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Magnetic-field-induced transition in quasi-two-dimensional systems
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A model is presented which gives a unique magnetic-field-induced transition from a twt)-

dimensional open-orbit metal to a semimetal. A magnetic field causes the open-orbit electron
motion to become progressively more one dimensional, with an effective density of states propor-
tional to H at low field. This leads to a Fermi-surface instability with a transition temperature
which varies approximately as T, =Toexp( —A/H). The resulting gap, which is both temperature
and magnetic field dependent, can explain some of the anomalous quantum oscillations and the Hall
steps observed in the tetramethyltetraselenafulvalenium compounds [(TMTSF)iX].

The organic conductor perchlorate [(TMTSF)2C104] is
a highly anisotropic metal. ' Its truly unique feature is the
anomalous magnetic-field dependence of its low-
temperature properties. At low fields the Fermi surface
consists of two warped planes and there are only open or-
bits in the a-b plane. Above a temperature-dependent
threshold field, Hk, quantum oscillations are observed in
several experiments suggesting the presence of closed or-
bits. Only the component of H perpendicular to the
a bplane -is important, indicating an orbital effect in the
a- b plane. Specific-heat measurements suggest a
second-order transition and magnetic resonance ' sug-
gests that the high-field state is a spin-density wave
(SDW). Recent Hall measurements ' show some simi-
larity to the quantum Hall effect. . However, the quantum
oscillations are only quasiperiodic in 1/H, and the posi-
tion and magnitude of the Hall steps are highly tempera-
ture dependent.

In this work a model is presented which suggests how a
magnetic field can cause the electron motion along a two-
dimensional open orbit to become progressively more one
dimensional and produce an effective density of states
which varies linearly with H. This leads to a transition
temperature for a Fermi-surface instability which has the
form T, =T&&e "r . The resulting state, presumably a
SDW, has a gap which is both temperature and magnetic
field dependent and this may explain many of the
anomalies observed experimentally.

The two-dimensional Fermi surface of (TMTSF)2C104
is shown schematically in Fig. 1. A variety of measure-
ments as well as band-structure calculations" suggest that
the ratio of transfer integrals or bandwidths is
—(1:10:100for t, :tb.t, . We take x in the a direction
and y in the b direction. For open orbits there is a natural
frequency to,'-(eH/m„c)k„b,' which replaces the usual
cyclotron frequency and corresponds to the frequency
with which an electron crosses the Brillouin zone in the b
direction in the presence of a magnetic field. When
~,' )4t, the system becomes effectively two dimensional.
We are effectively two dimensional throughout the in-

teresting magnetic-field regime. If we take the two-
dimensional dispersion relation as

E(k„,k») =(ih' k„/2m„) 2th cos(—k»b),

then quasiclassical quantization in a magnetic field corre-
sponds to solving the Schrodinger-type equation

(R /2m„)(B /t)x )X—2ti, cos(k„b eHbx/Pic)X—=EX,

where the Landau gauge is chosen. The variable y ap-
pears in the equation only as the k„term in the argument
of the cosine. A linear coordinate transformation
xi ——x —xo (where x&& k»Pic/eHb) e——liminates k» from
Eq. (1). The energy eigenvalues are independent of k» and
depend only on the conjugate variable to x, k'. ' Thus
we are left with a one-dimensional dispersion relation
E(k„')in the appropriate reciprocal space defined by Eq.
(1), with reciprocal-lattice vector 6„'=eHb/Pic. Note that
the dispersion relation is one dimensional for any finite
value of H (neglecting temperature, scattering, and t, )

This nonintuitive mathematical result can be understood
by realizing that the quasiclassical motion of the electron
on the Fermi surface takes it completely across the Bril-
louin zone from ir/b to ir/b—repetitively. The electron
"averages" over all values of k~ and hence its energy can-
not depend on kz.

The particular one-dimensional (1D) property of in-
terest is the Fermi-surface instability (Peierls or SDW)

Kx

FIG. 1. Schematic diagram of the open-orbit Fermi surface
relevant for these materials.
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caused by a large number of degenerate states coupled by
the same wave vector. We can define a joint density of
states NJ(E, q) as the density of states with energy E cou-
pled by wave vector q. In a truly 1D metal all states with
energy Ef are coupled by the wave vector q =2kf across
the Fermi surface. Thus NJ(Ef, 2kf ) =N(Ef ) =1/Ef and
there will be a metal-insulator transition at
T, = To exp[ —1/N(Ef ) V]. For the two-dimensional
dispersion relation E(k„,k~), NJ(Ef, q)=0 for all q [al-
though the most favorable q for nesting is (2kf, ir/2)].
This is consistent with the absence of any density-wave
transition for H =0.

For small tb or large co,
' Eq. (1) corresponds to a nearly

free electron model. For 4th/fico, «1 the eigenstates
near EF are the usual plane waves with energy fi k„/2m
and density of states 1/Eb. The system is literally 1D
and NJ —1/Eb. In this high-field limit q = (2kF, O).
Since NJ is 0 at H =0 and 1/EF at high field, the joint
density of states has the form NJ =(1/E„)F(fico,'/4tb)
where F(x) is a smooth function equal to 0 for x =0 and
saturating to 1 for large x. Of interest for the materials
under question is the low-field behavior.

For small co+ ——co,'(k„=kb.) the eigenstates of Eq. (1)
corresponding to kF are a superposition of plane waves
centered on kF, separated in k„by eHb/Pic, in energy by
Ace,

' and covering an energy range 4tb. There are
-4tb lirico,

' different plane-wave states comprising the
eigenstate kF. The density of states at kb. is —1/EF. The
fraction of these states which corresponds to the plane-
wave state kb is -Icos/4tb. A distortion at wave vector
q couples k~ with —kz. The density of states coupled by
q is (1/EF)(ficuF/4tb)~H Thus F.(x)=x for small x.
Equation (1) can be rewritten as Mathieu's equation and

- the sgme result can be obtained from the Fourier
transform of the Mathieu functions.

Thus a two-dimensional system with no transition at
H =0 is unstable in the presence of a perpendicular mag-
netic field. In the low-field limit the transition tempera-—1/N~ V 3 /0ture will have the form T, =Toe ' =Toe . This
is similar to the expression obtained in Ref. 13 from
Landau-level degeneracy in the case of three-dimensional
closed orbits and used in explaining the CDW transition
in graphite. ' In Fig. 2 the experimental data from Ref. 9
are shown to fit this form very well.
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FIG. 2. Temperature dependence of the threshold field, or
magnetic field dependence of the transition temperature plotted
as ln T vs 1/H from data of Ref. 9.

In real space the transition from two dimensions to
one-dimensional behavior is readily seen. An electron in a
magnetic field is forced to move on the open-orbit Fermi
surface shown in Fig. 1. Its velocity along x is approxi-
mately constant. The y velocity oscillates approximately
sinusoidally. As the magnetic field is increased the real-
space excursion along y is reduced until eventually the
electron is localized on a single conducting chain. This
occurs when fm,'=4th and the system becomes literally
one dimensional. The degree of one-dimensionality is
thus given by Ace, /4tb. Since tb —100 K, and irico,

'

-(3 K/T)H this ratio is always small. However, as long
as the electron motion is limited in one direction and ex-
tended in the other the system is one dimensional. This
occurs for any finite field, or more realistically, as soon as
%co,

' is greater than the scattering rate or the bandwidth in
the third direction

The above discussion demonstrates that an open-orbit
two-dimensional system with zero joint density of states
at H =0 attains a finite density of states upon application
of a magnetic field and hence is susceptible to a transition
related to a Fermi-surface instability. However, the
development of the ground state is by no means straight-
forward. In the absence of a magnetic field one would in-
troduce a potential u(r) =uocos(q r) where q-(2kb, q~)
and self-consistently determine u(r) to nunimize the free
energy. One can approach the problem in two separate
ways. The first is to introduce u(r) into Eq. (1) and solve
for the eigenstates, fill them up to the correct electron
density, and find the form of u (r) which gives the lowest
energy. However, this approach violates the quasiclassical
approximation used in deriving Eq. (1), namely, that the
potentials are slowly varying compared to the original
electron wave functions. An additional problem is that
the magnetic wave vector 6„' is in general incommensu-
rate with (and much smaller than) 2kb. the natural wave
vector for u (r). Nonetheless, this approach may be valid
for vo &&%co, i.e., just below the phase boundary for the
transition. In this region the induced gap 2vo is a small
perturbation on the magnetic energy. There will be oscil-
lations given by the periodicity nG~ =q„-2k+.This may
be the explanation of the oscillations seen only at high
temperatures in Ref. 9.

Unfortunately the above approach breaks down for
lower temperatures when vo becomes comparable to or
greater than fico,'. Estimating uo from the transition tem-
perature and studies of other SDW systems, the low-
temperature gap is larger than the magnetic energy.

The second approach is to introduce the potential u(r)
into the problem before the magnetic field, solve the band
structure, find the energy in the presence of the magnetic
field, and minimize it by self-consistently varying u(r).
In the absence of a magnetic field, the potential u (r) will
produce electron and hold pockets with closed orbits and
gaps -2vo. ' The system is a compensated semimetal.
When the magnetic field is applied one has conventional
Landau quantization of the closed orbits and low-
frequency oscillations which correspond to the small orbi-
tal area. If the material remains compensated in the pres-
ence of the magnetic field then carriers are lost whenever
electron and hole Landau levels cross, giving sharp
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changes in the Hall effect and magnetoresistance.
The problem with the second approach is that the gaps

are never much larger than the magnetic energy %co„so
that the possibility of magnetic breakdown is not small.
This is certainly true near the phase boundary. Thus the
first approach with rapid oscillations is most appropriate
at high temperatures and the second approach which gives
slow oscillations may be appropriate at low temperatures.

After the original manuscript of this paper had been
submitted for publication the author received a copy of
the paper by Gor'kov and Lebed. ' Using a different
two-dimensional dispersion relation than presented here,
and calculating a generalized susceptibility, they have
shown that a two-dimensional open-orbit metal is unstable
at any q against a SDW transition due to the increased
one-dimensional nature of the electron motion in the pres-
ence of a magnetic field. Thus the basic physical ideas are

very similar to those presented here. Additionally, they
obtain a series of transitions and suggest that the correct q
vector is (2k~, O).

In conclusion, a model has been presented in which the
magnetic field effectively increases the one dimensionality
of a two-dimensional open-orbit system and hence induces
a metal-semimetal transition. Although the ground state
and temperature evolution of the system below this transi-
tion are as yet unknown, there appears to be a crossover in
behavior between the regimes in which the gap is small or
large compared to the magnetic energy.
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