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Theory of phase transitions from normal to modulated structures
in some 1 T transition-metal dichalcogenides
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Both mean-field and renormalization-group theories of the phase transitions from the normal to
modulated phases in a model for 1 T-TiSe2 and for a related model are given. The critical properties
of the TiSe2 phase transition are predicted to be those of the three-component Heisenberg model.

I. INTRODUCTION

This paper describes a theoretical investigation of'the
phase transitions from the normal to modulated structures
in some layered transition-metal dichalcogenides. ' The
phase transition in 1T-TiSe2 is, compared with that in a
hypothetical material which we shall call 1T-TaXq (see
below) from the point of view of both a mean-field
analysis and a renormalization-group analysis of the ap-
propriate Landau free energies.

The symmetry properties of the normal modes respon-
sible for the phase transition are analyzed in detail (the
case of 1T-TiSe2 has been treated previously by DiSalvo
et al. ) and these symmetry properties are then used in
the construction of the appropriate Landau free energy.
In the case of 1 T-TaX2, where the time-reversal symme-
try of the basis vectors plays an important role, it is
shown that a particular convention for choosing the
phases of the basis vectors leads to basis vectors with sim-
ple transformation properties.

A mean-field analysis of the transitions from the nor-
mal to incommensurate phases of 1T-TaXq has already
been given by Walker and Withers, but in terms of a
model in which the interlayer interaction is treated in per-
turbation theory; our results are compared with theirs in
Sec. II below.

In 1 T-TiSe2, the phase transition of interest is from the
normal state to a 2a X2a &2c superstructure and occurs
at the temperature T, =200 K, as shown by neutron and
electron scattering experiments. The transverse phonon
mode responsible for the transition has been identified and
the space-group symmetry was found to change from
D3~ (P3m 1) to D3d (P3c 1) at the transition temperature.
The temperature dependence of the satellite intensi-
ties below T, and thermal-expansion data ' indicate that
the transition is second order.

In the models analyzed below the order parameters are
associated with wave vectors k=cza*+yc*. For 1T-
TiSe2 a and y have tQe special values a= —,

' and y=
whereas for the hypothetical 1T-TaXq a and y have arbi-
trary values between zero and one-half (but with y& —,

' ).
Although we know of no material to which the model for
1T-TaX2 is actually applicable, it is nevertheless interest-
ing to compare the theoretical results for the two closely
related cases of 1T-TaX2 and 1T-TiSe2. It is perhaps of

interest to note that the hypothetical material 1T-TaX2
has properties approximating those of 1T-TaS2 and 1T
TaSe2. ' ' In these latter materials, however, the basal-
plane component of the wave vector is rotated approxi-
mately 1' away from the a* direction ' unfortunately,
the normal to incommensurate phase transitions which
are expected to occur in these materials are not observable
because the 1T structure becomes unstable first as the
temperature is raised.

II. LANDAU FREE ENERGY FOR 1 T-TaX2

A Landau theory of the phase transition in this case re-
quires a knowledge of the free energy of states of the crys-
tal whose distortions relative to the high-temperature
phase are determined by the vector

u =Re gfte;

where i =1,2, 3. The transformation properties of the
basis vectors e; have been determined in the Appendix
and it follows that the transformation properties of the
components P; of the order parameter with respect to the
generators of the space group D3d are3

PJ+i

under S6 and

under od.
The free-energy functional invariant with respect to the

above transformation properties is

3 3

+—Px= za(»+1@1'+ui+
I 4 I'

+u3 2 I 4 I'I @J I'

where F& is the free energy of the normal phase,
a(T)= ct(T T, ) and u—~, u3 ar—e real coefficients assumed
to be independent of temperature. Stability of the free en-

ergy imposes the following constraints on the coefficients
of fourth-order terms: u» 0 and u

& +u 3 ~ 0. For
a(T) &0 the solutions that minimize the free energy are

QJ =0, whereas for a(T) &0 two types of minimum ener-

gy solutions are possible:
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and

4(ui+u3)

Q3
1f Q1+

2

IT- TaX2

x, =x3

(ii)
I qi I

'=
I @2 I

'=
I @3 I

'=o «c.
4u1

Q3
if ui&

2

Let us call the former solutions (3Q) states and the latter
solutions (1Q) states. The critical properties of these
states will be discussed in Sec. IV.

It is of interest to note that free energy for a single
layer ' of the layered 1T-TaS2 structure contains, a term
cubic in the order parameter which would apparently
cause the phase transition to be first order. However,
Walker and Withers have argued that when the free ener-

gy is summed over all layers, there is a destructive in-
terference between the cubic terms in different layers
which causes the total effect of the cubic term to vanish.
This result is thus in agreement with our finding that
there is no cubic term in our above free energy.

0)
xl = I/2x3

( I-Q)

0.02-0.02 -O.OI 0 O, OI 0.03 0,04 0.05
X3

FIG. f. Flow diagram for the free energy of Sec. II plotted in
the (xi,xq) plane with xi =Ã4ui and x3=Ãqu3 [Kq= 1/(8m' )].
The regions for mean-field triple- Q and single- Q states are indi-
cated in the figure. See text for a discussion on the jI T-Tax2
structure.

The latter structure has not been observed so far in these
systems.

III. LANDAU FREE ENERGY FOR 1 T-TiSe2

In this case, the states of the crystal of interest are those
with distortions given by the vector

g;e;,

where both the basis vectors e; and the components of the
order parameter lt; are real, for i =1,2, 3. From the
transformation properties of the basis vectors e; given in
the Appendix, it follows that the transformation proper-
ties of the components of the order parameter under gen-
erators of the space group D3d are3

—PJ+i
under 56+ and

IV. CRITICAL PROPERTIES OF THE MODEL
FREE ENERGIES

We have studied the critical properties of the model
free energies of the previous sections by a
renormalization-group (RG) analysis. 1T-TaX2 and 1T-
TiSe2 show quite different critical behavior due to the fact
that their order-parameter dimensionalities (n) are dif-
ferent; for the former n =6, whereas for the latter n =3.
This difference in the order-parameter dimensionality is
refiected in the RG flow diagrams plotted in Figs. 1 and 2

XI

I T- TiSe2

under od.
The Landau free-energy invariant with respect to these

transformations is

3

FN —,'a(T)gp;+—ui g——f;+u3+Q;QJ. ,

/2 X3

3X3

where, again, a (T)—:a(T T, ) and u i,u3 are real —coeffi-
cients assumed to be independent of temperature.

Minimization of the free energy with respect to the or-
der parameters gives rise to the (3Q) and (1Q) states as
before [for a (T) &0], but in contrast to case (a), for 1 T
TiSe2 the order parameters are all real. The space group
of the (3Q) state is found to be D3d which is the space
group obtained from neutron scattering experiments. '

On the other hand if 0&ui &u3/2, the (1Q) state has
minimum energy and the crystal symmetry corresponding
to that state is monoclinic with space group Czs(P2/c).

O.OI O.OI 0.02 0.03 0.04 0.05 0.06 X3

FIG. 2. Flow diagram for the free energy of Sec. III plotted
in the (x&,x3) plane where x~ ——K4u &

and x3 —E4Q3
[IC4 1/(8ir )]. The four fixed po——ints are labeled as 6 (Ciauss-
ian), I (Ising), H (Heisenberg), and C (Cubic). The regions for
mean-field triple-Q and single-Q states are indicated in the fig-
ure.
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FIG. 3. Basal-plane projection of the position of atoms in
1 T-transition metal dichalcogenides with chemical formula
MC2, where M=Ta or Ti and C=Se or sulfur. The three
atoms in a unit cell are labeled by S( =+1,0).

following Refs. 14—17. As shown by the mean-field
analysis of Sec. II, the region to the left of the line
u~ ———,u3 corresponds to (3Q) states, whereas the region
to the right of u ~

———,
'

u3 corresponds to the (1Q) states.
From Fig. 1 it is seen that a second-order transition to a

(3Q) state is possible if u ~ & u3/2&0; otherwise the tran-
sition is driven to first order by fluctuations. The RG
flow diagram for 1T-TiSe2 is given in Fig. 2. A second-
order phase transition is possible if u~ & u3/3 &0; other-
wise the transition is first order. Since the observed phase
transition in 1 T-TiSe2 is second order, the critical proper-
ties are predicted to be those of the three-component
Heisenberg model.

e, be a basis vector for a one-dimensional (we require only
such one-dimensional representations below) representa-
tion of the group of wave vector k~. Then, if the star of
k& is the set of inequivalent wave vectors kj ——

gz k
&

where

j=1,2, . . . and gj is an appropriate element of the space
group, a basis for an irreducible representation of the full
space group is the set of vectors ej ——gje~. Now suppose
that the wave vector —k& ——gTk& is in the star of k~.
Then the basis vector eT ——g&e~ is a Bloch function corre-

sponding to wave vector —k~. The complex conjugate of
eI, namely, e &, is also a Bloch function with wave vector
—k&. If (as will be the case below) the complex conjuga-
tion operation has no effect on the degeneracy of the

eigenvalues, it will be possible to choose e& so that eT and
e~ are the same to within a phase factor (recall that e~
gave a one-dimensional representation of the little group).
The phase factor can be chosen so that eT ——e

&
and this is

the convention we will adopt.
An arbitrary displacement of the ions in a crystal can

be given in terms of the column vector

u = gu (,')e (,'), (Al)
l,s,a

where u~(,') is the ath component (a=x,y,z) of the dis-
placement of the sth basis atom in the 1th unit cell. The
column vector e (,') has unity in the row Isa and zero in
all other rows. In the 1T structure the basis atom can be
labeled by s =1,0, —1, as shown in Fig. 3 and the effect
of the inversion operator C; on the basis vectors e~(, ) is

V. SUMMARY
Ce (,')= —e (,') . (A2)

Model free energies describing and contrasting phase
transitions from the normal to modulated phases in 1T
TiSez on the one hand, and in 1 T-TaX2 on the other hand,
have been developed. A special convention for defining
the phases of the normal modes was found to be useful in
accounting for the effects of time-reversal symmetry in
the latter case. The critical properties of the two cases
were found to be different because the order parameters
are real in one case and complex in the other. The free
energy for the 1 T-TiSe2 phase transition was found to be
identical to that of the three-component Heisenberg model
with cubic anisotropy, and a careful measurement of the
critical exponents for 1T-TiSe2 and a comparison with
those of the Heisenberg model, would thus be of interest.

k( =cxa +p c (A3)

where O~o.,y&1 and a* and c* are basal-plane and c
axis reciprocal-lattice vectors. The star of k~ contains six
wave vectors, including —k& ——C; k&. The little group of
wave vector k& contains two elements, the identity and
the reflection o~ in the plane containing a* and c*, and
has two one-dimensional irreducible representations A'
and A" for which the basis vectors transform as

The wave vector of interest for a discussion of the tran-
sition from the normal state to the charge-density-wave
state of 1T-TaX2 is
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APPENDIX: BASIS VECTORS FOR 1T-TaX2
AND 1T-TiSe2

In this appendix, we introduce a convention for deter-
mining the phase of the basis vectors in terms of which
the lattice displacements can be written.

An irreducible representation of a space group can be
induced in the following way (e.g., see Lyubarskii' ). Let

respectively. The application of a standard character test
(e.g., see Lyubarskii' or Maradudin and Vosko' ) shows
that both of these representations are real, so that the in-
clusion of the complex conjugation operation in the sym-
metry group of the problem does not affect the degenera-
cy of the eigenvalues.

Now define
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e ai„( k ~) =exp(i/~)N '~ +exp[i k
& R(l)]e &.(l),

I

(A5)

In constructing a I.andau theory of the phase transi-
tions in 1T-TaXz, one is interested in states of the system
for which the displacement vector has the form

where l is a sum over all N unit cells in the crystal;
A, =1,0, —1; /~=0 for A, = —1, and P~=n/2 for A, =1,0;

e;o(l) =ea(o) .

There are nine distinct vectors e .~(k~) for a given k&.

The three vectors corresponding to cx=y give A" repre-

sentations of the group of wave vector k q, whereas the six
vectors corresponding to a=x and z give A' representa-
tions. As a result of our particular choice of phase factors

P~, and linear combinations (A6), the basis vectors (A5)

satisfy the convention Cte .~(k)=e ~a(k) which we had
chosen to adopt above.

The mode responsible for the normal to charge-
density-wave phase transition in 1 T-TaXz is an A' mode
and can therefore be written as a linear combination of
the six 3 ' basis vectors; the vector describing this mode is

u =Re gee;

where i =1,2, 3 and the three components g; of the order
parameter are arbitrary complex numbers.

In the case of 1T-TiSez to which we now turn, the or-

der parameter is associated with the wave vector k, given

by (A3) but with a =y = —,
' . The star of k

&
contains only

three wave vectors (instead of six as for 1 T-TaXz) because
—k

~
and kt differ by a reciprocal-lattice vector. Neutron

scattering experiments show that the mode responsible
for the phase transition in 1T-TiSez is a transverse 3„
mode. Arguments similar to those above give as a basis
vector for this mode the result

1

e, (A„)=ge „e (k, ),
A, =O

where ey~ is given by (A5) and (A6). The phase factors P~
are chosen zero and the c~~ are chosen real which makes
the basis vector real and eliminates the problem (which
occurs for 1 T-TaXq) of relating the complex conjugate of
a basis vector with wave vector k~. The transformation
properties of the set of basis vectors, I et, e2 (=C3e, ),
e3 ( =C3 'e&) I, under the generators S6+ and o~ of the
space group D3d are3

where. the prime indicates a summation over u=x and z,
and A, = —1,0, 1. Because we shall require e1 to satisfy
the convention C;e1 ——e1, the coefficients c ~ are real.

A basis for an irreducible corepresentation of the space
group D3d is therefore the set of three vectors

{e&, e2(=C3e~), e3 ( C3 et)I,—1

together with their complex conjugates. The transforma-
tion properties of these basis vectors with respect to the
generators Ss+ and od of the space group D3d are

+ sfcS6ej ——ej 1 ~

c+
6 ej eJ 1 7

~de1=-e1, ~de2-—-e3, and ~de3=-e, .

The states of interest for a Landau theory of the phase
transition are those described by the displacement vector

where ej+3 ——ej, and

Ode1 ——e1, Ode2 =83 ~de3 ——e2 .

(A7)
where the three components of the order parameter Pt are
real numbers.

J. A. Wilson and A. D. Joffe, Adv. Phys. 18, 193 (1969).
J. A. Wilson, F. J. DiSalvo, and S. Mahajan, Adv. Phys. 24,

117 (1975).
P. M. Williams, in Crystallography and Crystal Chemistry of

Materials upwith Layered Structures, edited by F. Levy (Reidel,
Dordrecht, 1976},Vol. 2.

"F.J. DiSalvo, D. E. Moncton, and J. V. Waszczak, Phys. Rev.
8 14, 4321 (1976}.

5M. B. Walker and R. L. Withers, Phys. Rev. 8 28, 2766 (1983}.
K. C. Woo, F. C. Brown, W. L. McMillan, R. J. Miller, M. J.

Schaffman and M P Sears Phys Rev 8 14 3242 (1976)
7J. A. Wilson, Phys. Rev. 8 17, 3880 (1978).
8G. A. Wiegers, Physica (Utrecht) 99B, 151 (1980}.
A. Caille, Y. Lepine, M. H. Jericho, and A. M. Simpson, Phys.

Rev. 8 28, 5454 (1983}.
1oJ. Van Landuyt, G. van Tendeloo, and S. Amelinckx, Phys.

Status Solidi A 42, 565 (1977).
P. M. Williams, G. S. Parry, and C. B. Scruby, Philos. Mag.
29, 695 (1974).

'~J. W. Steeds, Conference on Electron Microscopy and Analysis,



31 THEORY OF PHASE TRANSITIONS FROM NORMAL TO. . . 483

Brighton, England, 1979, edited by T. Mulvey (IOP, London,
1980), Vol. 52, p. 197.

'3K. Nakanishi and H. Shiba, J. Phys. Soc. Jpn. 43, 1839 (1977).
~4A. Aharony, in Phase Transitions and Critical Phenomena,

edited by C. Domb and M. S. Green (Academic, New York,
1976), Vol 6.

~5D. Mukamel and S. Krinsky, Phys. Rev. 8 13, 5078 (1976).

~ P. Bak, J. App. Phys. 50, 1970 (1979).
7Z. Barak and M, B.Walker, J. Phys. F 12, 483 (1982).

~8G. Ya. Lyubarskii, The Application of Group Theory in Physics
(Pergamon, New York, 1960).
A. A. Maradudin and S. H. Vosko, Rev. Mod. Phys. 4), 1

(1968}.


