] this
leads to

eo( U)5„=8 exp
b. /vr

(4.15)

To leading order in 1/U the hybridization energy b,E,s
follows from (4.10) as B(b /~)—/(sf + U). For eo( U) one
then obtains, to leading order in 1/U,

Bb,/~ —ef
sp(U) =ef-

cf+ U
(4.16)

In the limit U »8 the "Kondo temperature" 5„ therefore
increases with decreasing U if cf &84/m and decreases if
Bb,/~& cf. The behavior of 5„ therefore very explicitly
depends on the bandwidth B. The behavior of 5„as a
function of U for an arbitrary ratio of U/B is obtained
numerically and shown in Table IX.

The occupancy of the f level in the ground state is
given by n =f(P~ ) +2(P )2, where the weights (P& ) and
(P2) of the f ' and f contributions follow from (4.1) and
(4.5) as

therefore focus on the magnetic states defined above.
The important energy for the low-temperature thermo-

dynamic properties and for the behavior of the valence
spectrum near the Fermi energy is the energy difference 5„
between the nonmagnetic ground state and the lowest mag-
netic states in the space (4.8) and (4.9). We therefore in-
troduce this energy difference, which is related to the
Kondo temperature, by

«—=Eo —«lalo&= Ff+bE —
g ~u (412)

5„ is important for the valence spectrum near cz ——0 since
the variation of a(s) for energies —5„&e & 0 is essentially
determined by 5„. Assuming that c.+=cf+U —4E,~»5„,we can perform a Taylor expansion in Eq. (4.3) and
obtain, near cF,

a(s)= 1 —I de, (1—(P2),s) .
V(E) V(sl)&(ei)

E —6~ —~ E+ —E)
(4.13)

As discussed below, in the spin-fluctuation limit,
ef »b„ the energy difference 5„ is exponentially small

and a(s) shows the same sharp rise as in the limit U~ ao.
For U »B the behavior of 6„as a function of U can be

obtained from (4.7). We restrict our discussion to the
spin-fluctuation limit. Then 5„ is much smaller than

ef ~
E+ and

~
bE~,s ~, and (4.7) simplifies in the limit

Xf—+oo to
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0
(PI ) =A f [a(e)] dc=A II,

—~ (a++5„—s —e') —s —~ (E++5„—E —e')

TABLE IX. The "Kondo" temperature [Eq. (4.12)] as a
function of U. We have used a constant density of states with
6=0.75 and 8 =24. A11 quantities are in eV.

100
50
20
10

5
3

cf ———1.5

0.038
0.034
0.032
0.027
0.025
0.026
0.031

cf———2.5

0.000 68
0.000 71
0.000 75
0.000 98
0.001 7
0.005 2
0.016

and 3 =(Po) =(I+II +I2) '. In the spin-fluctuation
limit, the integral I& is dominated by the contribution
near the Fermi energy, where (4.13) can be used. This
leads to a contribution proportional to b, /5„. The value
of I2 in the spin-fluctuation limit is largely determined by
the second integral in (4.17). As [a(s)] is strongly
peaked at the Fermi energy, the denominator in the c.

' in-
tegral can therefore be taken at E' =0. This yields
I2-II I '(E+). The f weight 2 is therefore "exponen-
tially" small and the f weight of the (nonmagnetic)
ground state is approximately equal to (P2), , the f
weight of the magnetic states (4.11), which varies quadrat-
ically with V. This result shows the different role of the
f and f states discussed in the introduction to this sec-
tion. The f occupancy nf is, in the spin-fluctuation limit,
given by nf =1+(P2),s. Here we have kept the nota-
tion "spin-fluctuation limit" for the case where the "Kon-
do temperature" 5„ is exponentially small, although (P2 )
may not be very small and nf is not necessarily very close.
to 1.

The dependence of the magnetic susceptibility on the fo
and f2 weights for large degeneracy Nf differs very much
from the behavior for the spin-degenerate case Nf ——2.
For Nf =2 the susceptibility is small if either the f or f
weight is large. This may suggest that the f weight
mainly determines the susceptibility in the spin-
fluctuation limit for Nf »2 since (P2) »(Po). That
this conclusion is incorrect follows from the result
(Pz ) = (P2 ),s discussed above: An arbitrary linear
combination of states $,$,„0) leads to approximately
the same f weight, i.e., the attempt to line up the spin in
a certain direction by a magnetic field does not interfere
with the energy gain due to the hybridization with the f
states. It is the additional energy lowering, 5„,of the non-
magnetic ground state, arising from the coupling to the
state

~

0), which determines the magnetic susceptibility.
The smaller 5„, the smaller the magnetic field has to be to
line up the spin. One therefore expects the susceptibility

to be inversely proportional to 5„. The calculation of the
susceptibility is described in Appendix B. In the spin-
fluctuation limit, the result simplifies to

&o= 3j (j +1)g pa(1/5„), (4.18)

which has the same form as we obtained in paper I for
U —+co. This result confirms the important role played
by the "Kondo temperature" 5„. Its importance for the
valence spectrum near the Fermi energy is discussed in
the next section.

The analytical results presented in this section were
mainly for the spin-fluctuation limit, i.e., very small V.
The results presented are then accurate only for Nf larger
than "realistic" values. For the smallest value of V in
Table VIII (Nf = 14), the calculation using the basis set of
Fig. 1 gives such a small weight for ~0) that even for
Nf ——14 the states

~

EE) dominate the f weight.

V. VALENCE SPECTRUM

g f dE f der(E)g" P, , , (5.-1)

f v

where QE creates a high-lying continuum state not in-

Valence photoemission has frequently been used to
study Ce mixed-valence compounds, since the valence

spectrum should, for instance, contains information about
the f-level position. In paper I we presented exact results
of the valence photoemission (PE) spectrum for U= Oo in
the limit of infinite degeneracy. A ".folding" technique
was used to obtain corrections for a finite Nf. This
method is very convenient for the basis states considered
earlier. However, when double occupancy of the f level is
allowed, the calculation of the PE spectrum becomes tedi-
ous, and a simpler time-dependent formalism is presented
below.

The usefulness of a time-dependent formulation was
demonstrated by Nozieres and de Dominicis for core
spectroscopies. For noninteracting valence electrons
(Nf 1), such a form——ulation makes it possible to calculate
the exact core spectra of a generalized Anderson model,
while the calculations, in general, are very difficult for in-
teracting valence electrons. Below we combine the tirne-
dependent treatment and the 1/Nf idea to calculate the
valence spectrum for the Hamiltonian (1.1) which con-
tains the f finteraction. We-have also performed calcula-
tions using a moment method (Lanczos method) and
have obtained identical results within numerical accuracy,
as we should.

We describe the valence PE process by the operator

T= rg f dEQ-P„
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I
E„(N 1)),— (5.2)

where
I
E„(N—1)) is an eigenstate of H with N —1 elec-

trons. This is correct if E is so large that the interaction
between the emitted electron and the rest of the system
can be neglected. The current of emitted electrons is then
given by

eluded in the model (1.1). Equation (5.1) includes the
emission of both the f electrons and the conduction elec-
trons which couple to the f electron. The remaining con-
duction states (see discussion in paper I) do not interfere
with the f emission and are therefore not considered here.
The magnitude of the emission from these states can be
estimated from a band calculation, and we expect it to be
a large fraction of the total conduction emission. The
prefactor 1/QN~ in the second term has been introduced
to make the emission of conduction electrons independent
of X~. This gives us a well-defined limit N~ —& oo, and is
in the same spirit as Eq. (2.1). In the sudden approxima-
tion one assumes that the final states are of the form

i
I
P(t)) =H

I P(t)), (5.9)

with the initial condition

I
0(0)&=

I 0 (5.10)

We express
I
p(t) ) in terms of some bases set [ I j ) ] as

I
q(t))-'yc, (t)e "

I j),
J

(5.11)

which leads to the equation

i ej(t—) =e " g Hjke ck(i) .
at k (~J.)

(5.12)

In Eq. (5.11) we have introduced the factor exp( iHJJt)—
to reduce the time dependence of c~(t). In a Runge-Kutta
type of method for solving a system of linear differential
equations, one repeatedly calculates the right-hand side of
Eq. (5.12). Owing to the structure of Hjk, such a calcula-
tion requires relatively little time, a feature which was
also the key idea leading to the method in Sec. II. Once
the ( cz (t) J have been obtained, we calculate

x&(E ~ Eo(N)—+E„(N 1)), —
which can be written as

(5.3) ( g(0)
I
f(t) ) = g c (J0)c (it)e (5.13)

xg P T'g-,'E —co —Eo(N)+H i0+—
(5.4)

where m is the photon energy and Eo(N) is the ground-
state energy. Thus we must calculate the Green's function

(5.5)

where

IP'&=PE.TIP&=, ~y.+ f «~(&)y- ly& .
f

and perform the Fourier transform in Eq. (5.7). In prac-
tice, we introduce a broadening corresponding to the in-
strumental resolution. Therefore, z in (5.7) has a negative
imaginary part and the integral (5.7) can be cut off at fi-
nite t.

The valence spectrum above the Fermi energy, which is
sampled experimentally by bremsstrahlung isochromat
spectroscopy (BIS), is, in the sudden approximation,
described by

(5.14)

where

IP'&=r PE„I 4&= 4.+ f dE «O'E.Ev

(5.15)

Equation (5.5} can be rewritten as

g ~ (z) =i f dt e '"(g(0)
I
g(t) ),

where

(5.6)

(5.7)

(5.8)

Equation (5.14) is calculated in a similar way as Eq. (5.5).
For the calculation of the valence photoemission spec-

trum we use the ground state discussed in Sec. IV,
0

I0&+ f,«a(. ) I.&

0 E

+ f ds f de'b(E, E')
I
cs') . (5.16)

describes the time evolution of the system after the pho-
toelectron has been emitted. This state satisfies the time-
dependent Schrodinger equation,

In photoemission one electron is removed and the basis
states used to describe

I
P(t) ) therefore contain one fewer

electron. We use the states
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I
e'Ev2& =%A"A',.I » (5.19)

Q(NI 1)—(Ng —2) „(~ )g (~„)

g 0A'&~A"-A"
I
0& .

+Nf 1 v' (~v)

(5.20)

(5.21)

The restrictions e') E, e') e", and e")E are introduced in Eqs. (5.19), (5.20), and (5.21), respectively, to avoid a linearly
dependent basis set. The time-dependent wave function [Eq. (5.11)] is written as

0 0 0 E'

I
g(t))= f dea(E, t)

I
ev)+ f de f dEb)(e', e, t) Ie'evl)+ f de' f deb2(e', e, t)

I
e'Ev2)

f
0 E' 0

+ f de' f de" f de[c)(e', e",E, t)
I

e'e"evl )+c2(e,e', e",t)
I
Ee'e"v2)]

with the initial conditions

a(E,O) =r(E)+ra(e), (5.23)

where we have defined

b(e', E)=b(e, c,') for e&e'. (5.28)

b) (c,', e,O) =
1/2

Ng —1
r(e)a(e')+rb(e, e'),

f
(5.24)

b2(e', e,O) = [r(e)a(e') —r(E')a(e)), (5.25)

1/2
Xg —2

c)(E', c,",e,O) = r(E)b(e', e"),
f

(5.26)

cz(e', e",e,0)= [r(e)b(e', e")—r(E")b(e', E)], (5.27)
Ng

For NI= oo this approach gives the exact spectrum if
more than double occupancy can be neglected. If r(E)—:0,
the integrated weights of the valence and BIS spectra are
proportional to n~ and X~—n~, respectively. To obtain a
comparable accuracy for the BIS and PE spectra, we
therefore use one more row of basis states in the BIS cal-
culation. Thus, the first two rows of Fig. 1 are used for
the ground-state calculation. To describe

I P(t)) we use
states which are the same as the states a —e in Fig. 1, ex-
cept that all the states have one fewer conduction hole.

For the valence PE spectrum it is useful to introduce
the states (NI +oo)—

0 0 c'

I
ev) =1t,„Ip) =A

I
ev)+ f de'a(e)

I
e'Evl)+ f de' f,d"b(e, ')

I
E'e"Ev& (5.29)

where
I P) is the "large-degeneracy" ground state (5.16). These states diagonalize the Hamiltonian in the space

I(S.17),(5.18),(5.20) I. This is the relevant space for a large N~, since the states (5.19) and (5.21) only couple with a
strength V/+Ny to this space. The states (5.29) have the energy Eo(N) —e and they are the only low-lying eigenstates
in the studied space with N —1 electrons, while there are additional states at higher energies. Using Eqs. (5.3) and (5.6)
we find that for r(e) =—0 the states (5.29) give a contribution to the current

j,(co+E)=7 p„"'(e) g I
(ev

I
r@„—

I P) I

( ) 1 f o d, a(e') V(E')
2c.y+ U —AE —c—p'

2
2

—V() d'

(5.30)

where we have used the result (4.5) for b(e, e') and re-
placed QN~ —1 by +N~. The solid curve in Fig. 3
shows Eq. (5.30) as a function of U. In the limit U= oo

the two integrals in Eq. (5.30) vanish and we recover the
expression (6.23) in paper I,

A [ra(e)] (5.31)

which is the only contribution to the spectrum for U= oc

in the energy range AE —c~ &c, &0. The shape was dis-

cussed in detail in paper I, and the weight was shown to
be r w(f )w(f') for a singlet ground state in the limit
U —+ op.

For finite U the two integrals in Eq. (5.30) contribute to
the spectrum. If V(e) does not change sign as a function
of E, all the terms have the same sign and Eq. (5.30) leads
to constructive interference. In Fig. 3 the dashed line
shows the term A [ra(e)] [Eq. (5.31)] and the dotted line
shows the contribution
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FIG. 3. Various contributions to the valence spectrum as a
function of U. The solid curves show Eq. (5.30), which is the
only contribution to the valence spectrum for c, =0. The remain-

ing curves show some of the terms in (5.30), namely Eq. (5.31)
(dashed), Eq. (5.32) (dotted), and Eq. (5.34) (dashed-dotted). The
parameters are Ef ———2.5 eV, 6=1.2 eV, and B=6 eV. The
calculated f weights are 0.02 (U= &x&), 0.03 (U=10), and 0.03
(U=5) and the corresponding f weights are 0, 0.02, and 0.08,
respectively. The integrated weights of the curves for U=5 are
0.23 (solid), 0.03 (dashed), 0.09 (dotted), and 0.06 (dotted-
dashed).

FIG. 4. The f-derived [r(e)—:0] valence PE spectrum as a
function of U for E.f———2.5 eV, V=0.5 eV (6=1.2 eV), B=6
eV, and Nf = 14. A Lorentzian broadening of 0.5 eV [full width

at half maximum (FWHM)] was used. The bottom of the con-
duction band is at —B (= —6 eV).

The reason is that this term falls off on an energy scale
2Ef+U EE=—a++5„, which is much larger than 5„,
which determines the energy variation of a(E) [Eq. (4.13)].

Using the results of Sec. IV the expression for p„(0)
[Eq. (5.30)] can be simplified in the spin-fluctuation limit
to

jt(s)=—A [ra(s)]

2

p, (0)= 1+(1—(Pz },)
1 b/~

6/~
(5.35)

X
a (E') V(e')

—~ 2c.f+ U —hE —c—c.
'

2

(5.32)

for the parameters considered in this paper (see Fig. 3).

Close to a=0, Eq. (5.32) gives the main contribution to
the spectrum. As shown in Fig. 3, A [va(0)] is reduced
when U is reduced, while j&(0) stays almost constant.
This can be understood using the results of the discussion
following Eq. (4.17). In the spin-fluctuation limit and for
constant V(s) the results for A and II together with Eq.
(4.13) lead to

5„
n

(5.33)
Xfb, /m c.—5„

for c. close to zero. In Eq. (5.33), jt(0) is independent of
U. For e « —5„ the contribution (5.30) to the PE
current is dominated by

2
[a(s')]

jt =—A4 —r V(E) ds'
2' + U —AE —c,—c'

(5.34)

For B « U and constant V(E) the expression in the larger
parentheses is just the f occupancy nf, and (5.35) shows
that the generalized Friedel sum rule is fulfilled. For ar-
bitrary parameters (but Nf ~ oo), the more general version
of the Friedel sum rule, which involves the tota/ locally
displaced charge, must be used. As discussed in Appen-
dix C, the expression (5.30) for p„(0) is in agreement with
this general version of the sum rule.

When a realistic experimental broadening is introduced
(see Fig. 4) the large value of p„(0) cannot be observed,
since this broadening is usually larger than 6„. The in-
tegrated weight of the various contributions in Fig. 3 are
then more important than the maximum values. The
weight of the contribution j~(E), which varies on the ener-

gy scale 5„, is proportional to 5„[see Eq. (5.33)]. The
weight of this onset to the "Kondo peak, " seen in the BIS
spectrum, therefore can increase or decrease when U is re-
duced. In Fig. 3(c) the weights of jt(E) (dotted line: 0.09)

and jt(E) (dotted-dashed line: 0.06) are comparable. In-
terference between these two contributions is also impor-
tant, since the total weight (0.23) is larger than the sum
(0.15) of the two individual weights. If V is reduced fur-
ther, the f weight becomes very small and Eq. (5.34)
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gives the main contribution to the weight of Eq. (5.30).
This term is entirely due to the f weight in the initial
state. To understand why even a relatively small f
weight is important for the spectrum, we observe that ap-
plying P„ to

~
P) [Eq. (5.6) with r(e)=0, i.e., f-level

photoemission] leads to states
~

e'Eu 1 ) with two holes and
one f electron. These basis states overlap strongly with
the low-lying final states for —sf »h. Applying g, to
the f' part of

~
P), on the other hand, leads to states

~
ev) with no f electron. For —sf »b, these states over-

lap weakly with the low-lying final states and the integrat-
ed contribution (5.31) is small. The importance of the f
weight in the initial state is further enhanced by the fact
that there are two ways of removing an f electron from an

f state, but there is just one possibility for an f ' state.
Figure 4 shows the full valence spectrum, calculated

from Eqs. (5.5)—(5.13), with a realistic broadening. The
figure illustrates how the integrated weight of the struc-
ture at EF increases as U is reduced. This effect is quite
large although the f weight in Fig. 4 is at most 8%.

Figure 5 shows the valence PE spectrum for r(E) —=0 as
a function of V. The weight of the structure close to sF
depends strongly on V. In contrast to the U=ao case,
however, the structure does not vanish as the f weight
goes to zero. For V=0.3 the calculated f weight is only
10, but the spectrum nevertheless shows a shoulder at

This is due to the f weight, which in this case is
0.03. For small values of V the f weights quoted in Fig.
5 differ from those in Table VIII, due to the larger basis

FIG. 6. The f-derived valence PE spectrum as a function of
V for the parameters cf———2.5 eV, U=5 eV, and B=6 eV.
The model (5.36) for [ V(s)] was used and a Lorentzian
broadening of 0.5 eV (FWHM) was introduced. The calculated
values for the f weights were 0.08 (V=0.6 eV}, 0.06 (V=0.5

eV), 0.04 (V=0.4 eV), and 0.02 (V=0.3 eV), and the corre-
sponding fo weights are all smaller than 0.01 due to the small

value of [ V(0)]'.

set in Table VIII.
In Fig. 6 the spectrum is shown for a more complicated

V(s),

F(E)[1—0.8(E+1)], —1 & a &0
F(E), otherwise[Ve] =' (5.36)

-5

FIG. 5. The f-derived valence PE spectrum as a function of
V for cf———2.5 eV, U=5 eV, B=6 eV, and Nf ——14. A
Lorentzian broadening of 0.5 eV (FWHM) was introduced. The
calculated f weights are 0.06 ( V=0.6 eV and b, =1.7 eV}, 0.03
{V=O. 5 eV and 5= 1.2 eV), 0.00 ( V=0.4 eV and 6=0.74 eV),
and 0.00 (V=0.3 eV and 5=0.42 eV), and the corresponding
f~ weights are 0.10, 0.08, 0.05, and 0.03, respectively.

where F(E) is the semielliptical function defined in Eq.
(3.2). In Eq. (5.36), [V(c)] is reduced to 0.2 of the value
of F(E) at E=O due to the additional linear factor. This
shape is considered, since for many Ce compounds with
transition elements, the density of states decreases rapidly
as the Fermi energy is approached from below. Com-
pared with Fig. 5, the structure close to cz is shifted away
from Ez, and this shift increases as Vis reduced. This can
be understood from formulas (5.30) and (5.34). Because
of the reduction of [V(e)] for E=O in Eq. (5.36), the f
weight is small, particularly for small values of V. The
contribution (5.34) therefore dominates in Eq. (5.30). This
term has two factors, one proportional to [V(E)] and one
which decays on the energy scale 2cf+U —AE. Since
this energy scale is several electron volts in Fig. 6, the
variation of [V(s)] between 0 and —1 eV becomes very
important. For the form of [V(s)] in Eq. (5.36), this
leads to a structure at ——1 eV. Since Eq. (5.30) gives
the total spectrum only very close to e~, there are, howev-
er, additional contributions to the spectrum which partly
hide the structure at —1 eV, particularly for large values
of V.

In Figs. 3—6 it was assumed that the matrix element
r(E) describing conduction-band emission is zero. In Fig.
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7 results are shown for a nonzero r(E), assuming that r(E)
has the same semielliptical shape as V(E). The bottom
part of Fig. 7 shows the conduction-band emission only,
i.e., the spectrum when the f-emission matrix element r is
zero. Following the normal experimental procedure, we
subtract the conduction-band emission from the total
spectrum, which gives the solid curves in the upper part
of the figure. The dashed curve shows the result when
only f emission is considered [r(e)—:0]. The difference
between the solid and dashed curves is due to interference
between f emission and conduction-band emission. This
can be seen from Eqs. (5.14) and (5.15), which lead to
cross terms proportional to rr(E). The relative sign of r
and r(a) is therefore crucial, as is illustrated in Fig. 7.
Theoretical and experimental Ce spectra were compared
in paper I and in Ref. 7.

To apply the above theory to Pr compounds, one should
take into account that these compounds have approxi-
mately one more f electron than Ce compounds. For Ce,
the low-lying final states, which contribute to the spec-
trum close to eF, have mainly f ' character. In paper I we
therefore found that the spin-orbit splitting leads to an ad-
ditional structure at EF. The low-lying states of Pr have
mainly f character, and the introduction of multiplet
splitting should lead to additional structure at cF. The
coefficients in the matrix elements are also changed when
the f, f', and f states appropriate for Ce are replaced
by f', f, and f states appropriate for Pr. We may,
nevertheless, obtain some understanding of the Pr spectra
by using the simpler theory for Ce with appropriate modi-
fications of Ef and b, .

In Fig. 8 we show some results related to Pr. All calcu-

I

-6
l

-2

FIG. 8. The conduction- (inset) and f-emission spectra for
cf———3, I ] ——0.2, and U=7.2, as well as U= oo. The average
of h(c, ) across the band is 0.02 eV. In addition to the lifetime
broadening (5.37), we used a Gaussian broadening for the
conduction- and f-emission spectra of 0.25 and 0.60 (FWHM),
respectively, to be able to compare with experimental results in
Refs. 28 and 29. The dashed curve was obtained by assuming a
weak energy dependence for the matrix elements (see text). The
f weight for U=7. 2 is 0.01. All energies are in eV.

lated spectra have a Lorentzian broadening with the half-
width

Vl

tD

C

I

-2

FICx. 7. The valence PE spectrum including both f emission
and conduction-band emission as a function of V for cf———2.5

eV, U=5 eV, V=0.5 eV, 8 =6 eV, and 1Vf——14. A Lorentzian
broadening of 0.5 eV was used. The bottom part shows the
conduction-band emission (~=0). The remaining curves show
the spectrum after the conduction-band emission has been sub-
tracted (solid curves) and the pure [r(s)—=0]f spectrum (dashed
curve). Calculations were performed for both a positive and
negative ~(c,) to illustrate constructive as well as destructive in-
terference.

(5.37)

to describe the lifetime broadening. Furthermore, we in-
troduce a Gaussian instrumental broadening. In the inset
we show results for [V(E)] with a broadening as
described. The shape of [ V(e)] was adjusted so that the
broadened spectrum agrees with the experimental results
of Wieliczka et al. at %co=32 eV. At this energy the
conduction-band emission dominates over the f emission
and this procedure should therefore incorporate density-
of-states effects in [ V(E)]z. This approach entirely
neglects that the conduction density of states p(E) is
weighted by a hopping matrix element squared in [V(E)]
and a dipole matrix element squared in photoemission.
Without any detailed knowledge about the matrix ele-
ments, this, however, appears to be the best procedure.
The f spectrum is compared with the experimental results
of Parks et al. for Pro 9Tho &, since they have subtracted
conduction and inelastic contributions from their spec-
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trum. Since the f peak at —3.5 eV is below the bottom of
the 5d band, its width should (essentially) be due to life-
time and instrumental effects. We have therefore adjusted
I

&
so that the experimental width is reproduced. The

value of U was chosen according to the center of the f
peak in the Pr BIS spectrum.

Despite the many approximations introduced, the
theoretical curve reproduces the experimental results fair-
ly well. This is, in particular, the case if we multiply
[V(E)] by the ad hoc factor

I
'

l
'

I

1 —0.4(v+1), (5.38)

as shown by the dashed curve in Fig. 8. This curve illus-
trates to what extent the results depend on the assumption
that the hopping and dipole matrix elements have the
same energy dependence. The dashed curve could be ob-
tained if we assume that the ratio between the dipole and
hopping matrix elements increase by =20% per eV.
Since the states at the bottom of the band are generally
more extended, it is not surprising if our method of es-
timating [V(s)] leads to too small values for these states.
Repetition of the calculations in Fig. 8 with a small
broadening shows that the plateau for small E actually is
due to two structures, one at c- —0.25 eV and one at
e- —1 eV, as was observed experimentally in Ref. 28.
The introduction of the factor (5.38) reduces the weight of
the structure at c- —0.25 eV, and in Fig. 8 this appears
as a shift in energy of the plateau.

It is interesting to consider the results for U= oo in
Fig. 8. Although the weight at ——1 eV is reduced, the
spectrum clearly deviates from a Lorentzian located at
—3.5 eV. The U= oo case was discussed in paper I, and
it was shown that the valence spectrum of the Xf—oQ

model can be written as

I

-2

FIG. 9. The conduction- (inset) and f-emission spectra for
cf———3.4, I ~

——0.2, and U=7.2, as we11 as U= Oo. The aver-
age of b, across the band is 0.04 eV. In addition to the lifetime
broadening (5.37), we used a Gaussian broadening of 0.60
FWHM. The experimenta1 curve is from Ref. 32. As in Ref.
32, we have also plotted a Lorentzian (dotted) centered at
s= —3.7. The f weight for U=7. 2 is 0.03. All energies are in
eV.

2 O

p„="(E)= f dE'[a(e')] Img(c, —E' —iO), (5.39)
cf =-2.5 U=5

where (I/m)lmg(s —iO) is the spectrum of a nondegen-
erate model (Nf =1) with the hopping matrix element

V(s)=V(E)=QNf V(s) for s(eF ——0 and V(s)=0 for

The sharp cutoff in V(E) at c.=sF leads to a pole
in g(s) and a continuous rise in p,

= (s) as E approaches
The weight of the pole in g(E) is given by w(f ).

This weight is less than 10 in Fig. 8 and can be neglect-
ed. Furthermore, A [a(s)] is to a good approximation a
6 function since the Kondo temperature 5„ is very small
[see Eq. (4.13)]. In this case ( —Ef »b, and U=ac) we
can therefore describe the spectrum by an Nf ——1 model,

if the hopping matrix elements V(s) are used. In such a
model the hybridization between the f level and the con-
duction states at c, ——1 eV leads to weight in this energy
region, as is illustrated by the U= oo curve in Fig. 8. An
increase of 6 would enhance the weight at c, ——1 eV and
the U= m curve would give a closer agreement with ex-
periment. Such hybridization effects have been discussed
earlier and emphasized by Allen ' in the context of rare-
earth compounds. This effect becomes more important if

V =0.6 B =6

0 1

I

5 6

FIG. 10. The BIS spectrum. The bottom part shows the pure
conduction contribution [r(s)&0, v=0]. The dashed curve
shows the pure f spectrum [w&0, ~(s) —=0], and the solid curves
show the spectrum with both types of trarisitions
[~&0, ~(e)&0] minus the pure conduction spectrum. Both
~(c, ) ~0 and ~(c.) &0 are treated. The parameters are V=0.6 eV
(6=1.7 eV), U=S eV, B=6 eV, and Nf ——14. A Lorentzian
broadening of.0.6 eV (FWHM) was used.
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the f level falls in the middle of a large conduction densi-
ty of states, as is often the case for Pr compounds contain-
ing transition elements. This is illustrated in PrRu& in
Fig. 9. The results in this figure were obtained in the
same way as in Fig. 8. The agreement between theory and
experiment is good. The comparison between the U= oo

curve and the Lorentzian (dotted curve) illustrates that
hybridization effects are of importance.

The part of the valence spectrum which lies above the
Fermi energy can experimentally be sampled by HIS and
is given by Img~(e —iO)/m, where g ~(z) was defined in
(5.14). The BIS spectrum including double occupancy

I

was discussed in paper I and in Ref. 7 for r(E)=0. We
therefore present only a short discussion of the form of
the spectrum for r(E)=—0 and some numerical results for
r(E)&0. As mentioned before, it, is necessary to use a
larger basis for the ground and "intermediate" states in
the BIS calculation. To understand the gross features of
the BIS spectrum, on the other hand, it is sufficient to use
the ground state (5.16). To calculate the resolvent matrix
element in Eq. (5.14), we then use a state with one f elec-
tron and states with two f electrons and one conduction
hole. A straightforward calculation then yields, for
r(E)—:0,

g(~0)(z) =7 A
z+5E ef+NfI ( —z DE+2m~+—U)

2
V(e)~(s)1+ 8E,—& z+AE —2m~ —U+c

+
0 [a(e)]'

8E—& z+AE —2m~ —U —e
(5.40)

where we have replaced N~ 1 by N—~. In this (crude) approximation the spectrum shows a sharp f ' peak at z =5„and
an f continuum starting at the energy 2e/+ U BE=a+—+5„. The residue R) of the f& peak is given by

R, =H(P )(I—(P ), ) 1 —f, ds' (5.41)
E+ —E =~/~ '

where the second relation holds in the spin-fluctuation
limit. In the improved version of the theory, with basis
states as described below Eq. (5.28), this peak is broadened
and the part j)(e) [Eq. (5.32)] of the PE current can be in-
terpreted as the "onset" to the f' peak, i.e., in the limit
%~= oo, j)(e) [Eq. (5.30)] joins smoothly to the BIS
current N~Img ~ (s—iO) /n. .

In Fig. 10 we show results for BIS including interfer-
ence. The figure illustrates that interference effects can
change both the relative weights of the peaks and the peak
shapes. The importance of interference effects clearly de-
pends on the relative size of r and r(s), and estimates of
this size would be of great interest.

VI. CONCLUDING REMARKS

We have presented new methods for calculating the f
occupancy, the ground-state energy, and the susceptibility
of the Anderson impurity model at T=O. The calcula-
tions include f, f ', and f configurations and are based
on the idea that 1/N~ can be treated as a small parameter,
where N~ is the degeneracy of the f level. Even for
X~——1 and X~——2 the method was shown to give accurate
results for the f occupancy and the total energy. We have
also presented a new method for calculating the valence
spectrum using a time-dependent form. alism. In this
method it is relatively straightforward to include double
occupancy of the f level also in the valence photoemission
calculation. In a previous publication' we used such pa-
rameters (2'+ U) 0) that the f weight was larger than
the f weight and n/&1. Here we focus on the "sym-
metric" parameters 2e/+U=O. For N~)2 the f weight

can then be much larger than the f weight and n/) l.
We find that the susceptibility is mainly influenced by the
f weight, while for the valence spectrum the f weight is
also important. As the f level is pulled down far below
the Fermi energy sF, the f weight decreases rapidly and
the susceptibility grows correspondingly. At the same
time the valence spectrum develops a well-defined peak
close to c~, but a substantial amount of spectral weight
remains in a structure close to F~. If the conduction den-
sity of states has an appreciable structure in the neighbor-
hood of sF, as is often the case for compounds containing
transition metals, the low-binding-energy structure can be
located below cz.

We have also studied the effects of interference between
f emission and conduction-band emission in model calcu-
lations. To determine the importance of these effects, it
would be of great interest to make realistic estimates of
the matrix elements involved [r, r(e)]. It should also be
important to obtain better understanding of the hopping
matrix elements V(s), since the energy dependence of
V(s) can influence the f spectrum substantially.
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APPENDIX A

Below we describe a variational method, intended for
X~——2, which has been used as a comparison to and test
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of the I /N~ method described in Sec. II. The method is a
direct generalization of a projection-operator method pro-
posed earlier. The starting point is the Hartree-Pock
solution

l
t/rHp(a, np) ) of a model problem

H= g f dEsf, f, +(Ef+Unp)g g +aV, (Al)

where

The expectation value of the true Hamiltonian (1.1) is cal-
culated and the total energy is minimized for fixed values
of a and np This gives an energy E(a,np), which is min-
imized with respect to a and np T. he form of (A6) was
discussed in Ref. 33. Compared with Ref. 33, we have
added the terms containing A, 5 and A,6 to further improve
the accuracy.

V= g f ds[V(s)g g, +H.c.] . (A2)
APPENDIX B

Pp ——(1 n,—)(1 n—, ),
P, =n, (l n, )+—n, (1 n„), —
I'2 ——n, n, ,

(A3)

(A4)

(A5)

and form a variational expression for the ground state,
2

l y) = g X,P,
l q„„(a,n, ))

i=0
+ (X3Pp+ X4P2) VP$

l
l//Hp(a, np) )

+A5VPp
l qHp(a, np))+A6VPp

l
l/IHp(a, np)) . (A6)

The quantities a and nQ are treated as variational parame-
ters below. We define the operators

Below we describe a method for calculating the magnet-
ic susceptibility including double occupancy of the f level.
Since we are mainly interested in the qualitative features
of the susceptibility, we neglect the spin-orbit splitting. In
the Hamiltonian (1.1) we add a term (Xf=2j+ 1)

H= g ( vK)g„g—„=—KSz, (BI)

which describes the couphng to an external magnetic field
K. We obtain the static susceptibility as the z =0 limit of
the dynamical susceptibility X(z),

1 1x(z)=(4o sz ~ E &z 4o + 'ko &z ~ & &z 4o):Gs~z~+Gs~Z+ Q Z+ Q

(B2)

We restrict our discussion to the limit of large degeneracy and use the "first-row" ground state (4.1). To calculate the
resolvent matrix element Gs(z) we introduce magnetic states [see Eq. (4.8)] with a special choice for the C, dictated by
the form of Sz,

le,s, ):= g PA,„lo&,
Cp

(B3)

sz &:= ' ' g qA".v'y-q. . I
o&,

Cp Xf —1
V=y& V'

(B4)

with

Cp ——gv = —,
' j(j+ 1)(2j+1) . (B5)

Using

' 1/2

sz leap) =~
f f a(s)

l
s,Sz&ds —f ds f ds'

l
&,&Sz)

0 V(E)~(s')+ V(s')~(s)
(B6)

it follows that X(z) can be expressed in terms of resolvent matrix elements of the states (B3) and (B4). To leading order
in 1/Ny, these states have also to be used as the intermediate states in the calculation. As the calculation is rather
straightforward we only quote the final result
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Gs(0)=A , j(—j+1). f ds
E/ E—/—(.E—I"(2EJ + U —hE —8)

0 [ V( &()]'
X a(E) 1+ 'f

2 8E)—~ (28/+ U —b,E—E —s()

2

0 V(s()a (E() 0 [V(&()]'
+2a(E)V(E) f dE( 1+ f dE(

B (2E/+ U —AE —s —E() —~ (2E/+ U —AE —E —e()

V(E()a(s()
+ [V(s)] dE(—~ (2e/+ U —b,E—E —e()

d, [V(E)]'[a(E')]'+ V(s) V(s')a(E)a(E')
—B —8 (2s/+ U bE —s —E')—

In the "spin-fluctuation limit" the dominating contribu-
tion is given by that part of the first integral for which
the integrand is proportional to [a(s)] . Using (4.11) and
(4.13) then leads to the approximate result for Xo quoted
in Sec. IV [Eq. (4.18)]. The frequency behavior of the
dynamical susceptibility will be discussed elsewhere.

APPENDIX C

1
p„(s)=——Img„(s —i0)

7T

—:—Im(P
1 1

7r c—i0—E0+H

+ &~ ,0 ~ E W~ I
4'o)

For the Hamiltonian (1.1) and arbitrary N/, the FSR is
given by

p„(sz) = sin [n.(n„+5n(„,)],1

~h sF
(C2)

where n„=n//N~ is the f-level occupancy in the vth
channel. The locally induced charge 5n]„around the
impurity in the vth channel is given by

1 '+ (3I (E—iO)
5n~ „————Im g (s—iO)ds,

BE,
(C3)

where, in contrast to I (z) [Eq. (4.4)], I (z) is defined as

In this appendix we show that in the limit N~ ——oo the
solution for the valence spectral function p, (E) [Eq. (5.30)]
fulfills the generalized Friedel sum rule (FSR) for arbi-
trary parameters and not just for the special case dis-
cussed in Sec. V.

For arbitrary Ny the spectral function p, (E) is defined

I-(,) f [V ]'d,
z —c

(C4)

2p„(eF)= (n/+5n. ..),
&(EF)

(C5)

where we have defined p/( s) =N&p, ( s) and 5n „,
=N/5n(„. The same form of the FSR [Eqs. (C2) and
(C5)] also holds if one would include a three-body interac-
tion term,

V), V2, Vp

V) )V2) Vg

nv nv nv
1 2 3

in the Hamiltonian (1.1). Our restriction to, at most, dou-
ble occupancy of the f level, would no longer be an ap-
proximation if we included such a term in the Hamiltoni-
an and studied the limit U(3) —Go. The FSR (C5) should
therefore be exactly fulfilled by our result for
p„(EF)=p„'(Ez) [Eq. (5.30)].

For an infinitely broad, flat band

I (z) = iI sgn(Imz—),
the locally induced charge vanishes, 5n], ——5n„,=0, and
the FSR (C5) implies a "consistency relation" for the
function a(E), as both n/ (P()+2(——P2) [see Eq. (4.17)]
and p, (Ez) [Eq. (5.30)] can be expressed in terms of a(E).
For an arbitrary I (z), Eq. (C3) has to be used to calculate
the locally induced charge. In the limit N~ ~ oo

(N/5=const) the function I (z) in (C3) is of order 1/N&.
To obtain 5n~ to order 1/N~, i.e., 5n„, to order
(1/Ny), it is therefore sufficient to use an approximation

The FSR follows from particle number conservation and
the Fermi-liquid property ImX„(sF+iO) =0, where X,(z)
is the self-energy defined by

g.(z) = [z—E,—r(z) —r.(z)]-' .

In the limit of large degeneracy N~, the sine function can
be replaced by its argument and we obtain, in the absence
of an external field,



31 DOUBLE OCCUPANCY OF THE f ORBITAL IN THE. . . 4833

for g„(s) which is correct to order (I/Xf ) . If we set the
factor r equal to unity, this is just given by the "crude"
approximation (5.40) to the HIS spectrum. As the func-
tion g(p)(s —i0) has a vanishing imaginary part for e & sz,
one obtains, to order ( I /Nf ),

1 F Bb,(e) )Sn...= —— g (p) ( E )d e
BE,

g(o)(e) =
V(e)

( ) 1
( ') ( ')

—& p+g'+5E —2cf —U

+V(s), de'—& c+g'+5E —2' —U

(C7)

'F —,()g (p) ( E, )= —[V(eF)]'g(())(eF)+ f [V(s)]' de .

(C6)

Using (4.3), gp (e) can be expressed in terms of a(e),

Differentiating gp (s) with respect to e [using (5.40)], one
easily shows that the integral in the second equality in
(C6) is just nf—[Eq. (4.17)]. Comparison of (C7) with
(5.30) then shows that' the FSR (C5) is fulfilled without
any additional assumptions about the parameters of the
system.
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