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The complex dielectric tensor of LiCs has been calculated within the relaxation-time approxima-
tion based on the ab initio self-consistent-field energy band structure of this compound. The results
are used to obtain reflectivity and electron-energy-loss spectra for both polarizations, parallel and
perpendicular to the c axis. The results are in excellent agreement with various experimental mea-
surements (see preceding paper) and serve both as a check on the accuracy of the calculated band
structure and also as a clarification for the origin of the observed plasmons in LiCs. Some of the
conclusions appear to be applicable to other alkali-metal graphite intercalation compounds.

I. INTRODUCTION

LiCg is the alkali-metal graphite intercalation com-
pound with the largest concentration of the intercalant.
LiCg is often considered as a prototype for stage-1 alkali-
metal graphite intercalation compounds, even though its
structure, AaAa. .., is different from the others, which
have the chemical composition MCg and the layer stack-
ings of either AaABAYAS... or AaABAy..

In recent years there has been a great deal of interest in
measurements directed at obtaining the optical spectra of
this compound.!~> Furthermore, several theoretical inves-
tigations of the electronic structure of LiC4 have been car-
ried out.5~1° In this paper we report on our ab initio cal-
culation of €lw), the complex dielectric tensor of LiC,
similar in approach to our previous study of graphite.!!
Some preliminary results of this work have already been
presented elsewhere.!? In Sec. I we present a brief outline
of the formalism for the dielectric tensor. In Sec. III the
energy-band calculation on which this work is based is
discussed with the details of the computational procedure
given in Sec. IV. The relevant experimental results are re-
viewed in Sec. V. Our calculated results and their com-
parison with experiment®* are given in Sec. VI, with the
conclusion and discussion in Sec. VII.

II. FORMALISM

The calculation is carried out within the relaxation-time
approximation. The contributions to the dielectric tensor
are divided into two parts, the interband and intraband
components. The former is given by!3
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where @ =w +i /7, with 7 the phenomenological scattering
time, and E(k)=E.(k)—E,(k), with the primed sum-
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mation taken over states such that E, > Er>E,, where
Er is the Fermi energy. E., Ep, and E, are obtained
from a self-consistent-field (SCF) band-structure calcula-
tion using norm-conserving pseudopotentials. '©

The intraband contribution to &w) is obtained from a
Drude model as
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where i is over all the bands crossing the Fermi level, and
7; is the relaxation time for ith band. (wp;), and (wp)),
are taken from a theoretical analysis of the Fermi surface
for LiCg.6

III. COMPUTATIONAL PROCEDURES

A. Energy band structure and oscillator strength

The SCF energy band structure used as the basis for
this calculation is an extension of the studies Holzwarth
et al.'® The technique used was the ab initio norm-
conserving pseudopotential -theory with the wave func-
tions expanded in a mixed basis of plane waves and local-
ized orbitals.!® We have extended the previous calculation
to cover a range of 45 eV in order to obtain the interband
spectra over a large frequency range. The energy bands
were calculated at a mesh of 30 points in - th of the Bril-
louin zone (Fig. 1). Figure 2 shows the resulting energy
band structure along the high-symmetry directions. It
also indicates the important transitions near these axes.

The nonlocal nature of the pseudopotential leads to ad-
ditional terms in the oscillator strength beyond the
momentum matrix element between the initial and final

“states |i,k) and |j,k). We estimate that the neglect of

these terms leads to an error of less than 129% for oscilla-
tor strength (see Appendix). Thus the velocity matrix ele-
ment is taken as

(zk]v|1k)=——2[a,,(k T*ai(k)/(G, +k) . (3)
G, is a reciprocal-lattice vector and a,(k) is the coeffi-
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FIG. 1. Irreducible sector of the Brillouin zone of LiCg show-
ing the mesh used as a basis for Gilat-Raubenheimer (GR) inter-
polation and k-space integration.

cient of the corresponding term in the plane-wave repre-
sentation of these states, i.e.,

|1,k) =3 aj(ke" S +O7 (4)
n
In order to use this form, the localized-orbital parts of the
final-state wave function were also expanded in ~ 1000
plane waves.

The increased number of bands due to the zone folding
along with the choice of a finer mesh lead to a total num-
ber of calculated matrix elements that was 3 times that
needed for graphite.

B. Interband contribution

Evaluation of Eq. (1) requires a summation over the
Brillouin zone. This is achieved using a modification of
the Gilat-Raubenheimer technique.!"'* In this approach,
the irreducible sector of the Brillouin zone (5th of the
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full zone in our case) is divided into a number of subcells,
each containing one k point at which the ab initio energy
bands and momentum matrix elements are calculated.
Within each subcell the energy bands are expanded in a
Taylor series, retaining only the first-order term (corre-
sponding to a planar, constant-energy surface). In the
modified approach, each subcell is replaced by a sphere
having the same volume. The momentum matrix element
is chosen to be constant within the subcell. The choice of
the specific k points in the mesh was made in such a way
that the original shape of the subcells would be as close to
a sphere as possible. There are two advantages to this ap-
proximation. First, the shape of the subcell is indepen-
dent of the Brillouin-zone geometry, and, second, the
cross sections of the constant-energy surfaces within each
subcell will have a circular shape, resulting in a consider-
ably simplified computational procedure.

The choice of the scattering time 7 is not very clearcut,
especially since there is no experimental data for this pa-
rameter. Even though 7 is, in general, both energy and
momentum dependent, it is common practice to choose a
single value for the relaxation time. If 7 is chosen too
large, the calculated spectra would contain many spurious
structures which are produced by the finite integration
mesh in the Brillouin zone. On the other hand, if the
choice is too small, while we obtain smooth spectra, we
may lose some real structure due to the unphysical
broadening. Following the choice of 0.1 10~ !* s for gra-
phite,!! we calculated the interband contribution to the
spectra using three different values of 7, 0.2X 104,
0.5x 10~ and 2.0 10~ *s. Since the integration mesh
was finer for LiCg than for graphite,!! we were able to
use a somewhat larger value of 7, 0.2 10~ s, for LiCs,
in the final calculation, and still obtain reasonably smooth
spectra and good agreement with experimental data.
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FIG. 2. Partial energy-band structure of LiCs along the high-symmetry axis. The arrows indicate some of the major optical transi-

tions between these bands.
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FIG. 3. The calculated density of states (DOS) and joint DOS
for LiCq.

The Fermi energy Ep is also required for evaluating the
interband contribution. To obtain Ep, the density of
states (DOS) is obtained by summing the contributions
from each band i, within a subcell at kg, as

ﬂ_ _ 2mS0,-
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“where Sy is the area of constant-energy surface in subcell
k, for band i, and p(; is the magnitude of the diagonal
component of the momentum matrix element for band i
at point k,. Figure 3 shows our calculated DOS and joint
DOS for LiCq. By integrating the DOS we obtained the
Fermi level for LiC4 located ~1.4 eV above the 7* con-
duction bands at I'. This is in good agreement with the
results of various existing calculations presented in Table
I, as well as with that estimated from joint DOS.

(5)

C. Intraband contribution

There are two conduction 7* bands that intersect the
Fermi level in LiCg. These are referred to as the upper (u)
and lower (/) bands corresponding to their position in en-
ergy along the K—I'—M or H—A—L directions in the
Brillouin zone. Thus the Fermi surface is made of two
pockets corresponding to these bands, similarly referred to
as upper (u) and lower (J) surfaces, respectively.

The scattering time for carriers in both pockets is as-
sumed to be the same, and is taken as 0.5X 10~ 13 s, the

TABLE 1. Fermi energy in eV, measured from the bottom of
#* bands at T, and density of states at Fermi level in number of
states per carbon atom per eV.

Holzwarth® Samuelson® Volpilhac® Present Expt.¢

Ep 1.4 1.4 1.8 1.4
N(EFf) 0.24 0.25 0.22 0.18 0.21

2Reference 6.
bReference 9.
°Reference 7.
9Reference 20.
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TABLE II. Plasma frequencies in eV, for different carriers
and different polarizations (Ref. 6).

Upper band Lower band Effective
Polarization Opy ©p; wp
&lc 5.2 4.1 6.7
&|lc 1.9 0.9 2.2

same as for the graphite calculation.!! Thus the summa-
tion over the carrier types in Eq. (2) can be replaced by an
effective plasma frequency given as wp=(w§1+w;,,)” 2,
Since both pseudopotential’® and the Korringa-Kohn-
Rostoker® (KKR) energy-band calculations gave nearly
the same results in the vicinity of the Fermi energy, and
since the w, for both types of carriers were already calcu-
lated in the latter work, these values were used in the

present study (Table II).

IV. REVIEW OF THE EXPERIMENTAL
RESULTS FOR LiC¢

Zanini, Basu, and Fischer,! and Basu et al.? performed
the first reflectivity measurement on LiCg in the range
below 3 eV for the polarization &Llc. Pfluger et al.’ re-
ported the, reflectivity data up to 6 eV. Fischer et al.}
have extended this measurement up to 11 eV with &lc.
They have also reported the reflectivity measurement with
& ||c and energy below 3 eV. The latter measurement is
not expected to be very accurate due to the difficulty of
performing the experiment. The electron-energy-loss
spectra (EELS) have been recently reported by Grunes
et al.* from 0.3 to 288 eV, and €, and ¢, up to 40 eV were
obtained from these results by Kramers-Kronig analysis.
Since EELS involve transitions with finite g, the resulting
dielectric function is expected to be different from e(w,0),
particularly at low energy. Therefore, Fischer et al.’
combined the low-energy reflectivity with high-energy
EELS data to perform the Kramers-Kronig analysis for
the optical spectra of LiCs.

V. COMPARISON OF THEORY AND EXPERIMENT

A. Imaginary part of dielectric function, €;,

Figure 4 shows the comparison of the calculated result
and those deduced from experiments.>* It is seen that the
overall agreement between theory and experiment is excel-
lent. The major peaks for €, at 4.0 and 13 eV are similar
to those measured and calculated for pristine graphite.!!>
The 4-eV peak comes mainly from 7-7* transitions *2”
near the M point. This structure also exists for graphite,
but due to the up-shift of the Fermi level, part (~50%) of
the 7*-like final bands in graphite fall below the Fermi
level in LiCq and lead to a reduction of the peak height.
The agreement between calculated results and experiment
i's better than for graphite due to the use of a finer mesh
in the calculation. The calculated results are in better
agreement with the measured data obtained from reflec-
tivity than for EELS. This can be attributed to the fact
that the calculation and the reflectivity measurement both
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FIG. 4. €, as a function of frequency for the polarization
perpendicular to the ¢ axis (&Llc). The experimental results a
and b are from Refs. 4 and 3, respectively.

correspond to the ¢=0 case. The 13-eV structure has
contributions mostly from o-o* transitions distributed in
the K—H and I'—A regions (Fig. 2). This structure corre-
sponds to transitions that are also allowed in ‘graphite;
however, due to zone folding they correspond to contribu-
tions from different regions in the LiC¢ Brillouin zone.

According to our calculation, there is a structure near 9
eV including two peaks located at 8.8 and 9.4 eV. It is in
good agreement with the direct reflectivity measurement,’
which shows structures at 8.4 and 9.1 eV. The former is
mainly derived from transitions “3” near A, while the
latter is attributed to transitions “10” from the region
near I'—A. The calculated strength for this structure is
between the two experimental results,>* i.e., it is smaller
than the EELS but larger than the reflectivity data. This
difference may be due to the fact that the EELS measure-
ment is at finite g, thus overestimating the strength.
Furthermore, the coarse mesh for momentum matrix ele-
ments in k space used in the calculation may lead to some
inaccuracy in the result. These structures are absent in
graphite but become allowed in LiCq. From the band
structure, we see that the up-shift of the Fermi level
makes 7-7* transitions possible for 7 bands, which are
above Er in graphite and below Er in LiCs Also, the
backfolding of the K—H bands of graphite into the '—4
region of the LiCg Brillouin zone, and unfolding along
I'—A4, make the structure rather complicated.

Figure 5 shows the effective number of valence elec-
trons per carbon atom in LiCq that have contributed to
the photon absorption with & Llc. The solid line is the cal-
culated result and the dashed line is from experiment,
while the dotted line represents the calculated result for
graphite.!! There are a total of 4X 61X 1=25 valence
electrons per unit cell of LiCy. Since the o(1%), the
metal-graphite interlayer band, is completely above the
Fermi level, the 2s electrons in Li atoms are completely
transferred to the #* bands of graphite. Thus from the
point of view of the rigid-band model, each carbon has ”265‘
valence electrons.

Unlike graphite, the curve for LiCg4 starts at ~3 eV,
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FIG. 5. Effective number of electrons for LiCg with & Lc as
a function of frequency. The experimental result is from Ref. 3.
The result for graphite is shown by a dotted line.

which corresponds to an interband threshold in LiCg
created by the raising of the Fermi level. The small ab-
sorption below this threshold is due to the intraband tran-
sitions. The inaccuracy of the calculations at very low
frequency may be responsible for the difference between
theory and experiment in this range. The height of the
first plateau in LiCq, ~0.3, is also reduced from that of
graphite, ~0.6, due to thé Fermi-level up-shift. This in-
dicates that the 7-#* transitions in LiCg are reduced by
~50% over that of graphite. In fact, the calculation of
the density of states of LiCq also shows that the Fermi-
level shift corresponds to a decrease of the effective num-
ber of electrons by ~0.3 for these transitions. The in-
creased intraband plasma frequency of LiCg, compared to
graphite, leads to an overlap of the intraband the inter-
band contributions to n.¢, and makes this plateau less flat
than for graphite. There is also an indication that the
two-dimensional nature of LiCq is weaker than for gra-
phite, and thus the distinction of 77- and o-like bands does
not hold in LiCg4 as well as it does in graphite. Taft and
Phillip'® have analyzed the optical data of graphite by
separating the contributions of the 7 and o bands. Fisch-
er et al.’ followed the same procedure in their analysis of
the optical data for LiC4, KCs, RbCg, and CsCg. They
found that this method works moderately well for KCsg,
RbCg, and CsCyq, but not for LiCg. This is also indicated
by the fact that the expansion of wave functions in LiCg,
especially for the states with high energies, include contri-
butions from both p, and sp.p, localized orbitals, corre-
sponding to 7 and o designations, respectively.

The final saturation value extending over 34 eV for in-
plane polarization reaches ~76%, i.e., 18.3/25. This is
better than expected for a totally ab initio calculation.!®
There is also an indication that the saturation would be
reached at higher energy than in graphite.

B. Real part of the dielectric function, €;,

The interpretation of €, (Fig. 6) is somewhat more com-
plicated. We have clearly identified two plasmons w};
and co;3 at 2.85 and 25 eV, where the calculated €; has
zero crossings with positive derivatives. The sharp
minimum at ~5 eV can be identified as a plasmon w;Z
even though no zero crossing occurs. In order to clarify
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FIG. 6. €, as a function of frequency for &Lc. The experi-
mental results @ and b are from Refs. 4 and 3, respectively.

the origin of these plasmons we recalculated €; using an
interband scattering time of 210~ 1* s, and we show the
results along with the interband and intraband com-
ponents in Fig. 7. The large scattering time used here re-
sults in the appearance of a zero crossing at 6.0 eV for the
a);z plasmon and simplifies our present discussion. In
Fig. 6, as in all the final calculations, the value of
0.2 10~ 4 5 has been used for 7, as stated before.

First, we notice that the calculated plasmon a);l, even
though clearly due to free carriers, occurs at much lower
energy than the calculated, effective free-carrier plasma

~ frequency, w,, at 6.7 V. ® This is due to the screening of
the free-carrier oscillations by the large p081tlve com-
ponent of interband contribution, A€, in this energy
range. This situation is a general characteristic of the
spectra of the alkali-metal graphite intercalation com-
pounds, since in all cases the energy of the 7-7* transition
occurs in the range in which the intraband effects are sig-
nificant. For example, in KCy the intraband plasmon is
observed at 2.38 eV and corresponds to the unscreened ef-
fective plasma frequency of 4.5 eV.!” A related
phenomenon has been observed in silver,'® where the in-
traband oscillations of s electrons are screened by inter-
band transitions involving the d electrons.

The origin of the co;", » plasmon is not immediately clear.
Neither the interband nor the intraband contribution to
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FIG. 7. Interband and intraband contributions to the real
part of the calculated dielectric function.
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FIG. 8. Calculated positions for the free-carrier plasmon w;1
and the first interband plasmon wj, as functions of the un-
screened free-carrier plasma frequency w,.

the dielectric function separately go to zero at an energy
in this range. However, if we plot the position of both
wp1 and Wp> plasmons as a function of w,; (Flg 8), we see
that wpl varies strongly with @p15 while a)pz does not
This not only confirms our previous identification of wpl
as a free-carrier plasmon, but also leads us to label a)p 2 as
an interband plasmon, screened by free carriers. Figure 8
also indicates that, for w,;=0, the value of a);2 is 5.3 eV.
This can then be taken as the energy of the unscreened in-
terband plasmon ®,,. The corresponding interband
plasmon in graphite—which is essentially unscreened by
free carriers—occurs at 6.3 eV. This plasmon, for both
LiC¢ and graphite, is the first interband plasmon, and
derives contributions from both 7-7* and o-0* transi-
tions. Taft et al. obtained a pure 7-7* plasma frequency
of 11 eV for graphite by separating the 7 and o contribu-
tions, which is different from the interband plasma fre-
quency wp;. The calculated wp, is reasonably smaller
than that for graphite due to loss of the 7-7* transition.
Since the plasma frequency is proportional to the square
root of the carrier density, the ratio of electrons involved
in 7-7* transitions in LiCg to that of graphite should be
(5.3/6.3)%, which is ~70%. This is in rough agreement
with the conclusion in Sec. V A. Figure 8 can also explain
the position of intraband plasmon for &||c, since the
screening effect is only dependent on charge distribution.

The plasmon w; 3, occurring near 25 eV, is solely due to
the interband transitions, since the free-carrier effects
have disappeared at this energy. A similar plasmon is
also observed in graphite. The structures near 15.5 and
19.5 €V in the €, spectra which appear in both experimen-
tal and theoretical results stem from a number of o-o*
transitions, with significant oscillator strength distributed
in almost all of the Brillouin zone. There are also two
peaks at 15 and 19.5 eV in the joint density of states of
LiCg.

C. Electron-energy-loss and reflectivity spectra with &lc

Figure 9 shows the calculated and measured* EELS,
and again the agreement between theory and experiment is
excellent. The plasmons observed in the calculated EELS
correspond closely to those in the €; spectra. This is an
important check on the accuracy of the calculated results
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FIG. 9. Electron-energy-loss spectra for LiCs. The experi-
mental result is from Ref. 4.

imposed by the Kramers-Klonig relation between the
imaginary and real parts of the conjugate pairs [such as
Re(1/€) and Im(1/€)]. There is, however, a 3-eV differ-
ence between the main peaks in the measured EELS and
the zero crossing in the €; spectra obtained from it by
Kramers-Kronig analysis. This is the result of uncertain-
ty in the extrapolation of the quantities that must be in-
tegrated in the process of carrying out this analysis. It is
also due to the weak dependence of €; and €, on energy in
the neighborhood of w,;. This dependence is critical in
determining the position of the peak in the EELS.

Figure 10 shows our calculated reflectivity along with
the experimental results of Fischer et al.> The latter is a
combination of the direct measurement up to 11 eV plus
the EELS measurement for the higher-energy range. As
expected, the agreement between theory and experiment is
much better in the lower-energy range, where the mea-
surement of the reflectivity is direct and the band struc-
ture underlying the calculation is more accurate.

D. Spectra for &||c

In studying the calculated spectra for & ||c, we are at a
disadvantage, in that experimental results are available
only for a very small energy range, i.e., below 3 eV.> For
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FIG. 10. Reflectivity with &lc, R,(w). The experimental
result is from Refs. 3 and 4.
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FIG. 11. Calculated imaginary part of the dielectric function,
€}, for LiCs and graphite.

this reason we also compare our calculated results with
those for graphite in order to better understand the spec-
tra for LiCs. Figures 11 and 12 show the calculated €,
and €| for both materials. The free-carrier contribution
clearly indicates the increased metallic behavior of LiCg
compared to graphite. Furthermore, we observe more
structure in the spectra for LiCg4 than for graphite. This
could be the results of folding of the nearly parallel gra-
phite bands into the small Brillouin zone of LiC¢ and the
subsequent splitting of degeneracies due to intercalant car-
bon interactions.

The two large peaks in Fig. 11 for both graphite and
LiCg¢ have common origins. The first, near 10 €V, is due
to the - to the interlayer o-band transitions in graphite
and the 7-to “metal” o-band transitions in LiCq. These
transitions occur at a lower energy in LiCg than in gra-
phite due to the fact that the separation of the ‘“metal-
interlayer” band from the graphite-like valence-band com-
plex is smaller in LiCg than in graphite. The second peak
is due to the o-7* transition and is at about the same ener-
gy in both materials. We see a small peak in LiC¢ spectra
occurring between the previous two. This is due to 7-o*
transitions “9” around point 4 in the Brillouin zone (Fig.
2). Even though the same transition occurs in graphite
near K (K in graphite folds to 4 in LiCg), it is not seen in
graphite spectra due to the overlap with the large first
peak.

The structures near 20 eV in the calculated spectra are
absent both in the calculated graphite spectra and the
measured results for LiCg. Since the calculation for LiCg
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FIG. 12. Calculated €, for LiCs and graphite.
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FIG. 13. Reflectivity with &||c, R||(@). The experimental
result is from Ref. 3.

is expected to be more accurate than that for graphite,
these structures may eventually be observed in an im-
proved measurement.

Recently, Fischer et al. reported carrying out a polar-
ized reflectivity measurement, R|(w), on a reasonably
good “a face” (formed from the layer edges) of LiC4 from
0.5 to 3 eV. Even though this measurement is not expect-
ed to be very accurate due to the difficulty of preparing a
satisfactory “a face,” the comparison with theory (Fig.
13) shows that the overlap of the intraband and interband
effects leads to a screening of the intraband plasmon. If
we define the position of the plasmon as the middle point
of the Drude edge, then we see a reasonable agreement be-
tween the positions of the calculated and measured
plasmons which occur at 1.2 and 1.4 eV, respectively.
This plasmon corresponds to a calculated unscreened plas-
ma frequency w, || of 2.2 eV (Table II).

VI. CONCLUSION AND DISCUSSION

The calculated dielectric function is in excellent agree-
ment with experiment and successfully explains the origin
of the observed plasmons. It also provides a good test for
the quality of the calculated ab initio SCF energy band
structure of this compound. The comparison of this cal-
culation with that performed for graphite, using an identi-
cal approach, points to the generality of the formalism

|
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and the transferability of the norm-conserving pseudopo-
tential for the same atom to different materials.
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APPENDIX

The oscillator strength for the dipole transitions, in
general, is expressed in terms of the matrix element of the
velocity operator. If the potential is local, this will reduce
to the matrix element of the momentum operator. We
will give both quantum-mechanical and semiclassical
prescriptions for obtaining the correction to the.momen-
tum matrix when the potential is nonlocal. In our calcu-

. lation, the nonlocal potential for a crystal is expressed by

, 8|r—7—T|—|r—7-T])
Vau(r,r')=
DT TZT |[r—7—T|?

X > 8VL(|t—7—T])
L

X > Yipu(r—7—T)Y p(r—7—T),
M

(A1)

where T is a lattice-translation symmetry vector, 7 is an
atomic-site vector, and 8V (r) is the radial part of the /th
component of the nonlocal potential.

1. Quantum-mechanical approach
The velocity operator ‘is given by

v=r=[r,H]/ifi=p/m+[r,V,]/i# . (A2)

In a plane-wave representation, the nonlocal correction
term becomes

<q2 I [r;ule] I q1>= —1677-2Y1,u(ﬂq2)12i1+lY1m(qu) f dr r3J1(q2r)J1(q1r)8V1(r)

—167(4m)=12 3 iEChL YA (Qg) [ dr rTL(qir) o(g2r)8Vi(r) (A3)

L,M,I,m

where

iy = [ V(@)Y (Q)Y1,(Q)dQ (Ad)

are the Clebsh-Gordan coefficients.

2. Semiclassical approach

In the coordinate space, the effect of the operator ¥ on
the state | ) is'®

(r| V)= [ Vie,ewr)ar .
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Using the Taylor’s expansion for ¥(r’), we have
(r|V|¢)= [ [ vi,e)e=0rar |gin)
=V(r,phd(r) . (AS)

Considering the short-range property of the norm-
conserving pseudopotential, the overlap between different
atomic nonlocal potentials can be ignored. Therefore, Eq.
(A1) becomes

Viee)= 3 onm S v (@)Y @) . (A6
r

Im

Up to the linear term in p, we have e/"P~1+rp and
Ji(pr)~(pr)!/T(1+1). Within this approximation, Egs.
(A5) and (A6) result in

Vir,p)="BX(sV,— 35V, . (A7)
r

We consider that the scalar nonlocal potential can be re-
placed by a local vector potential,

A="1E(5v— 26V . (A8)
r

Therefore the corresponding velocity correction becomes
Av=eA/m=i(r/r?)(8Vy—38V;) . (A9)

If the shapes of the crystal wave functions near the
atomic sites do not change greatly from those in the atom-
ic case, we can estimate the correction to a typical
momentum matrix element by using the scaled atomic
wave function for C 2s, C 2p, and Li 2s levels. The re-
sults indicate that the corrections are of the order of 3%
or less for graphite and 12% or less for LiCg.
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