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Analytic expressions for the dispersion of longitudinal and transverse phonons are obtained for
one-component metallic glasses and amorphous materials on the basis of a simple model. The
model assumes a central force, effective between the nearest neighbors, and a volume-dependent
force due to conduction electrons. The expressions reproduce chief characteristic features of the
dispersion curves both for the longitudinal and transverse phonons (e.g., oscillatory behavior in one
and lack thereof in the other, etc.) obtained by neutron scattering and computer-simulation tech-
niques. The model, within its framework, also illustrates that the results may depend on the starting
structure from which the glass is made. The special cases of a liquid and forces that are entirely

central are also discussed.

I. INTRODUCTION

In recent years there has been considerable interest in
the phonon dispersion (frequency « versus wave number
q) curves for metallic glasses. Experimentally, dispersion
curves for longitudinal phonons have been determined for
several glasses by measuring the dynamical structure fac-
tor S(g,w) using neutron scattering.!=> Theoretically
computer-simulation (experiments) and recursion tech-
niques have provided dispersion curves for both longitudi-
nal and transverse phonons in a variety of cases.®~!® For
further references and excellent reviews we refer the
reader to papers by Hafner,!! Suck and Rudin,'> and
Nagel et al.'®

The dispersion curves show certain broad features. For
example, the dispersion of longitudinal phonons exhibit
oscillatory behavior, the position of the first minimum
roughly coinciding with the first peak in the static struc-
ture factor. In contrast, the w-q curve for transverse pho-
nons reaches its maximum at a higher g than the
longitudinal-phonon curve and any oscillatory behavior
beyond that is quite insignificant. The main purpose of
this paper is to report a simple analytic model which
reproduces these results. Additionally, it is of interest
since—without claiming to be fully quantitative because
of its very simplicity—it provides clues to questions such
as what is the difference between dispersion in a metallic
and nonmetallic glass (all forces central) or how results
might depend on the starting structure from which the
glass is made.

Section II of the paper describes the model and derives
the dispersion relations. The ¢—0 limit of these is dis-
cussed in Sec. III. Section IV calculates the dispersion
curves for a number of cases—substances interacting with
Lennard-Jones potential, a central-force model of iron, a
hypothetical one-component metallic glass,!* and
Ca;oMgjo glass. The comparison with experimental and
computer-simulation results, as appropriate, is also given
here. A brief comment on the change in the shear
modulus on crystallization expected from the model is
made in Sec. V, and Sec. VI discusses the dispersion in a
liquid.
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II. THE MODEL OF A METAL
AND BASIC EQUATIONS

A. Formulas for cubic metals

The starting point of our work is a phenomenological
model, suggested by one of us'® nearly 30 years ago, for
calculating the frequency spectrum of a simple metal with
cubic symmetry taking into account the effect of conduc-
tion electrons. The model assumes, firstly, that the ions
interact with a central pairwise potential W (r) which is
effective between the nearest neighbors only. Secondly, it
assumes that the force on an ion due to volume-dependent
energies in the metal (kinetic and exchange energies of the
conduction electrons, the ground-state energy of the elec-
tron, etc.) could be calculated using the Thomas-Fermi
method (see below). Under these assumptions the equa-
tions determining w-q relations may be written as'>!6
(note the small difference in notation)

po?l=—2 3 {(sin*+q-r?)
a n
X [(8/a*) (0 Dri +B11}
(4mn;n,ze*)q(q-1)
(g*+K3p)

) (1

where p (=n;M, M denotes mass of the ion) is the mass
density of the metal, 1 is the unit vector along the dis-
placement of the wave, r,’ is the vector joining the atom
at origin to one of its nearest neighbors, the sum (#) is
over all the nearest neighbors, a (=|r\”|) is the
nearest-neighbor distance, and B and § are related to the
first and second derivatives of W (r) at r =a as

popa [Law | o pa’|d [1aw
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Finally n, is the electron density, z the valence, e the elec-
tron charge, and Kyr the reciprocal of Thomas-Fermi
screening length:

K3z =(4me?/#)(3n, /m)1/* . (3)

We note that B [ «<(dW /dr),_,] is in general not zero
since the metal is not in equilibrium under the forces aris-
ing from W(r) alone. We may mention also that if we set
B=56=0, Eq. (1) gives for the velocity of sound V =w/q,
in the limit of ¢—0, the expression

V=(+mvpz/M)\?, 4)

which is the celebrated Bohm-Staver formula'” for the
velocity of sound in a liquid metal. [In Eq. (4) vr is the
Fermi velocity.]

The above model predates pseudopotential methods and
more sophisticated expressions for electron screening. To
make the electronic term in the model more realistic
without losing its essential simplicity, we make the fol-
lowing modification in the light of some of these develop-
ments.

First, as is well known, the Thomas-Fermi expression
for the screening length (Kig) or the corresponding
dielectric function erp(q) (=1+K%p/q?) is a valid ap-
proximation for ¢—0 limit only. A more appropriate
€(q) to use is that calculated by the self-consistent-field
method or random-phase approximation (Lindhard'® and
Langer and Vosko!®). The effect of using this e(g) is sim-
ply to replace K%g in Eq. (1) by K%rg(q), where

n q +2kF
q —2kp

k 2
14—
q

1—-4

— 1—f(q)],
e [1—-F(g)]

oy L
glg)= >

(5)
where the factor [1—f(g)] has been added to incorporate
correlation effects. We take f(g) to be of the form?°

F@Q=%¢*/(g*+ ki +L+K3p) . (6)

In (5) and (6) kp=(37"n,)!”? is the Fermi wave number.
Note that as ¢ —0, g(q)—1.

Secondly, since the electronic term is derived using free
electrons in a jellium background, it does not take into ac-
count the cancellation effects which occur between kinetic
and potential energies inside the core of the ions making
the effective potential weak in the core. Several au-
thors?! =2* have considered this cancellation in different
contexts, and the effect of it is to multiply the electronic
term in Eq. (1) by a “shape factor” which we take to be®’

3[sin(gr;) —(grg)cos(grs)] 2

[G(gry)P= , ™

(gr)®

rs (=[3/(4mn;)]'"?) being the radius of the Wigner-Seitz
sphere. We note that G(gr;)—1 for g—0 and dwindles
to zero for large gq.

Thirdly, to compensate for the fact that electrons are
not entirely “free,” we take in Eq. (1) the prefactor, name-
ly 4mrn n;ze?, or k, defined as

ke =4mn,n;ze’ /K5 | (8)
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as a parameter.’> The full Eq. (1) then contains three pa-
rameters, 3, §, and k., which may be determined using the
observed elastic data as discussed below.

Finally we mention that the electronic term in Eq. (1) is
not periodic with the period of the reciprocal lattice.
Modifications of it in this light can be made by adding
appropriately the umklapp terms.?>2® However, this
makes the calculations quite complex and, moreover, be-
cause of the G (gry) factor and because we will be making
a transition of Eq. (1) to amorphous materials (where
there is no periodicity), we believe that its incorporation
does not modify results appreciably for our problem.

Returning to the parameters 3, 8, and «,, they can be
related to the elastic constants of the material by compar-
ing the ¢—0 limit of Eq. (1) with the Christoffel’s equa-
tions of the elasticity theory. The relations depend on the
crystal structure. For a body-centered-cubic lattice, for
which ri¥ are a (+1/v3, +1/V/3, +1/V/3), one has!®

C“:%B-{—%S-'-Ke N ‘V=8
crn=—3B++8+k,, v=8 9)
cau=<B++8, v=8

where for later convenience we have given also the value
of v, the number of nearest neighbors of an atom in the
lattice. For face-centered-cubic structure one has!’

C11=4B+26+Ke N v=12
C12:—4ﬁ+8+’(e1 v=12 (10)
cas=4B+8, v=12 .

B. Transition to amorphous material

We now assume that in an amorphous material, the
nearest-neighbor atoms around each atom may be regard-
ed as continuously distributed over a spherical surface of
appropriate radius a. This is, of course, an idealization
and there are deviations in local positions and in local
stresses?” which may affect also the values of the force
constants. But within the aim of the present paper these
effects, which are at best an order of magnitude more dif-
ficult to take into account, can be neglected. Then, with
the above assumption, the dispersion equations for an
amorphous material are obtained by replacing, in Eq. (1),
the sum over neighbors by an integral over the surface of
a sphere

S =2[-..q0. (11)

T4

For the frequencies w; of the longitudinal waves (1||q),
use of Eq. (11) in (1) gives

KeK%‘FqZ[G(qrs )]2
7+ K3eg(q)

2
pw2=;§<ﬁfo+af2)+ , (12

where in writing the electronic term we have incorporated
the modifications embodied in Egs. (5)—(8). For frequen-
cies wr of the transverse waves (1Lq), one has
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pwr= [BF o+ 58I 0—I)] . (13)

2v
a2

In Eqgs. (12) and (13),

I = foﬁsinecos"e[sinz( +qa cos0)]do , (14)
so that . and .#, are, with x =gqa,
Folx)=1—sinx /x , (15)
Solx) =4 —sinx [ L 2| oo 16
x x x

Equations (12) and (13) are the dispersion relations we
wished to derive. It is next instructive to consider their
long-wavelength (g—0) limit.

III. LONG-WAVELENGTH LIMIT
OF PHONON VELOCITIES (IN A GLASS)
AND ELASTIC CONSTANTS OF A CUBIC
MATERIAL

For ¢—0, x—0, and hence, to leading term in x,
S o(x)~+x2 and /z(x):—,lo—xz. Substituting these in Egs.
(12) and (13), we have for the velocities ¥, (0) (=w /q)
and V7(0) (=wr/q) in the g—0 limit the expressions

pVEO) =W +B++8)+k, , 17)
pVHO0)=v(+B+158) . (18)

Remembering that in terms of the elastic modulii c(lg]), etc.
of the glassy material,

pVE(0)=c =B¥+ 3G, (19
pViO)=cf =75(clf —c§)=G*¥, (20
)

where B® and G'® are the bulk and shear modulii, we
can express ¢, etc. in terms of cq;, etc. of the cubic ma-
terials using Eq. (9) or (10). One sees that for both the
case of the body-centered-cubic structure (v=38) and of
the face-centered-cubic structure (v=12), use of (9) and
(10), respectively, in Egs. (17)— (20) leads to

c(ﬁ)=c“—%@a ’ @1y

C£§)=C44+%9’a ’ (22)

where &2, =c |4 —cy—2c44 is the elastic anisotropy of a
cubic material. For an elastically isotropic solid Z,=0.
The right-hand side of Egs. (21) and (22) may be recog-
nized as just the average values {cy; ) and (c44 ) appropri-
ate to a polycrystalline material in which the individual
crystallites are all randomly oriented (for example, see
Bhatia®®). Thus, in our model, the ¢g—O0 limit of the ve-
locities in the glass are given by just enough as though it
was a polycrystalline material. This is not unexpected
since as mentioned earlier we have neglected the effects of
local stress relaxation, etc.

In the special case where the system is in equilibrium
under central forces alone [no electronic term (k, =0) and
B=0], the ratio of the longitudinal- to transverse-wave ve-
locities from Eqs. (17) and (18) is just?® V, /V(0)=13,
which is almost exactly the value for ¥;(0)/V(0) ob-

tained by Grest et al.® by computer simulation for a glass
in which the atoms interact with the Lennard-Jones po-
tential. For a metallic material V;(0)/¥V;(0) would not
have in general this value.

In the opposite limit, namely g— oo, Egs. (12) and (13)
give

03 (0)=0F(0)=12v/a’p)(B++8) . (23)

IV. DISPERSION RELATIONS
FOR A FEW SPECIAL CASES

We now consider the form of the dispersion relations
(12) and (13) for a few special cases.

A. Central forces

As mentioned earlier when a system is in equilibrium
under central forces alone and when this force is effective
for nearest neighbors only, k, =B=0. Hence the disper-
sion relations (12) and (13) reduce to

pwi =(2v/a)6.5 5 (qa) , 24)
por=(v/a®)8[.Fy(qa)—IH(qa)] . (25)

First, in order to be able to compare our results with
the computer-simulation results of Grest et al.,® we take,
as there, W (r) to be the Lennard-Jones potential
12 6
g
r

g
|7

W(r)=4e (26)

By making the approximation that W (r) is effective up to
nearest neighbors only, the equilibrium nearest-neighbor
distance a is given by (dW /dr), _, =0, so that a =2'%c.
One then finds from (26) and (2) that 8/p=(36/M)e.
Hence, if one expresses w in units of 7—!, as in Grest
et al., where 7 =0>M /e, the dispersion relations (24) and
(25) become

i P=12v(0/a)’ 5 y(qa) , 27
w3 =36v(c/a)[Fy(qa)—.75(qa)] . (28)

Equations (27) and (28) contain just the coordination
number v as an unknown which occurs as a simple multi-
plicative factor. To set its value we note that the
computer-simulation results of Grest et al.® were obtained
for the density n; such that n;0°=0.95 or n;a’=1.344.
If the structure were face-centered cubic where v=12,
n;a3=1.414, whereas for a body-centered-cubic lattice
where v=38, n;a>=1.299. This suggests v=10 as an ap-
propriate choice and Fig. 1 plots w; and wr as a function
of go. In computer simulation the longitudinal and
transverse dynamical correlation functions are calculated
at each g and the results are depicted on w-q plot as verti-
cal bars—the height of a bar representing the width of the
peak in the corresponding correlation function at that g.
These are also depicted in Fig. 1 for comparison.

We remark that the curves based on Egs. (27) and (28)
reproduce all the central features of dispersion. In partic-
ular, the longitudinal-mode frequency w; shows oscillato-
ry behavior and the position of the first peak and the next
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FIG. 1. Dispersion of (a) longltudmal modes and (b) trans-

verse modes for central force (Lennard-Jones) according to Egs.
(27) and (28) with v=10. 72=0?M /€ as in Grest et al. (Ref. 8).
Vertical bars represent computer-simulation results of Grest
et al. (Ref. 8).

minimum are in good agreement with the computer-
simulation results. Also the position of the first
minimum occurs at go=6.6, which is about the value at
which the static structure factor S(gq) has its first
maximum—a feature which has been experimentally (or
in computer simulation) found for other materials also.*
In contrast to wp, the transverse-mode frequency wr
shows barely any oscillations, again in agreement with
computer-simulation results. Finally as noted in Sec. III,
according to Eqgs. (24) and (25),

0r(g—0)/or(g—0)=V73,

which is almost exactly the value in computer-simulation
results of Grest et al.

We note that for the central-force case discussed in this
section, substantially similar results have been recently ob-
tained by Schwartz>! in another manner.

Another case where a central-force model has been used
to computer simulate dispersion relations is that of amor-
phous iron by Yamamoto et al  They work with iron of
density n;=7.56%10?> cm~3 and use Pak-Doyama*? po-
tential (=Wpp) with a cutoff distance between the
second- and third-nearest neighbors—the parameters in
the potential being determined from the observed lattice
constant and elastic constants in the crystalline phase. To
compare their results with those based on Egs. (24) and
(25), we again make the approximation that the potential,
now Wpp, is effective up to nearest neighbors only.
Setting (dWpp /dr), _, =0 gives @ =2.62 A, and then use
of Wpp in (2) gives B=0 and 8§=0. 82><1012 ergs/cm°.
Finally we choose v=8 corresponding to the coordination
number of body-centered-cubic iron in the crystalline
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phase. This choice of v together with the above values of
8 and n; yield, from (17) and (18) (with B=«,=0), for the
velocities V7 (0) and V7(0) in ¢g—0 limit, the values
V1(0)=4.31X 10° cm/sec and V7(0)=2.45X% 10° cm/sec
compared to the values 4.3 10° and 2.5X 10° cm/sec,
respectively, given by Yamamoto et al.’

The dispersion curves calculated from (24) and (25) are
compared with the results of Yamamoto et al.® in Fig. 2.
We see that the two are in surprisingly good agreement
with one another both for the longitudinal and transverse
phonons. In particular, unlike the case of Fig. 1, the
agreement regarding the depth of the first minimum for
the longitudinal waves is striking. In regard to its posi-
tion gmin (=2.9 A1), it, as for the Lennard-Jones case,
lies close to the first maximum in S(g). It may be noted
that the positions of the second and the third minima in
the w; -g curve also lie close to the second and third maxi-
ma in S'(g), respectively.

B. Influence of starting structure
on dispersion curves of an amorphous metal

Unlike the case of central forces discussed above, in a
metal, in general, all the three force constants 3, 8, and «,
will be nonzero in the dispersion relations (12) and (13).
These force constants can be determined from the three
elastic constants of the material in the crystalline phase.
Referring to Egs. (9) and (10), this requires also the
knowledge of the crystalline structure, i.e., whether it is
face-centered cubic (fcc) or body-centered cubic (bcc).
Thus in our model the dispersion curves obtained from
(12) and (13) depend on the crystalline structure from
which the glass had originated. Since, as mentioned ear-
lier, phonon data on a pure amorphous metal are not
available, we take elastic constants corresponding to silver
to illustrate the difference between the dispersion curves
of an amorphous material originating from the fcc and
bee structures. The results, which are displayed in Fig. 3,
were computed using

o 1 2 3 4 5 6 7
a(x)

b
-
L

FIG. 2. Dispersion relations for longitudinal ( ) and
transverse ( - - - ) modes for amorphous iron. Curves represent
our results and vertical bars from Yamamoto et al. (Ref. 9).
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FIG. 3. Figure illustrating the difference between the disper-
sion curves on our model for an amorphous material originating
from face-centered-cubic (fcc) structure and body-centered-cubic
(bce) structure (see text). , or and wr for fcc previous
structure; - - - -, @y and w7 for bee previous structure. (Other
input data, namely, elastic constants, density, etc. are the same
for two cases.)

c1=1.20%x10'%, ¢;,=0.90X%10'?,
c44=0.44%10'? dyn/cm?

and taking p and »; (=5.86X 10?2 cm~?) corresponding
to silver.

We observe from Fig. 3 that for small g the dispersion
curves (both for w; and wy) are almost the same for the
two cases—V; (0) and V,(0) being identical for the two
cases. However, as g approaches the value where w; has
its first peak and for higher g, the difference between the
dispersion curves becomes quite significant for the amor-
phous material originating from the fcc and bec struc-
tures. In particular, note that the asymptotic value
op(w)[=wr(0)]=2.07 for the fcc case while
op(w)[=wr(w)]=1.78 for the beec case. Although the
detailed differences are naturally model dependent, our
calculations seem to suggest that in computer-simulation
technique the starting structure, the relaxation of which
leads to the glass, may have a bearing on the dynamics of
the amorphous system. Also, dispersion curves obtained
from neutron scattering on an amorphous specimen
(which is usually obtained from liquid quenching) may de-
pend on the structural history of the specimen.

C. Dispersion curves for metallic glass Ca;sMg3

As a last application of the dispersion relations (12) and
(13) to metallic glasses, we apply them to the glass
Ca;oMgsy, taking the mean atomic mass as the mass of
each atom. This glass has been studied by Suck et al.?*
by neutron scattering, and Hafner®* has made detailed
theoretical calculations based on first-principles pseudo-
potential treatment of the interatomic potential and using
cluster relaxation and recursion techniques for computa-
tions.

Since the elastic constants for the crystalline phase of
Ca;oMg3o are not available, we fix the force constants 3,
8, and «, in our equations as follows. First, we take the
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values of ¥ (0) and V7 (0) for amorphous Ca,yMgs, as
estimated by Hafner,>® namely 4.67x10° cm/sec and
2.34x10° cm/sec, respectively. Secondly, we take
Kk, =14.2X10'° dyn/cm?, which may be compared with
the free-electron value of 29.4x 10! dyn/cm?, from Eq.
(8), with z=2 and n;=2.69Xx 10?2 cm™3. (As discussed
in Sec. II, k, should be taken as a parameter and not the
free-electron value; in actual calculations a 50% variation
of k, from the chosen value does not affect the results sig-
nificantly.) Finally we take v=12, so that the relation
n;a>=v"2 corresponding to fcc lattice gives a=3.746 A,
in good agreement with the value @ =3.74 A computed by
Hafner for amorphous Ca;,Mg3,. The use of (17) and (18)
then enables one to determine 8 and 8, and hence all the
quantities in the dispersion relations (12) and (13) become
known.

Figure 4 gives w; and w7 as a function of g as comput-
ed from (12) and (13), respectively. As in previous exam-
ples the transverse phonons show hardly any oscillatory
behavior while the w;-q curve shows oscillations. The
first minimum in the w; -g curve is again at a value of ¢
close to where the static structure factor of a pure dense
noncrystalline material may be expected to show first
peak. The solid circles in the figure show the w-g relation
derived from the peak positions in S(q,») computed by
Hafner®® and the triangles correspond to the points from
neutron scattering data on S(q,0) by Suck et al.>* [For
clarity the widths of the peak in S(q,») are not
depicted—these, of course, become quite large as g¢
increases—cf. Figs. 1 and 2.] It is to be remembered also
that S'(q,) here is an average of three dynamical struc-
ture factors, appropriately weighted by the neutron form
factors of Ca and Mg, so that the w-gq plot derived from
S(q,w) is not entirely a property of just the dynamical
correlations between the atoms, and an exact comparison
between these and those derived from (12) is not signifi-
cant (see also below). Bearing this in mind it is apparent
from the figure that there is reasonably good agreement
between our w; -q calculations and the dispersion derived
from the experimental and theoretical S(gq,w). It may be
noted that the position of the first peak in our w; -q curve

°T

A4 b .
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FIG. 4. Dispersion relations for Ca;oMgso. @y ( ) and

or (- -+ ) on the basis of Egs. (12) and (13); @, those due to
Hafner (Ref. 33) from calculations of S(q,); /A, experimental
points from neutron scattering [Suck et al. (Refs. 2 and 4)].
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coincides with that of Hafner’s calculations, while the po-
sitions of the subsequent minima and maxima in our
curves differ from the positions of the corresponding
minima and maxima in Hafner and Suck et al. results by
only a few percent. The difference in the values of w at
any q is not more than about 30%.

The dispersion near the first minimum (which occurs at
approximately the wave number g, where the static struc-
ture factor has its first peak) and subsequent minima has
been explained by Hafner’* in terms of the diffuse um-
klapp scattering similar to that occurring in a polycrystal-
line material. According to this picture near these g
values most of the contribution to S(g,») comes from the
transverse phonons of wave number g, < g, /2, so that [in
w-q plot from S(q,w)] near the minima an ® essentially
corresponds to a transverse phonon of some appropriate
wave number g,. In contrast, in our unsophisticated pic-
ture, the minima in the w;-g curve seem to occur in a
natural way around g values where S(g) peaks to maxi-
ma. Note that as Figs. 1—4 show, shear waves do not ex-
hibit this oscillatory behavior either in computer simula-
tion or on our model. ’

V. CHANGE IN ELASTIC CONSTANTS
ON CRYSTALLIZATION

It is well known>® that when an amorphous material
crystallizes, the shear modulus G increases by about
30—40 %, while the corresponding increase in the bulk
modulus B is only 4 to 6 %. Although a full explanation
of these changes is quite complex,*®*’ and lies outside the
scope of our work, it may be of interest to mention that
the present model does imply that AG /G may be expected
to be greater than AB /B.

First we observe that if the system is in equilibrium
under the nearest-neighbor central force alone (B=k«,
=0), then Egs. (17)—(20) imply that AB/B =AG /G, here
we omit the suffix g on B and G for simplicity. On the
other hand, from the full expressions (17) and (18),
remembering (19) and (20), one may readily derive

AG n |,AB 1 AQ
— 13— 142 s 29
5 3 3 P 3y(14+2/y) (29)

where n =B /G, m =B /k,, and AQ/Q is the fractional
change in volume. In deriving (29) we have assumed that
k., =AY, A being a constant, and have used the equilibri-
um condition that the sum of the ionic pressure

P; (=—vB/3) and electronic pressure p, [=— f (ko /

Q)dQ] must be zero. If we take the free-electron expres-

sion, Eq. (8), for k,, y = ——% and (29) reduces to
AG/G=+n[3(AB/B)—m~Y(AQ/Q)] . (30)

As an example, by taking m =1.5, AQ/Q~—0.02, a typ-
ical decrease of volume on crystallization, and AB/B
~0.06, one has from (30), AG/G=0.04n. As n ranges
from 2 to 5 for different systems, this change is of the
correct order of magnitude although the model is too
crude for a detailed comparison.
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VI. AN APPLICATION TO A LIQUID

Although the dispersion relations (12) and (13) have
been derived with specific reference to amorphous materi-
als and the case of a liquid requires special considerations,
it seems, nonetheless, tempting to see what sort of results
they can give for a liquid. Since liquids cannot support
static shear we can specialize (12) and (13) to the case of a
liquid by requiring that the velocity Vi of the transverse
waves in the long-wavelength limit (¢-—0) be zero. By
referring to Eq. (18), this means 8= — +8, and Egs. (12)
and (13) reduce to

eK2 2 G( s) 2
poi =22 gy Ly KA IGWIT g,
a q°+K1eg(q)
por=8/a*) (25 y—.73) . (32)

For ¢—0, (31) and (32) give, retaining only the leading
power of g (ga <<1),

Vi=(1/p)Ev8+k.) , (33)

Vi=(v8/p)oqa’ . (34)

The dispersion of longitudinal waves according to (31)
depends on the relative values of x, and 8. As an illustra-
tion, Fig. 5 depicts w-g curves for two cases. First, =0
so that pairwise interactions play no role and one has only
the electronic term. [Actual value of k, was chosen to fit
V1 (0) for liquid rubidium.] We observe that w; (g)—0 as
q— « for this case. Also, there are no shear waves for
this case at any gq. Secondly, & was taken to be nonzero
[with the value of 6 chosen to fit ¥ (0) for rubidium, tak-
ing k, from the free-electron formula (8)]. For this case
wy (q) oscillates about a nonzero value as g increases and
has similar behavior as in an amorphous solid. For com-
parison, experimental data on rubidium obtained by Cop-
ley and Rowe™® are also given in the figure.

When 80, shear waves also exist for nonzero g and
their dispersion is depicted in Fig. 5. It may be noted
from (34) that for shear waves, for ga <<1, Vg or
Vi <V or. This is the same proportionality as obtained
for the velocity of the shear waves (or viscous waves as
they are usually referred to) in a fluid on the basis of
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FIG. 5. Longitudinal and shear wave dispersion in a liquid
for two choices of parameters: Case I, §=0; dotted curve gives
w; and there is no shear wave for this case. Case II, 6540,
,op; — — —, or. (For choice of parameters see text.) A,
experimental on rubidium [Copley and Rowe (Ref. 38)].
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Navier-Stokes equations of hydrodynamics.’® Viscous
waves are, of course, highly damped due to relaxation ef-
fects which are not taken into consideration in our work.
As an illustration of the numerical values of V7, taking
k,=0 and V. (0)~10° cm/sec to fix 8, one obtains for
ga =0.1, V7~8.5%10? cm/sec or 1% of V,(0). For this
value of ga, wr~5x10° sec™! which is in the gigahertz
range.

VII. SUMMARY AND OUTLOOK

Using a simple model of a metal, we have obtained in
this paper analytic expressions for the dispersion of longi-
tudinal and transverse phonons in an amorphous material.
As all previous theoretical works seem to have involved
intricate calculations and computer simulation, it was felt
that a simple model such as presented here may provide
useful insight. A perusal of Secs. IV and VI shows that
the dispersion relations given here not only reproduce
broad features of the dispersion in a variety of cases
(Lennard-Jones interaction, central-force model for iron,
metallic material, and liquid metal), but also give surpris-
ingly fair quantitative agreement with experiment and
computer simulation.

As regards the future outlook, we first mention that our
work does not take into account the possibility of damp-
ing of phonons. This is important particularly for high ¢
phonons and, indeed, necessary for the calculation of
S(g,w). We should note that when the damping is high, a
dispersion relation obtained from S(q,®) has not neces-
sarily the same physical significance as that derived from
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an approach such as ours—the distinction arises from the
fact that the dispersion is different for the temporally and
spatially absorbed waves.* A second problem is the cal-
culation of vibrational spectrum from the dispersion rela-
tions obtained here. Unlike a crystalline material, in an
amorphous material there is no periodicity in g space and
hence no natural restriction on g values for longitudinal
or transverse excitations to occur. Since the nearest-
neighbor distance varies from the mean a in a glass from
region to region, one possible way is to take for the num-
ber of g values between g and g +dg an expression of the
type

Q 5, —q%q?
N(q)dg =——q%e ‘dq , 35)
(q)dg Py (

where g, is a parameter. The factor in front of the ex-
ponential ensures that for g <<gq., #7(q) reduces to the
standard expression as it should. Because f Aq)dg
={Qn;, one has

go = (873213 |

which may be compared with the Debye cutoff gqp
=(67%n;)!/3. We hope to pursue these problems in a later
work.
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