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Electron-phonon interaction and the ground state of metallic hydrogen
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Time-independent perturbation theory has been developed for a many-body system of electrons
and nuclei, where the unperturbed states are formed from the product of oscillator functions and
Slater determinants of plane waves. The theory is applied to metallic hydrogen. The expansion is

simplified by isolating certain subseries which correspond to the energy levels of known simpler sys-

tems, and the remaining terms are computed through second order. The perturbed energy levels are
given in terms of two parameters: the Wigner-Seitz parameter r, and the ratio m /M of the electron

to the nuclear mass. Anharmonicity relative to harmonic terms depends upon (m/r, M)' . An ex-

pansion for the energy difference between two states is obtained by subtracting the leading terms of
a pair of perturbation expansions. A condition is proposed which indicates when the normal state is

the ground state of the system. The normal state has a particularly simple parameter expansion. A
numerical series for this state has been computed, and it is found that the lattice dynamics has a
large influence on the binding energy. .

I. INTRODUCTION

The electron-phonon interaction in metals was studied
initially by Frohlich, ' Bardeen and Pines, and other au-
thors noted in these references. A summary of more re-
cent work based on Green's functions may be found else-
where. ' For the most part, studies have been concerned
with approximations for the complex behavior of a typical
metal. The only metal that, at present, offers the possibil-
ity of being treated precisely is metallic hydrogen, which
is the case considered here. To carry out this study a per-
turbation theory is developed for computing the station-
ary energy levels of a many-body system of electrons and
nuclei. For reasons discussed in Sec. III field-theoretic
methods are avoided in favor of a computation in many-
body configuration space. The object is not to develop ac-
curate approximate solutions for the energy, since these
already exist, but to look for a systematic expansion with
exact expressions for the leading terms. Assume that two
states of interest have such an expansion. Then the lead-
ing terms in the energy difference are also exact, and the
expansion should be useful for examining the slight ener-

gy difference between a normal and a superconducting
state. The calculation becomes practical because a large
part of the leading terms is the same for both states.

The perturbation theory is developed in the high-
density limit of metallic hydrogen, and the question arises
as to whether the result can be continued into the region
of principal interest near the equilibrium density. This
question is examined in Sec. VI, where the energy of a
normal state is computed for comparison with the results
of other methods. In Sec. II the electron-phonon interac-
tion is defined, and in Secs. III—VII the perturbation ap-
proach is described and carried out. The electron-phonon
energy is discussed in more detail in Sec. VIII. In Sec. IX
the conditions under which the normal state is the ground
state of the system are investigated, and the results are
summarized in Sec. X.

II. DEFINITION OF THE ELECTRON-PHONON
INTERACTION

In a complex metal it is not entirely obvious how a gen-
eral electron-phonon interaction should be defined, but for
metallic hydrogen the problem' is simpler. The electron-
nuclei interaction is

where —e is the electronic charge, r; gives the position of
the ith electron, and R~ gives the position of the jth nu-
cleus. The difference between this interaction and that for
a given lattice is called the general electron-phonon in-
teraction (more properly, the electron-lattice-displacement
interaction):

where ROJ is a fixed lattice point. The phonons to be con-
sidered here are bare phonons from oscillations in a uni-
form background charge, consistent with the use of free-
electron wave functions. Thus, dispersion curves of the
type that are normally measured do not apply, since the
measured curves apply for phonons which carry electronic
screening charge. In fact, the use of free electrons and
screened phonons as a basis for evaluating the energy
would lead to additional divergence problems.

III. OUTLINE OF THE MANY-BODY
PERTURBATION THEORY

A. Choice of perturbation theory

Although many-body theory in the form of Green's
functions is commonly used to discuss the ground state of
a system, such theory is most useful for excited-state ap-
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proximations and thermal properties. The ground-state
computation is a more exacting problem. The approach
used here is that of ordinary Rayleigh-Schrodinger pertur-
bation theory in n-dimensional configuration space. One
important difference between these approaches is the fol-
lowing the former attempts to give the ground state, it-
self, as determined by particle interactions, while the per-
turbation theory attempts only to follow the many-body
energy levels. Thus a discontinuous change in dynamical
ground-state symmetry with the strength of some pertur-
bation introduces no problems, for it simply corresponds
to the crossover of continuous energy levels whose sym-
metries are essentially unchanged. The energy levels fol-
lowed are the stationary states of the system, as opposed
to one-particle approximations that decay with time
which appear in Green's-function theory.

The limitations of the present approach follow (1) from
the fact that, in principle, the ground state is obtained
only after a comparisori of all relevant energy levels, and
(2) problems with degeneracy and convergence must be
dealt with.

B. Description of the approach

Expansions are made in terms of Slater determinants of
plane waves for the electrons and harmonic-oscillator
functions for the nuclei. Each many-body energy level
arises from a different unperturbed state. The level which
arises from the unperturbed function described by a Fermi
sphere of occupied vectors in wave-vector space will be re-
ferred to as the spherical normal state, or simply the nor-
mal state. In reality, this level is not quite the normal
ground state for a crystal lattice, since the unperturbed
ground-state wave function should be taken to have the
symmetry demanded of the perturbed function, and a Fer-
mi sphere applies only for an electron gas. However, in
metallic hydrogen where the Fermi surface does not touch
the first Brillouin-zone boundary, the difference between
the results obtained for a spherical Fermi surface and, for
example, results obtained for a slightly distorted Fermi
surface with cubic symmetry, is not expected to be of crit-
ical importance. The possibility remains for more
dramatic distortions to be of interest as a result of
electron-phonon interactions.

In principle, it might be expected that degenerate per-
turbation theory should be used for all states except that
described by the Fermi sphere, since all other unperturbed
states are degenerate. However, this will not be done, and
the following assumptions will be made: In large many-
body systems degeneracy can be ignored as long as the
nondegenerate theory does not lead to a spurious diver-
gence. It is also assumed that no special problems arise at
level crossings.

The mechanics of evaluating the perturbation series
may be summarized as follows. The complete series is
broken up into appropriate subseries. Some of the sub-
series, such as that involving only electron-electron in-
teractions, must be taken to all orders, whereas others re-
quire only low orders. The subseries are taken to
represent simpler systems which have already been com-
puted. The complete result for a given crystal lattice and

a given unperturbed state is an expansion in terms of two
parameters: the Wigner-Seitz parameter r, and the ratio
mlM of electronic to nuclear mass. However, these pa-
rameters are not the independent parameters. Since the
ratio of harmonic to anharmonic terms in the lattice vi-
bration is found to depend upon fractional powers of
m /r, M, it is useful to treat r, and m fr, M as the indepen-
dent parameters.

IV. ENERGY CALCULATION

-A. The Hamiltonian

Consider the Hamiltonian

H = T'+T"+ —,

J i (+j)

e 2sr „-rr f, Rf
2

RfJ
(3)

where T' and T" are the kinetic-energy operators for the
electrons and nuclei. Terms for a fixed lattice and uni-
form background charge can be added and subtracted in
(3); and since, to good approximation, electrons in a metal
move through a periodic potential, it is convenient to in-
troduce this potential explicitly. Let V~ denote the
periodic potential energy due to a fixed lattice of charges
neutralized by a uniform negative background:

2'

where N is the number of electrons, or nuclei, and V is
the volume of the system. The Hamiltonian for X nonin-
teracting electrons moving in the periodic potential is

eN~J 1

J J

I

f

r —Ro,

where terms for a fixed lattice have been subtracted. lf (5)
and (6) are substituted into (3), one obtains

~p+~l+He-e+IIe-ph+~back+ p

where

j i (~j) ij

is the electron-electron interaction, and

~»ck eN+y dr eN+ I dr
V,. fr; —rf V . fr —RJ f

e N I dr dr'
2 V' fr —r'f

Let H' denote the Hamiltonian of a lattice of N nuclei
vibrating in the uniform background charge:

2
H'= T"+

j i (&j) ij
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includes terms left over due to the introduction of the
background charge. Vp is a constant representing the
electrostatic energy of a fixed lattice in a uniform back-
ground given by

2
e

V =
2 V

drdr'
/r —r'/

eX+ I dr
lr —Rp, I

+z&& ~ (10)
j i (&j) oij

Consider finally the harmonic approximation H" for
the lattice Hamiltonian H, and let

H =Ho+H'+ Vo,

proach zero, but approaches a plasma frequency for long
wavelengths.

The many-body energy levels, labeled by the unper-
turbed states, are given by

H' H'
~

E = Vp+E +H'
v~v v

(19)

carr'ied to all orders. This series may be manipulated by
recognizing various subseries which are known. If all
terms in H' are set equal to zero except V~, one obtains,
apart from the constant, the series

P P
Vkk' Vk'k

Ev 4+Ek+ Vkk+ g +
k~k ~k

where Ho is the unperturbed Hamiltonian,

H, =T'+Hh', (12)

since V~ depends only on electronic terms, and the oscilla-
tor functions integrate to unity. However, this expansion
gives an energy level for the Hamiltonian

II =H, + Vs=a~+ah', (21)
He-e+He-Ph+ VP+HI Hhl+Hback

is the perturbation.

B. Perturbation series

(13) -and E„' —s„ is an eigenvalue Ek for the Hamiltonian H~.
Ek can be computed either from the many-body perturba-
tion series (20), or from one-electron energy-band theory.

In a similar way, by setting all terms in H' equal to
zero except H —H", one obtains the rapidly converging
series

0 =@k4.

~v= ~k+ &K

obtained from the equations

(14)

(15)

The unperturbed wave functions 1t„and eigenvalues s„,
where v denotes the double subscript k~, are given by

+ 0 ~ ~

E."= sk+E„+(H' a"').„—
(Hl Hhi) (H l ahl)

(22)
K +K ~K &K'

and E"—c.k is just an eigenvalue E„for the Hamiltonian
H defined by (6). Finally, the series

T gk Shak ~ (16)

(17)

Hkk'Hk'k
Ek= +

~k —&k'
(23)

pk is a determinant of X one-electron plane waves of the
orm

1 ik rAJ=
V

(18)

where g~ is the spin function and k denotes a set of wave
vectors kl, . . . , kh with a spin index implied. ltd, is a
product of oscillator functions, where h denotes a set of
phonon wave vectors with a polarization index included,
giving 3X oscillator functions. The principal difference
between the bare phonons described by these functions
and screened phonons is in the mode which is nearly long-
itudinal, where the frequency of the former does not ap-

I

represents the correlation energy of an interacting electron
gas, which, for a normal-state wave function, has already
been computed to an appreciable number of terms. ' The
series (23) has no meaning except as a summation to all
orders, since the second-order term is ill behaved, but
problems of this nature are restricted to the electron-
electron interaction. The remaining terms in (19) are well
behaved in second order. Since the physical nature of the
problem ensures that an energy function exists, it follows
that if divergence occurs in higher orders, in principle,
one can form additional subseries to give finite results.
When the series given by (20), (22), and (23) are isolated in
(19), one obtains

E =Vp+Ek+Ek+E„+H'"'+ g [H'"".H'„"', a''a", ,+a',"'(—v +a' a"'),„—
v'Av Fv Ev'

+(v&+H' a"') H'."',]+— (24)

where, for convenience, a new interaction term,

H» =He e+He P"+H" (25)

has been defined. H'"' is the interaction for the subsys-
tems H~ and H', since it is equal to H —H —H —Vo.

In the expression given by (24), terms of the type
V~ (H' H) „do not appear —because if h'&h. the elec-
tronic term in the product will vanish, and if k &k the
phonon term will vanish. The expansion (24) has the
form of an expansion where Ek+Ek+E' is the zeroth-
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order term, but where all succeeding terms are evaluated
with the simple wave functions for Hp.

C. Matrix elements and energy expressions

For a sum of one-electron potential terms H(i) in the
Hamiltonian, the diagonal elements for k space are

(a' a—"') .=(a' H—"')„„s« . (31)

Owing to cancellations from the background terms, one
obtains from the above expressions

2
Hint ex ~ Ny /'

QH(i) =—f H(1)dr&, (26) & N(N i
) f drdr'

V fr —r'I (32)

and, for the two-particle interaction,

e N(N —1)
(27)

and as the volume V~ oo this expression becomes just

(33)

where

2 i{k —k;).r)2
Ek"= ', X g &0;Ik, & f '

2V J i(~J.) ~i2
dr& dr& (28)

and

H ~ =Hkk 5 „+H P +H
v' =vg„a„„,

(29)

(30)

is the exchange energy. The matrix elements needed in
(24) are

The off-diagonal terms are as follows: if only phonons
and no electrons are excited, the matrix elements of V~
and H' ' obviously vanish, and a calculation shows the
same to be true for H'"'. For a double excitation of elec-
trons, only the terms H'„'H" are involved in second or-
der, and these terms cancel in (24). Since for excitations
higher than two all matrix elements vanish, only inter-
mediate states with singly excited electrons are of interest.
For a single excitation where the one-electron state Pk in

1

the set k is replaced by Pk, to form the set k', the matrix
elements are

and

QH(i)
kk'

=&/(
I g( &

—f e ' ' 'H(1)dr) (34)

2 i(kI —kI) r2
a„'„-'.= ', (N —1)&g, fg, & f 2 i (ki.—k, ).r& i (k,.—kI ) r2

, &g g & X &g Ig & fV2
i (~l) ~&2

dr& dr2 . (35)

The corresponding matrix element for H " is given by —N/(N —1) times the first integral on the right-hand side of
Eq. (35), but both integrals in (35) are nonvanishing only because the system is bounded. Thus, if surface effects are ig-
nored, Hkk' and Hkk' vanish, and

int e-ph
Hkk ——Hkk (36)

for a single excitation.
It follows from these results that

ex c l I ak', k. I

'
Hka', k'x'Vk'k +C.c.E = Vo+Ek Vkk+Ek"+Ek—+E +X X + XEk'+ ~~

+ ~ ~ ~ (37)

single ex. single ex.

where the ellipsis corresponds to third- and higher-order terms. It may be anticipated that the two terms in second order
are related to screening of nuclei by the electrons. The matrix elements are given by

2

r) —R~.

1
dl )Iri —Roj f

(38)

and

P
Vkk = (39)
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To evaluate the electron-phonon interaction let the terms
in large parentheses in (38) be written as a Fourier in-
tegral:

E'."=2KXX,
H e-ph yP

k]c,k'~ k'k

~k —~k'

1

Iri —R, I
Ir) —R(), I

ik r)dk e —ik Rp ik—u
~

~
~ ~

k

1

2m.2
(40)

zye ph~~ k~, k']c'

where uj=RJ —Roj. In substituting this expression into
(38), one encounters the integral

I e 'dr, ~(2ir) 5(q) (41)

as I'~~, where q=&1 —ki+k. Thus, with surface ef-
fects again ignored, it follows that, for a single excitation
where k~ goes to kI,

(44)

Ek' Ek aB(kl' kl )
2 2 2

2/3 2 2
9m

4 r,' kF
(45)

where the dependence of the matrix elements on l and I'
is obtained from (42) and (43), and the sum over spin has
been performed. The sums over I and l' are, respectively,
over occupied and unoccupied wave vectors with plus
spin. The first term in (44) will be called the electron-
phonon term, and the second the mixed term.

For a single electronic excitation, ck —ck is equal to
fi (ki ki )—/2m, which in rydberg units (1 Ry= e /2aB,
with aB the Bohr radius) is

i(ki —ki) Rp i(ki —ki) u&.

J

In a similar way, one obtains

&p 4rre & ki I
k') i(ki —ki) Rp

kk'
I
k) —ki I'

(42) where kp ——(9m./4)'~ (r,aB) ' is the radius of the Fermi
sphere, and 4ir(r, aB) /3= V/¹ If ic represents the state
of zero-point motion and a' represents a state where the
oscillator with wave vector a and polarization labeled by s
is excited to the first quantum level,

(43) E„—E„=fico(as) = 2v3 m
1/2

co(a.s)
co(01)

(46)

where K is a reciprocal-lattice vector.

V. EVALUATION OF THE SECOND-ORDER ENERGY
FOR SMALL VALUES OF m/r, M

A. The electron-phonon term

For equal numbers of plus and minus spins, the
second-order terms in (37) are

with the last expression given in rydbergs. co is the pho-
non frequency, and co(01) is the «=0 longitudinal fre-
quency (plasma frequency). The fact that co(01) reduces
to a plasma frequency rather than zero is crucial for the
convergence of the second-order energy expression. The
matrix elements for parallel spins given by (42) can be ex-
panded in the series

24me 1 t ( kI —kI ).Ro 2H Xe 'Ii«i —Ii) (u) ——f«1 —li) u] + .
IJ «2 j « 9

J
(47)

where each power of k u~ introduces a factor (r,M) '~ and the nonvanishing matrix elements (uJ)„relative to the
zero-point motion are those for a single phonon. To lowest order in the parameter m/r, M, the electron-phonon term in

(44) is determined by the first term in the expansion (47), and the mixed term in (44) is determined by the second term in

(47) with ic =ic. Higher powers in u1 in this expansion may be viewed in the same sense as anharmonicities. The leading

contribution to the electron-phonon term in rydbergs (with fico also measured in rydbergs) is

2

E(2)e-ph 8mag

M V

2
k; —ki

I
&1 —&1

I

XX X
1 1 I

[aB(kl' kl )+f «»)2 2 2 2 2

occ. unocc.

(48)

where v is the polarization vector,

sc=kl —kr —K

and K is the reciprocal-lattice vector which for each value of kI —kI puts sc in the first Brillouin zone. If the sums are
changed to integrals, (48) becomes, with the aid of (45) and (46),
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(2)e ph X 9'
v ~3 4 4

' 2/3 1/2
r Ul

r, M

Xy f dpn(p) f
I

dp'[1 n—(p')], v(as)
I

p' —p

2/3
co(les) 4
co(01)

lp' —pl s' —~ +2~3
9~

1/2
co(KS)

co(01)

(50)

where p=k/kF, and a. is now given by

ic=kz(p' —p) —K . (51)

n (p) is the average occupation number for plus (or minus) spin near a point in p space. For the normal state described
by a Fermi sphere, the integration is restricted to p & 1 and p' & 1.

B. The mixed term

To lowest order in m /r, M, with A'co and the right-hand result again in rydbergs,
2

K 'v(as) 5k, , —i, , tc
Hk„,k„Vkk 128m a&N m

2 2
2aiiX m dkn(k)

'v(K, s)
ir4 M, z IC2 f fico(a, s)

l

K
l

(52)

where the integral over a covers the first Brillouin zone, and it has been assumed that the occupied region is such that
ki+K is an unoccupied state. The appearance of the reciprocal-lattice vectors K may be traced to the fact that the
periodic potential V~ changes the electronic charge density from a uniform distribution into a distribution with lattice
symmetry. The latter may be written as gza (K)e' ', where, except for a numerical coefficient, a (K) is given by the
factor"

kF p dkn(k)
K K +2K.k

2 I

~ kF kF1+ 1—2~' K
X

2kF

2 K/2kF+ 1
ln

K/2kF —1
(53)

for the case of the normal state. Substitution of (53) into (52) leads to

H e-Ph VP
ka, k'a k'k

I I' ~k ~k'

v3 1/3 - - 1/2
4 m

9- .M
k

s %&0

K
2kF

'2 2E +2kF co(01) K
ln v(as)X —2k~ ru(~s)

~

K
~

l

(54)

where the angular brackets indicate an average over K. If the average -is approximated by separate averages for the two
factors, one obtains the value 2.6%(m/r, M)' for the right-hand side of (54) in the case of the normal state.

VI. ENERGY OF THE NORMAL STATE
FOR A bcc LATTICE

A. Expansion for zeroth- and first-order terms

For notational purposes let the series (37) be written as
a perturbation expansion

E(0) +.E(1)+E(2) +E(3)+. . .

E~ '+E~ ' = V0+Ek —Vkk+Ek" +EI', +E, . (56)

As calculated by the perturbation expansion (20) for the

where the superscript denotes the order, and the first two
terms are defined as
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Ek =X[0.0622 lnr, —0.096+0.018r, inr,

—0.036r, +0 (r, ,r, lnr, )] (58)

(the coefficient of the term in r, is only a rough approxi-
mation), and the free-electron exchange energy is

spherical normal state of a bcc lattice, Ek is given in ryd-
berg units by

Ek —Vkk
——%[2.21/r, —0.0905—0.018r, +O(r, )] (57)

in a numerical approximation. The electron-gas correla-
tion energy E' has the expansion'

0.916'
k

2.65 m
K 3/2r,

1/2
0.73 m

2
rs

I

'

m —5/2
rs (60)

Combining these results, one obtains

Finally, for a body-centered-cubic lattice, Vo is equal to
—1.792%/r„and'

E'„'+E'"=X.
z

— ' —0.187+0.0622 lnr, —0.054r, +0.018r, 1nr, +0 (r, , r, inr, )
rs rs

2.65+
' 1/2

m 0.73+
r,M r,

m 1 m+O-
r, M r, r, M

3/2

(61)

The expansion is observed to be a double series with the first involving ascending powers of r„along with ascending
powers of r, multiplied by lnr„ this series represents the 'energy for a fixed lattice. The second series gives the harmonic
and anharmonic energies of the lattice vibrations, and:is in the form of an ascending series in ( m /r, M)'~ multiplied by
r, '. lt must be assumed that m/M is always a smaller parameter than r, .

The value of E' ', estimated in the Appendix, added to the result of Eq. (61), is plotted in Fig. 1. The good agreement
with other calculations, of which %'igner s calculation is shown, for the case of the fixed lattice terms, indicates that the
perturbation expansion is still quite good in the neighborhood of the equilibrium density.

VII. THIRD- AND HIGHER-ORDER PERTURBATIONS

The third-order terms in (19) are given by

H'pHqkHj H' H~

„~, (e„—e~)

and therefore the third-order terms in (24) are

(62)

E = g g [H'~HqkHj VPqV~qkVk —(H H" )~q(—H H—"
)~k(H H—"

)k Hq—HqkHk —]V
( )( )

Vjg jtl V VP P V YP P V VP P V

[H~„'„H„' VP VPp V~q„(H—H" ) (H—' H—" ) p(H H—" )p„H' 'H—',„'H~„']-,
p~~ (F~—Ep)

(63)

where terms in the first series with p=A, may be combined with the second series. The terms may be separated into
those which apply for a fixed lattice and those which result from the nuclear displacement. The first group of terms has
been evaluated previously for the case of a bcc lattice in the normal state, giving the small result

(3)
Efixed laftice 0 0 s+ ~ (64)

in rydbergs. Most of the terms for the nuclear displacements involve combinations of matrix elements of H' H"', Vp, —
and H' "", and these terms tend to introduce higher powers of m/r, M. An example of a term which is not of this type
is the term

(He-e He-e)k'k' kk Heph He ph
kK, k'K' k'K', kK

k ~k « ~» (Sk —ek +S« —S«')

Evaluation of this expression is obtained by simply introducing the factor

Ek" —EI'"

~k' —k +~K' —~K

ll
Ck P

1 4
9m

1 1

I

p"—p I

'
I

p"—p'
I

'
2/3 1/2

4 rsm2 p2+ 2~3
9m M

CO(KS)

co(01)

(65)
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1/22/3
leads to divergent integrals, but since the energy must be
finite, it may be assumed that divergence from individual
terms is removed when the series is summed to all orders.
It is postulated that the principal effect of such summa-
tion is simply to introduce lnr, terms into the basic r,
dependence. Without further investigation it will be as-
sumed that +„3E„'"'corresponds to higher orders in r,
and m/r, M than E' ', in the sense that the ratio of the
two can be made arbitrarily small by a choice of small
values for r, and m/M.

r, m

r, M
E(2)e-ph

v 3~'

Xg f dpn(p) f dp'[1 n—(p')]F(p, p', s),

(66)

where for small m /r, M, F(p, p', s) is defined by Eq. (50).
F(p, p', s) depends on the parameter (r, m/M)'~
=r, (m/r, M)' in its denominator. If pq denotes the
maximum value of p for which n (p) is nonvanishing, and
p I is the minimum value for which 1 —n (p) is nonvanish-
111g,

VIII. EI.ECTRON-PHONON ENERGY
FOR AN ARBITRARY STATE

Consider the second-order electron-phonon energy writ-
ten in the form

into the integrand in Eq. (50). Thus, the result is of order r,E ' ~", and if all terms in third order were well behaved one
could conclude immediately that E' ' is the order of r, times E' ', after the neglect of various small terms in m/r, M
Unfortunately, at least one term in third order, arising from the expression

XXX ka, k'a' k'a', k"x' k' x', k~

( Ek —ek'+ Etc ea.')( Ek ek" +Ea a')
k'~k"

f

I

f dpn(p) fdp'[1 —n(p')]F(p, p', s)= f dp f dp' f dQ& f dQ& p p' n(p)[1 n(p')]F(p, p—',s),
where dQ& is the angular part of the differential. Then,

f dp f dp'= f dp f dp'+ f dp f dp'+ f dp f dp' .

(67)

(68)

The first two terms on the right-hand side involve dif-
ferent domains for p and p', where p' ~p, while in the
third term the domains overlap. For the normal state
p1 ——p2 ——1 and this term vanishes. Consider the special
case where p2 and p1 differ from unity by a very small
amount, such that, for the longitudinal-type mode, p2 —p1
is small compared with 2v 3(4/9') ~ (r, m/M)'~ co(as)/
~(01). In this case p' —p can be neglected in the
denominator for F(p, p', s), and one obtains a small
Coulomb-like term proportional to I /r, in expression
(66). It may be concluded that the largest part of E' ' is
proportional to (m r/, M)'~, but for states very close to
the normal state, one finds, in addition, an approximate
1/r, dependence (independent of mass in the limit). The
latter is very small but it can be quite important in the en-

ergy difference between two states.

IX. ENERGY DIFFERENCE

In the notation of (55) the energy difference between
two low-lying levels p and v as given by Eq. (37) is

I

while E„'" E'" is a sin—gle term. From (20) it follows that

E~& E~ = " +—0 (const),P v 2 (70)

where co& and co, are coefficients. In addition,

Ep' —E"= & 1P
—&1v

(71)

and

E„' E'„=O(const, lnr, )—. (72)

nfl 2v
P V r

m

r,M

1/2

+0 —,(73)
I m

r, r,M

and, finally, for small r, and m/r, M, as postulated in
Sec. VII,

Since the unperturbed wave functians differ only in k
values near the Fermi surface, a computation of the
difference in coefficients in (70) and (71) to any accuracy
is a simple problem. The contribution E& —E is given
by the perturbation series

+E„E,+ g (—E„'"' E'"'), —

since Vo and Vkk are the same for all states. v will be
taken to be the normal state. Each of the expressions
E~& E~ and Ez E', represent—s the differen—ce between
perturbation series that depend only an the parameter r„

Pf =2

~{2)e-ph ~(2)e-phT

r,M

1/2

(74)
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where, for two states with no phonons, c&—c, =Ek —Ek
since the zero-point energy is the same. Denoting the en-
ergy difference with the normal state by b„keeping only
the first two terms in the fixed lattice series and the first
relevant term for the lattice dynamics, one obtains (for
small r, and m/r, M)

b E= b Ek+ b,E'"+(AE' ' )'") ~„M(() . (77)

simply the difference in the unperturbed energies c., (75)
can be rewritten as
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FIG. 1. Binding energy of bcc metallic hydrogen obtained by
adding 1 Ry to the expansion given by Eq. (78). Solid line, the
fixed lattice terms. Dashed line, the total energy with the con-
stant C taken to be 6. Dotted line, original calculation of E.
Wigner and H. B. Huntington [J. Chem. Phys. 3, 764 {1935)jfor
a fixed lattice. The difference between the solid curve and the
dashed curve is due mainly to the electron-phonon interaction.
The difference is estimated to be accurate only to about 50%.

C2p C2v+
1/2

+ (E(2) E(2) ) +

(75)

where the ellipsis indicates smaller terms for the second
series. Since terms given by the coefficients co and c2 are

where E' ' " is evaluated in the approximation (50).
From the discussion of the preceding section, E' '~"
leads to a term proportional to ( m/r, M)'~, but for states
ver~ close to the normal state a term with approximate
r, dependence also appears. Thus, in general, the
second-order electron-phonon energy should be taken to-
gether with the exchange energy to fully ensure that all
r, ' dependence is accounted for.

For the complete expansion of Ez —E one again ob-
tains two series: one for the fixed lattice and the other for
the lattice dynamics, and

&Op, &Ov & tp
—& ivE„E„= z +— +0 (const lnr )

r, rs

Thus for high density and heavy mass, the right-hand side
of (77) must be positive for all other states if the normal
state is the ground state of the system. It will be shown in
a later calculation that this is not the case.

X. SUMMARY

Time-independent perturbation theory has been used to
develop the energy for a system of electrons and nuclei
whereby the energy levels for a specified lattice are given
in terms of two parameters: the parameter r, and the ra-
tio m/M of the electron to nuclear mass, with the in-
dependent parameters taken to be r, and m/r, M. The ex-
pansion is made with a basis formed from oscillator func-
tions and Slater determinants of plane waves, and the re-
sult is simplified by isolating, within a Rayleigh-
Schrodinger —type expansion, three subseries which corre-
spond to the energy levels of known simpler systems. The
three subseries give (a) the energy of a lattice of nuclei vi-
brating in a uniform background charge, (b) the energy of
noninteracting electrons moving in a periodic potential,
and (c) the correlation energy of an electron gas. The iso-
lation of (a) and (b) is purely a matter of convenience,
while that for (c) is necessary, since the series for the
electron-gas correlation energy has meaning only when
summed to all orders. The remaining part of the pertur-
bation series is evaluated through second order, where
contributions arise from the electron-phonon interaction
and the periodic potential. From the physical nature of
the problem it is assumed that the summation of the
remaining terms from third order to infinity is finite, and
it is assumed with partial proof that this sum corresponds
to terms of higher order than are found in the leading
terms in second order. No use is made of the adiabatic
approximation' nor of self-consistent fields or dielectric
constants. The importance of using bare phonons rather
than screened phonons in the perturbation expansion is
pointed out.

An expansion has been made for the normal state
which gives quite reasonable results near the equilibrium
density, as shown. in Fig. 1. For a body-centered-cubic
lattice the energy of this state (in rydbergs per electron) is
given by
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2.21
r

2.708 —0.187+0.0622 lnr, —0.053r, vibrations. A condition under which the normal state is
the ground state of the system is proposed in Eq. (77).

+0.018r, lnr, +0(r, , r, lnr, )+ 2.65

rs

1/2 APPENDIX: ESTIMATE OF THE MAGNITUDE
OF THE ELECTRON-PHONON TERM

FOR THE NORMAL STATE

—C
r,M

1/2

+ ~ ~ ~ (78)

with C-6. The group of terms depending only on r, is
the energy for a fixed lattice, and the terms in
(m/r, M)'~ come from the nuclear vibrations. The latter
terms result from the ordinary zero-point motion (the
r, term), and from two second-order perturbations in-
volving the electron-phonon interaction (the r, ' term).
At the equilibrium value r, =1.6, the second term in the
lattice-dynamics series is larger than the first, but the
same is true of the fixed lattice series. The terms denoted
by an ellipsis are expected to be smaller. Although the
value of C is not very accurate, it is clear from Fig. 1 that
the electron-phonon interaction has a significant effect on
the binding energy.

The perturbation expansions for a pair of levels may be
subtracted to give an expansion for the difference between
two low-lying states. However, the form given by Eq. (78)
is unique to the spherical normal state, and for states ly-
ing very close to the normal state a term independent of
m/M can also appear in the second group of terms. Thus
it is not proper to include higher orders for the fixed lat-
tice without considering similar terms due to the nuclear

For values p' and p where p' —p falls in the first Bril-
louin zone, K must be set equal to zero, and
p' p—=a/k.F T.he factor

2

P —P
I

p' —1 I

is then nearly unity for the approximately longitudinal
mode, and quite small for the modes which are approxi-
mately transverse (in the case of small p' —p the modes
approach longitudinal and transverse polarization, and the
cosine of the angle made with v vanishes more rapidly
than co for the transverse case); therefore it follows that
only the mode which is nearly longitudinal need be con-
sidered in this region. For values of p' and p where
K&0, p' —p is no longer in the direction of a, and for
simplicity let the square of the cosine of the angle between
p' —p and v be approximated by one-half.

Although it is not implied that the energy denominator
in (50) can be expanded in a power series in the small pa-
rameter ( r, m /M) '~, nevertheless an approximate value
of the integral may be obtained by setting (r,m/M)'~
equal to zero in the denominator, assuming that this leads
to a finite result. Therefore, as a rough approximation,
(SO) becomes

E(2)e-Ih
v ~ 4

9~
4

2/3 1/2
m , co(01) 1

r,M, , i co(al)
I

p' —p I

~(p'~ —p~)
dp dp'

K=, O

p(, q), ~( s) Ip' pl (p' p )
K@0

(Al)

Since, in the K=0 region, co(01)/co(a 1) approaches unity
as p' —p approaches zero, and since, in the K~O region,
1/co(as) is integrable about a =0, the integrals in (Al) are
indeed finite. In order to estimate these terms, let
co(01)/co(as) be replaced by its average value, and, finally,
let the volume of p space where K=O be neglected. The
factor inside the large parentheses in (Al) becomes, in this
approximation,(01, 1

I p —pl (p

E~ ~' "h= —9N
r,M

1/2
0.2X

1/2
S

(A2)

with the last expression evaluated for the proton mass.
The principal contribution arises from the transverse
modes (about 80% in this estimate). A more accurate re-
sult can obviously be obtained from numerical integration.
The sum of (A2) with the value estimated for the mixed
term in the text gives

1/2

where the sixfold integration can be shown to give the
value n. . One obtains from this rough estimate

E' '= —6.4X
r,M

(A3)
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