
PHYSICAL REVIEW B VOLUME 31, NUMBER 7 1 APRIL 1985

Critical dynamics of the kinetic Ising model on fractal geometries
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The critical dynamics of the kinetic Crlauber-Ising model on different fractal geometries is stud-
ied. The classes of fractals which are examined are the nonbranching Koch curves, the branching
Koch curves, and the two-dimensional Sierpinski gasket. The critical dynamic exponent is calculat-
ed for these models using an exact renormalization-group transformation. The value z=2. 58 for
the two-dimensional Sierpinski gasket agrees with recent results from experiments performed in a
percolating system.

In this paper we present a study of the critical relaxa-
tion in a dissipative spin system which has a fractal lattice
structure. ' The fractal lattices (fractals) have a nonin-
tegral dimensionality and a self-similar geometry. The
idea of critical behavior in a nonintegral dimensionality is
not a new one. The dimensionality of a system which is
close to the critical point plays a crucial role in determin-
ing its behavior. The appearance of upper and lower crit-
ical dimensionalities for systems which have similar Ham-
iltonians has attracted people to perform formal expan-
sions around these dimensions.

The fractal lattices, being well determined geometrical
objects, introduce a new concept into the study of critical
phenomena. Unlike usual lattices, fractals do not have
translational invariance. Thus, it is difficult to have a
straightforward equivalency between the critical behavior
on fractals and on lattices having dimensionality which
was obtained by standard analytic continuation. The ex-
istence of scale invariance without translational invariance
in fractals results in an enriched critical behavior. It was
found by Gefen et al. that for a given symmetry of the
order parameter and a range of the interactions, the
dimensionality of the fractal is not the only property of
the fractal determining the universality class of the criti-
cal behavior of the system. They found that in addition to
the fractal dimensionality, D, the other topological
characteristics of the lattice, ' such as the topological
dimensionality Dr, the order of ramification R, the con-
nectivity, and the lacunarity, ' are important in the deter-
mination of the critical behavior.

The self-similarity of these fractals can be used in order
to analyze their critical behavior using renormalization-
group (RG) methods. Gefen et al. show that the Is-
ing spin system located on a fractal with a finite
minimum order of ramification R;„has a T, =0. How-
ever, the same T„and even the same dimensionality for
some of the fractals, does not imply that the Ising models
on these fractals would belong to the same universality
class. The study of the static magnetic behavior in these
fractals"' reveals different values of v (the exponent
which describes the correlation length). For example, v
has the values 1/D, ln3/ln2, and oo in the Ising systems
on nonbranching Koch curves, branching Koch curves,
and Sierpinski gasket, respectively.

Fractals are not merely an abstract geometrical con-
struction. A wide range of physical systems have a self-
similar structure and can be described using an effective
fractal dimensionality. ' In particular we would like to
mention magnetic systems on percolating clusters, ' to
which we shall refer in the following. Fractals can be
used as a reasonable model for real systems, and con-
c1usions from the study of fractals can be applied to real
systems.

Several months ago, Aeppli et al. reported on a study
of relaxation in a two-dimensional (2D) diluted antifer-
romagnet near the percolation threshold. They found that
the dynamic exponent, z, that measures the dependence of
the relaxation time scale, w, on the correlation length
g, r=P, has a value larger than the usual one for noncon-
serving relaxation. The critical dynamics of a dissipative
system is assumed to be described using the Glauber
model. ' This mode1 is exactly solvable in 1D, and gives
for the dynamic exponent the value z=2. In 2D, a few
approximations based on high-temperature expansion, "
Monte Carlo renormalization-group methods, ' and real-
space time-dependent renormalization group' ' (TDRG)
indicate that z in 2D has the value z =2. 18. On the other
hand the conventional theory suggests for 2D the value
z=2 —g=1.75.

None of these values can serve as a starting value for
extrapolation to the value z =2.4+0

&
which was found to

describe the time scale of the 2D Ising model on percolat-
ing lattices near the percolation threshold. (In 2D the
fractal dimensionality of the backbone of the incipient in-
finite cluster is ' D —l.5 —1.6.) Another naive attempt
can be made by assuming that the system is basically a 1D
one, and is thus described by z=2. However, this value
describes the dependence on the correlation length mea-
sured along the system bonds. The measuring in the
geometrical distance introduces a factor of 1/D, which
changes the value to z=2D. Substitution of the value
D —1.55 in the above relation gives an overestimate of z.

The above value z=2D describes the critical dynamics
of the kinetic Ising model on the nonbranching quasilin-
ear Koch curves, but it does not fit other, more complex
fractals. Simple arguments, as were used for the non-
branching Koch curves, cannot be applied trivially to oth-
er fractals. Thus, a more careful choice of the fractal
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geometry should be made. Here we use the Sierpinski gas-
ket to model a system near the percolating critical concen-
tration. This fractal and the backbone of the percolating
system both have the same fractal dimensionality and
have a finite maximum ramification and the same ordi-
nary dimensionality. ' The degree of similarity in the
critical behavior of these two systems is an open question.
Hence any physical quantity that can be calculated
theoretically and can be measured experimentally has a
large impact on this comparison.

We used the self-similarity of the fractals to perform a
real-space TDRG (Refs. 13 and 14) study of some of
them. Our study reveals different universality classes for
the critical slowing down of the kinetic Ising model on
these fractals. We found by an exact RG transformation
that z has the following values: z=2D in the non-
branching Koch curves, z =D+ 1/v in the branching
Koch curves (v is the critical exponent of the correlation
length), and z =1+D in the 2D Sierpinski gaskets.

In the Sierpinski gasket, which is the relevant one for
the experiment, z=2.58. This value falls within the er-
ror margins of the experimental value: z=2.4+o &. In
spite of the good agreement between these z values, both
of which are greater than for the regular lattice, caution
must be exercised in concluding that Ising dynamics on a
gasket is a good model for the experiment in view of the
poor description of Ising statics on a 2D percolating lat-
tice furnished by the gasket. The examination of our cal-
culations shows that this high value is due to the T, =0
quasi-first-order transition that the Sierpinski gasket ex-
hibits. At such a transition the magnetization M is scaled
as M'=b M under a scaling of length by a factor of b
The scale factor b is larger than the usual one for a
second-order phase transition, and it contributes the D in
the relation, z =1+a.

In the rest of the paper we shall briefly describe the ki-
netic Ising model on the Sierpinski gasket, and the real-
space TDRG transformation which was applied to it.
The study of the other fractals which has been mentioned
above is performed in a similar way and will not be dis-
cussed here. The reader is referred elsewhere'" for a de-
tailed description of the TDRG.

The kinetic Ising model is a generalization of the
Glauber model to D&1. It describes the time-dependent
behavior of a large interacting spin system whose equi-
librium is determined by the Hamiltonian

H=Ego;oj .
'

(i,j )

The spins Icr; =+1I are located on the junctions of the
Sierpinski gasket (see Fig. 1), and the sum is taken over
(ij ) nearest neighbors. The system is brought into a
state of constrained equilibrium. Then at time t=0 the
constraint is removed, and the system relaxes towards the
final equilibrium via an interaction with a heat bath. The
heat bath is characterized by a bare time scale, ~0. Only
one spin is allowed to flip each time, with a transition
probability rate, W; ( I

o.] ). This procedure can be
described by an empirical master equation,

FIG. 1. Three stages of iterations in the Sierpinski gasket. In
the RG transformation one traces over the spins which were
created in the last stage in the midpoints of the edges of the pre-
vious smallest scale triangles (i.e., o'~, o.2, o.3), leaving a new ele-
mentary cell (i.e., with the spins p &,p2, p3).

d N

~o P(I o I;t)= —Q [(1+p()Wg( Io IP(IcrI;t))]
dt

N:——gL;P([o I;t)

—:—gL;@(h, I
o.I;t), (2)

where p; is a spin flip operator, p;f( I crj&; I,o; )

=f(Io/&, J, —o; ), and @ is the perturbation from equi-
librium, @=P(Io I;t)/P, . P, is the equilibrium proba-
bility distribution which is determined by the Hamiltoni-
an H, P, =(1/Z)exp(H), where Z is a normalization fac-
tor. The transition probability satisfies the detailed bal-
ance which ensures the ergodicity of the system:
L;P,(Icr])=0. This relation does not determine W;

uniquely. We use

W; = fP, (I cr~~, I, —o;)/P, (I oJ~, I,crt)]' (3)

To study the critical slowing down, we can limit our-
selves to the relaxation of an infinitely small perturbation
from equilibrium. We study a "magneticlike" perturba-
tion. Unlike the simpler case of the Koch, curve, it is
necessary to include other symmetry perturbations in ad-
dition to the magnetization, in order to have an equation
of motion which is invariant under the RG transforma-
tion. The interactions between the three spins in the inter-
nal triangle which are summed out in the RG transforma-
tion create a triplet-spin interaction. This interaction has
to be included in the perturbation from the equilibrium,

4(h, I o I ) = 1+h ) ger; +h 3 ger')cr2cr 3, (4)

where o'&, oq, o be3longs to the ith triangle of the smallest
scale. The calculations reveal that this perturbation spans
an invariant subspace of the parameter space under the
TDRG. Thus, we can substitute for P(IcrI;t)=P, C& in
the equation of motion (2), and then study its transforma-
tion under the TDRG.
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The RG transformation which is used is the decimation
transformation. ' ' ' Each RG renormalized o, upright
triangle was composed, before the transformation, of three
o; at its corners, and three spins in the middle of its
edges. The equation of motion is multiplied by T(p;o ),

a i=1

and a trace over the Io j is performed. Equation (2) be-
comes

N/3—g L;4(Qh, Ip j ),

where Q= Ico; J j, i,j =1—+2, to; t ———,'. Q has the largest
eigenvalue, ~i= 2, which corresponds to the same h 1 of
A.

For the slowest mode, h ', Eq. (6) becomes

(9)

ro Tr( ) [T(p;o)P(I tr j;t)]
where

(6) (10)

y'=y(1+4y)+O(y ), h'=Ah, (7)

where y=exp( —4K), and A has the largest eigenvalue
b, corresponding to the eigenvector h '=h~+h3. This
eigenvalue has been . already obtained by general argu-
ments in Ref. 5, although the exact form of the eigenvec-
tor was not calculated there.

By performing the trace, the right-hand side of (6) be-
comes

The left-hand side is nothing other than the standard stat-
ic RG transformation, ' which transforms P into P'. In
the parameter space, (E,It ~,h3), the RG transformation is
described as

By scaling the bare time scale, ro, by the time scaling fac-
tor, ~o' b*~o,——the renormalized equation of motion, (9),
becomes of the same form as Eq. (6). By the standard RG
arguments, ' z is identified as the dynamic exponent.
The substitution of the numerical values into (10) gives
for the dynamic exponent z =1+D.
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