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Infrared-absorption spectrum of an incommensurate charge-density wave:
Potassium and sodium
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New optical-absorption edges of a metal having a charge-density-wave ground state arise from
transitions across charge-density-wave energy gaps. If the charge-density-wave wave vector Q is in-

commensurate with the reciprocal-lattice vector Ci, three families of higher-order gaps in E(k)
arise: "minigaps, " characterized by wave vectors ( n +1)Q nG—, "h'eterodyne gaps, "with periodici-
ties n (G —Q); and "second-zone minigaps, " with periodicities (n+ 1)G—nQ. The energy-gap sur-

faces of the first two families truncate the Fermi surface and lead to additional absorption edges in
the far-infrared region. The absorption peaks associated with the first three minigaps are calculated
for K and Na, and are found to be an order of magnitude larger than both the interband absorption
and the main charge-density-wave peak. However, they are much smaller than the room-
temperature Drude absorption. Consequently, a search for far-infrared edges must be carried out at
low temperature, and in samples for which the orientation of Q allows observation of the Mayer —El
Naby anomaly.

I. INTRODUCTION

The optical properties of the alkali metals have been
studied extensively during recent years. Early measure-
ments made by Duncan and Duncan, ' and by Ives and
Briggs, ' have been analyzed in terms of the nearly-free-
electron theory by Butcher, Wilson, and Cohen. Mea-
surements extending into the infrared have been reported
by Hodgson, " Mayer and co-workers, ' Althoff and
Hertz" (far infrared), and more recently by Smith, ' Pal-
mer and Schnatterly, ' and by Hietel and Mayer. '

This work aims to explain the nature of some observed
anomalies and to predict new optical-absorption edges, in
the far infrared. Our work assumes a charge-density-
wave (CDW) ground state and is based on the recent im-
proved understanding of the electronic band structure of
such simple metals. '

In this section, we review the current, rather confused,
status of the optical properties of the alkali metals. In
Sec. II we present the method employed to determine the
absorption coefficient, and in Sec. III we report the results
obtained for sodium and potassium.

The interband optical-absorption threshold for potassi-
um is 1.3 eV, in agreement with the theory of Butcher,
and the absorption intensity is weak. In 1963, Mayer and
El Naby discovered a rather intense optical absorption
with a threshold of =0.6 eV, well below the normal inter-
band threshold, in the near-infrared reflection spectrum of
potassium; see Fig. 1. Most attempts to explain this
anomalous absorption failed. Only one model, ' which as-
sumes that potassium has a CDW ground state, has given
a quantitative explanation see Fig. 1 and notice the ex-
cellent agreement, based on vertical transitions across the
CDW energy gap 2a created by the CDW potential. See
Fig. 2. The CDW potential is

VcDw(r) =2a cos(Q.r) .

Q is the CDW wave vector, which in general is incom-
mensurate with the lattice. As a consequence, a new
optical-absorption mechanism, which the standard
(Butcher) theory cannot account for, will arise having a
threshold %co =2a. The theoretical absorption coefficient
(2ntc/A, ) caused by these transitions is given by'

2 2 1/22na(2a. ) e Q W —2a W+2a1—
4~ac W' ~+2a 2pQ

cos 0, (2)

where 8' is the transition energy, n and ~ are the optical
constants, A, is the vacuum wavelength, p—= IIl Q/2m, and
8 represents the angle between Q and the photon polariza-
tion vector 'R. Therefore, the CDW optical absorption is
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FICx. 1. Anomalous optical-absorption spectrum of potassi-
um. The intraband conductivity (dashed curve) has been sub-
tracted from the experimental data before being plotted. The
solid curve shows the theoretical absorption introduced by a
CDW structure. A normal metal would exhibit only the inter-
band absorption with a threshold, as shown, at 1.3 eV. The
anomaly is independent of temperature between 80 K and the
melting point.
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FIG. 2. Schematic behavior of E(k), for k parallel to Q,
when a CDW potential, Eq. (1), is present. Optical transitions

, responsible for the Mayer —El Naby anomaly are indicated by
the arrow "t";the threshold is 2a (if V~„——0).
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uniaxial. This is crucial to an explanation of why the
Mayer —El Naby anomaly is not seen in measurements on
evaporated films. When soft metals are evaporated on
amorphous substrates (e.g., glass), the crystal grains have
a preferred texture. The close-packed planes of the lattice
lie parallel to the surface. ' For potassium, the normal to
a glass-metal interface will be a (110) direction which, in
fact, is very near to the preferred Q direction. ' When
light reflects from a metal surface the polarization vector
(inside the metal) is parallel to the surface. As a result, Q
is nearly perpendicular to e (0=m./2), and the anomalous
optical absorption cannot occur. At bulk-metal —vacuum
surfaces, the Mayer —El Naby anomaly has been repro-
duced by Hietello, 2o and by Harms. ' The intensity of the
CDW absorption is (approximately) independent of tem-
perature between 80 K and temperatures above the melt-
ing point, where the anomaly persists.

Faldt and Wallden have suggested that the Mayer —El
Naby anomaly is due to particles produced as a result of
water vapor adsorption. They studied the optical proper-
ties of K films, prepared by evaporation onto a liquid-
nitrogen-cooled substrate. In the photon energy range
0.6—4.0 eV they found optical anomalies after exposure of
the sample to water vapor. However, they never found an
anomaly with a 0.6 eV threshold. Furthermore, all new
optical peaks disappeared above 110 K, unlike the
Mayer —El Naby anomaly which persists even into the
liquid state. Taut has followed the misinterpretation of
Faldt and Wallden by claiming that surface states
caused by KOH are involved in the Mayer —El Naby
anomaly. The absorption peaks observed by Faldt and
Wallden, which have no similarity with Harms s absorp-
tion peaks ' (see Fig. 3), allow one to conclude that
Harms's experiment actually reproduces, in a controlled
way, the Mayer —El Naby anomaly. The mechanism sug-
gested by Taut requires that the optical polarization vec-
tor 0 have a component perpendicular to the surface,
which would occur for a rough surface. Possibly the ab-
sorption peaks observed by Faldt and Wallden involve
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surface states since they disappeared at the same tempera-
ture as the surface plasmon peak (which also requires a
rough surface).

The CDW anomaly in Na has a 1.2-eV threshold. '

Not only does it persist into the liquid metal (as in K),
where the metal-vacuum interface is smooth, but is largest
there. The influence of slight amounts of water vapor on
the intensity of the Mayer —El Naby peak, but not on its

FIG. 3. Comparison between (a) Harms's ex'periment, Refs.
19 and 21, and (b) Faldt and Wallden, Ref. 22. (a) Curve A is
the optical conductivity (absorption) of a fresh bulk-potassium-
vacuum interface. Curves B, C, D, and E were obtained on the
same specimen after successive exposure to trace amounts of
H&O. The dashed curve M is one obtained by Mayer and El
Naby, Ref. 9. The dashed curve T- is an inverted plot of the op-
tical transmission through 0.01 cm of KOH. All data were tak-
en at room temperature. (b) The optical conductivity of an eva-
porated film of potassium after exposure to trace amounts of
H20. The substrate was at 78 K. The absorption peaks caused
by the exposure occur at various photon energies in different ex-
perimental runs. All structure disappeared above 110 K.
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FIG. 4. Free-electron Fermi sphere and various energy gaps
caused by a CDW. Only two (of the 12) Brillouin-zone gaps,
solid vertical lines, are shown.

FIG. 5. Portions of the Fermi sphere responsible for optical
absorption caused by a minigap of magnitude A. (a) is a side
view and (b) is a front view (along a line parallel to q).
Relevants plots of E(k) are shown.

V( r) =2a cos(Q r) + V~„(r), (3)

i.e., two incommensurate periodic potentials: a CDW po-
tential and a lattice pseudopotential:

V~„——2/3cos(G r) . (4)

! Q! =1.36—1.38(2~/~) and
! G! =1.414(2~/~);

the lattice constant and ! G! is the magnitude of the
(110) reciprocal-lattice vector. Solution of the
Schrodinger equation having Eq. (3) for the potential
leads to three main families of energy gaps which we
name as follows (in accordance with their wave-vector
periodicities, q).

(a) For minigaps:

q=(n +1)Q—nG .

(b) For heterodyne gaps:

spectral shape or location (unlike the various peaks of
Faldt and Wallden; see Fig. 3), can be explained by the in-
fluence of KOH layers on the crystallographic orientation
at the metal surface, ' which alters 8 in Eq. (2).

The existence of this new absorption mechanism indi-
cates that one must consider a Schrodinger equation hav-
ing a potential

V(r)=b, cos(q r), ! q! &2kF,

see Fig. 5. 5 is the minigap and q is the minigap wave
vector. It turns out that independent treatment is not a
good approximation for the heterodyne gaps and, there-
fore, we have left them for a future analysis.

In light of Fig. 5(b), we can see qualitatively that the
optical absorption is caused by vertical transitions from
the lower to the upper band, and that the threshold energy
is fuu=A. Note that both bands are occupied at k =0
(near the gap) so no absorption can occur there. However,
as we move parallel to the energy-gap plane the two
branches of E(k) are parallel and separated by b, . Hence,
absorption can occur on the portion of the plane shown
shaded in Fig. 5(b). For simplicity we neglect any defor-
mation of the Fermi surface caused by the potential in Eq.
(8). (It can easily be included, and we will comment later
on what the effect would be. )

The wave function 4&j, of an electron, in the neighbor-
hood of the gap at A, Fig. 6, below the gap, is

kx

q=n (G —Q) .

(c) For second-zone minigaps:

q=(n+1)G —nQ .

(6)

('7)

There remain, of course, the energy gaps at the Brillouin-
zone faces perpendicular to Cx, and the CDW gaps shown
in Fig. 2. For each type, n =1,2, 3, . . . . Only the mini-
gaps and the heterodyne gaps truncate the Fermi sphere,
as shown in Fig. 4.

kz

II. MINIGAP ABSORPTION
q&2 q&

We shall now calculate the optical-absorption coeffi-
cient associated with the first three minigaps as if each in
turn were created by a potential of the-form

FIG. 6. Schematic view of the Fermi sphere with parameters
employed in the text to derive the minigap absorption from
states along the dotted vertical line.
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k
——sinye'" '—cosye'" + (9)

The corresponding state above the gap, which is connect-
ed with @~, in an absorption event, is,

where the integration is over a surface of constant transi-
tion energy, Ek Ek—, and for which k is occupied and k'
is empty. The matrix element will not change as k is
swept over this surface, so we take it outside the integral:

@~——cosye'"'+ sinye'"+ '
The coefficients obey the relation'

(10) P
4 2~ ~ ~y. i2

1 dS
W fi ".". (2ir)3

~

Vk(Ek Ek )—
i

sin2y= E E+
with

(19)

The joint density of states (dN/d W) for unit volume is
' 1/2

E+=ek+I 0+ VV+ (12)
dN 1 GS

V,(E,—Ek )
I

(20)

where ek fi k /—2—m, p=fi q/2m, g is the perpendicular
distance in k space from the gap at A (Fig. 6), and
8'—=E+ —E is the vertical transition energy.

The macroscopic photon field in a metal can be
described by a vector potential

A(z) =re ""' 'cos n z —rot-
c

(13)

where 0 is the unit polarization vector of the electric field
and n and ~ are the optical constants. The interaction
Hamiltonian of an electron with this potential is

H'= A p.
mc

(14)

( ~ExHi)= (15)

where the ( ) indicates time averaging. The last equality
follows from Eq. (13), with e along x. On the other hand,
the transition rate caused by the perturbation is, with
W:ficu, —

The strategy of the calculation is to calculate the flow of
energy at z =0+ and equate it to the transition rate times
iruo caused by the perturbation H'. The flow of energy at
z =0+ is, from Poynting's vector,

Hence,

P —48'
2' dN

dWX I, „ I

k'
(21)

We evaluate the summation over k,' by converting it to an
integral:

P
4

2~ dN 1 iv
dW 2~

(22)

4rtc dN Aequi. cosg
d8' 4mc8' (23)

with P being the angle between e and q. [We have used
Eq. (11) to eliminate siny and cosy. ] From Eqs. (15) and
(23) we find the theoretical absorption coefficient:

3
2

2n~ 2vrA e
& ~

dN
(24)c8 m' -' d8

The density of states will be determined below.

III. RESULTS FOR K and Na

Since Eq. (17) is a Lorentzian, the integration is trivial.
We obtain

2

'2

k,' —k, +n-
c

'2 —1

(17)

The k components transverse to z are conserved. Chang-
ing the k sum in Eq. (16) to an integral (and using proper-
ties of the 5 function) we obtain

dS
W fi, (2ir) "~ z

i
Vk(Ek Ek )i—

P 2m4y ( i ~k', k ~

)5(Ek Ek'2

fV gi g fl

where the factor 4 takes account of the spin degeneracy
and the two gaps at opposite sides of the Fermi surface.
From Eqs. (9), (10), (13), and (14) one finds (considering
only the contribution from absorption)

2
irieS. q siny cosy

2plc

pK=0. 07—0.2 eV,

pN, ——0. 12—0.23 eV .

(25a)

(25b)

The lower values create a problem with regard to the
intensity of the ordinary (Wilson-Butcher) interband opti-
cal absorption, since this is proportional to p. Serious
discrepancy with experiment results unless enhancement
of the matrix element by the collective effects of exchange
and correlation are included.

In order to calculate the optical-absorption spectrum
caused by transitions across the minigaps we need to
know their sizes. ' This requires knowledge of the CDW
gap, 2a, and the (110) pseudopotential, p. Unfortunately,
the value of p is still an unanswered question. Estimates
vary by up to a factor of 3. For example, analyses~4 z5 of
Fermi-surface anisotropy (from de Haas —van Alphen
data) which assume local pseudopotentials lead to values
at the higher limit. Much lower values are obtained when
nonlocal pseudopotentials are employed. The ranges for
the magnitudes of p are
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TABLE I. Minigaps and heterodyne gaps obtained for several values of Q for K aud Na. All gaps are in meV.
I Q I

is in 2n/a.
units. (p=

I
V&io I. )

IQI
First

minigap
Second

minigap
Third

minigap
First

heterodyne
Second

heterodyne
Third

heterodyne

1.36
1.37
1.38

97
106
107

27
43
62

Potassium, P=0.20 eV
3 27
9 28

25 28

9
12
16

1.36
1.37
1.38

33
38
44

5.9
7.1

11

Potassium, P=0.07 eV
0.10
0.26
0.91

8.4
8.4
8.4

0.94
1.40
2.3

0.03
0.06
0.19

1.37
1.38
1.39

138
135
116

57
79
87

Sodium, P=0.23 eV
11
31
63

38
38
37

14
20
25

2
5

13

1.37
1.38
1.39

75
80
78

18
29
46

Sodium, P=0. 12 eV
1.5
4.5

17

18
18
17

4
6.1

9.2

0.25
0.71
2.6

The CDW potential 2a can be estimated from the
threshold of the Mayer —El Naby optical anomaly. ' As
mentioned in the Introduction, the observed threshold is
0.62 and 1.2 eV for K and Na, respectively.

As shown in Fig. 4, there is a small angle 9 between Q
and Ci. ' ' ' This small tilt leads to several problems in
calculating the sizes of the various minigaps. The first is
that the gaps no longer lie on planes perpendicular to q
(and which pass through +q/2, see Fig. 6). Instead the
gaps define curved surfaces in k space which are close to
the planes described. To find such a surface, consider a
coordinate system with z parallel to q and x in the plane
containing Q, Cr, and q. For a fixed k„, plot the optical

transition energy versus k, . The minimum transition en-
ergy is the value of the minigap (for that k„), and the lo-
cation k, of the energy-gap surface is at the value of k,
having that minimum. We found that the gaps vary qua-
dratically with k„, with minima near k =0. The values
obtained for the first three minigaps are given in Table I
where, for completeness, we have also included the hetero-
dyne gaps.

In order to determine the joint density of states, allow
(as a first approximation) Q to be parallel to Cx. For this
situation, the joint density of states is obtained by calcu-
lating the shaded area in Fig. 5(b) for a small disc of
width dg at a distance g from point A (see Fig. 6), i.e.
(R

&
and R2 are found by simple geometry from Fig. 6),
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FICi. 7. Optical-absorption spectrum of potassium for
I Q I

=1.36(2'/a) and Q parallel to C». (2nir/A=2o/c )The, .
zone boundary energy gap 2p has been taken to be 0.4 eV, and
the Drude absorption has been ignored. For room temperature
the Drude absorption at 0.1 eV would be 4 times larger than the
peak from the minigap at 0.1 eV. For P=0.07 eV the first
minigap threshold occurs at 0.04 eV {instead of 0.1).

l
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FIG. 8. Drude background {X) at 4.2 K and the total absorp-
tion coefficient {or conductivity) of potassium for

I Q I

=1.38(2n/a) and Q parallel to Cr. The zone boundary en-
ergy gap was assumed to be 2P=0.4 eV.
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FIG. 10. Optical-absorption spectrum of the first minigap of
potassium showing the gradual rise at threshold caused by the
small angle between Q and Cs. The zone boundary energy gap
2P was assumed to be 0.4 eV. The threshold is reduced to
=0.04 eV if 2P=O. 14 eV.

tance g from point B, Fig. 9, is given by

FIG. 9. Projections of the Fermi sphere used to calculate the
absorption when Q is not parallel to Cx. Each disc (of thickness
Ak„, shown in the front view) has a slightly different energy gap
at k, = —q/2. Only the shaded region of the top view has unoc-
cupied final states.

if 0 & g & (kF —q/2), with 2kF ——1.24(2~/a); for
g)(kF —q/2), R, =O. Therefore (for Q parallel to G)
we obtain

(2RG —2Rs)b, k„
dN 1 dg
dW (2~)3 "dW

Therefore,

2nir + 2mB e
&

dN3

qb, coscg' m dW
X

(29)

(30)

2nK ekq 2 . qcos P if 0&/& kF
2mcAR' 2

(27)

and

2nK e&g&q (A' Rp/2m) 2 q
2~cirt~2 ( ~2 +2)1/2

cos 4 cf Q) kF

(28)

This absorption spectrum is shown in Figs. 7 and 8 for K.
We have included the first three minigaps and have used
alternative values for Q. We have taken (cos P) = —,'. In
Fig. 8 we have included the contribution from intraband
transitions (Drude background) at 4.2 K, assuming a sam-
ple with a residual resistivity ratio of =6000. At room
temperature the Drude background is too high for these
new absorption edges to be observed. This is the reason
why any search for such new edges must be done at low
temperatures.

Finally we turn to the evaluation of the joint density of
states when the small tilt between Q and Ci is considered.
In this situation, because of the variation of the gap with
k, we fix k„, as shown in Fig. 9, and consider the k~-k,
plane (b,k„ thick) corresponding to that fixed k„. The
joint density of states in a small "disc" of width dg, a dis-

The important dependence on cos p should be noted.
implies that the minigap absorption is also uniaxial. The
spectrum is obtained by numerical evaluation of the sum
over k . Examples for the first minigap in K are shown
in Fig. 10 for several values of

~ Q ~. The major differ-
ence from the results obtained in Figs. 7 and 8, with Q
parallel to Cx, is that the sudden rise in absorption at
threshold is less abrupt. Had we included the slight dis-
tortion of the Fermi surface near the energy gaps, the rise
in absorption at threshold would be somewhat steeper.

The absorption profiles of all the minigaps are very
much alike. The peaks are about an order of magnitude
larger than the interband absorption or the main CDW
anomaly. We emphasize once again that the threshold
values given in Table I are subject to uncertainty because
the pseudopotentials of the periodic lattice are not known
from a direct experiment.

IV. CONCLUSIONS

We have found that new optical-absorption edges in the
far-infrared spectrum of a metal having a CDW ground
state arise from transitions across the minigaps. The ab-
sorption peaks associated with the first three minigaps
have been calculated for K and Na and found to be about
an order of magnitude larger than both the interband and
the main CDW peak. However, they are much smaller
than the room-temperature Drude background. Therefore
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any search for such edges must be carried out at low tem-
peratures, where the Drude background is significantly re-
duced, and in samples for which the orientation of g al-
lows the observation of the Mayer —El Naby anomaly.
The minigap absorption, as well as the main CD& ab-
sorption, is uniaxial.
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