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We develop a new approach for studying the random resistor network by focusing on the distribution of
voltage drops across each bond We introduce a simple model which provides a useful description of the
percolating backbone, and which shows that the voltage distribution is log normal, with an infinite set of
exponents required to describe the voltage moments. This latter prediction is verified by simulations of a

resistor network on the square lattice.

The critical behavior of the random resistor network is a
classical percolation problem which has received consider-
able theoretical attention. In this Rapid Communication,
we suggest that new insights into the problem can be gained
by considering the distribution of voltage drops across each

-bond in the network. Both model calculations and numeri-
cal simulations on a two-dimensional network suggest that
the voltage distribution cannot be described by a scaling
function of the conventional form. Consequently, the ex-
ponents characterizing the moments of this distribution are
not simply related; that is, constant "gap" scaling fails.
This is reminiscent of the recent findings of Harris and co-
workers2 for the moments of the resistive susceptibility.

The distribution of voltage drops in an electrical network
is of central importance as the second moment equals the
network conductivity. Moreover, we shall show that this
distribution gives detailed microscopic information, analo-
gous to the cluster-size distribution in percolation, which
aids in quantifying the structure of the percolating cluster.
Finally, the voltage distribution is analogous to the distribu-
tion of strains in a random elastic network. Thus,
knowledge of the distribution may ultimately provide insight
into the mechanical failure of a variety of random media,
such as gels, unwoven textiles, or fractured rocks.

In order to discuss the voltage distribution analytically, we
first introduce an extremely simple hierarchical lattice3 (HL)
model which successfully describes the properties of the
backbone of the critical percolating cluster (PC) for any spa-
tial dimension d. We then show that for the HL, the vol-
tage distribution is a log binomial. This leads to novel scal-
ing properties for the voltage moments which are then veri-
fied by numerical simulations.

The model is illustrated in Fig. 1 for d = 2. Starting with

FIG. 1. Hierarchical lattice for the case A. =1, corresponding to
d=2.

a single bond of unit resistance, this bond is replaced by the
series and parallel combination, or "unit cell, " of unit resis-
tance bonds shown to the right. This construction is iterat-
ed indefinitely, with the Nth level being achieved by replac-
ing each bond in the (N —l)th level by the unit cell.

The resulting structure is a self-similar fractal made of
singly connected bonds, termed links, and multiply connect-
ed blobs. 4' A link is defined as one which, if cut, ~ould
render the network disconnected, while the remaining bonds
comprise the blobs. For this model, we can easily calculate
critical quantities such as the number of bonds N~, the
average number of steps in the set of all self-avoiding walks
(SAW's), NsAw, the resistance R, and the number of links
L~ between the extreme ends of the HL. For example, one
can easily check that for an N-level hierarchy, N~=4,
Ns&w=3, R =2.5, and Ll =2 . We can now eliminate

the unphysical quantity N in favor of L l'. Ng = L ~

+SAw =I 1 + I 1 with (B 2 tsAw= 1.58. . . , and
t'a ——1.322. . . . To compare with the exponents of PC's,
we note that in percolation one usually expresses the critical
quantities in terms of the Euclidean distance L. Namely,

EBB
N —L ~ N —L "w 8 —L ~, and Ll —L' ",' where
df a is the fractal dimension of the backbone, (~ is the resis-
tance exponent which is related to the conductivity ex-
ponent r by t = d —2+ $g, and y has been proved5 to coin-
cide with the connectedness-length exponent. Eliminating L
in favor of L ~, we obtain for PC's in d = 2,
t'a = df 2 11 ~ ~ ~ t'sAw &(sAw 1 73 ~ ~ ~ 4 = &t'z
= 1.297. . . ,

' in good agreement with the HL exponents.
The HL can be generalized to model PC's in d dimensions

by introducing the parameter A, = 2/Lt, which is the ratio of
the number of bonds in a blob to the number of links
within a unit cell, by choosing A. = (6 —d)/4 for 2» d ~ 6,
~ = d —1 for 1» d —~ 2, and ) = 0 for d ) 6. This choice
is rather arbitrary; however, it is a simple linear expression
in d which has the property of being zero for d = 1 and 6,
and attaining a maximum for d =2. This reproduces an
essential feature of the links and blobs structure of PC's;
blobs are irrelevant in d = 1 and 6,' and are relatively most
important in d=2. With this simple choice for A. , the
resulting exponents are close to the best nume, rical ex-
ponent estimates for PC's (Table 1), thus lending confi-
dence in the validity of the HL model (Ref. 9).

We now turn to the distribution of voltage drops. If a
unit voltage is applied across an Nth-order hierarchical
lattice, the number of bonds biased by a voltage
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TABLE I. Comparison of the exponents from the hierarchical
model with the best available estimates for the percolation ex-
ponents discussed in the text.

vln2, we obtain

(lnV —lnV ~)
InL t [(ln2 InL, )/2]

(4)

~BB
Data Model Data Model

~SA%'

Data Model

2.11'
1.61'
1.25'
1.11'
1.0

2.0
1.57
1.29
1.11
1.0

1.297 b

1.14d
1.07d
1.02d
1.0

1.322
1.175
1.085
1.029
1.0

1,73 c

1 32c
1 11c
1 05c
1.0

1.58
1.32
1.16
1.06
1.0

'Reference 5.
"Reference 1.

cReference 7
dReference 8.

V(k), n ( V(k) ), is equal to

n ( V(k) ) = (2/Z)

where the voltage V(k) takes on the discrete set of values
[A/(A. +4)] 2", with k =0, 1, 2, . . . , N, and for general
A. , Lt = (2/X) . The maximal voltage drop V,„
= V(k =N) occurs across the links where all the current I
in the network flows. Applying Ohm's law to a link of unit
conductivity gives V,„=I. Since a unit voltage is applied
across the network, it follows that the network conductance
6 equals the total current flowing. Very generally, then, for
a network containing links, such as a random resistor net-
work at the percolation threshold, we have the striking
result, 6 = V,„. Thus, we may write

Vmax L 1
~R (2)

Thus, from the voltage distribution we obtain (i) the
number of links from n (V,„)=Lt, (ii) the number of
backbone bonds from Xt,n ( V) —Lt, and (iii) the resis-
tance exponent gg from the second moment of n ( V) which

equals the conductance G, i.e. , g~ V n ( V) —L ~

We can easily calculate higher moments of the voltage
distribution from Eq. (I), and we find

with n (V) =0 for V & V,„. From Eq. (4), the noncon-
stant gap in the (V ) stems from n(V) being a scaling
function of lnV and lnL~ rather than of V and L] itself.
This continuum limit is not a very useful approximation,
however, because of the predominant role that the cutoff in
n ( V) plays in the calculation of the moments ( V") .

The higher moments of the voltage distribution can also
be related to an infinite family of lengths with which one
can quantify the structure of the percolating backbone. We
know that the backbone is made of links and blobs with the

total number of backbone bonds diverging as L] . To
characterize the remaining bonds of the backbone, we first
define ~(n) as the number of bonds in which a fraction
a = V/ V,„of the total network current flows. This is relat-
ed to the voltage distribution through W(a) = n(n V,„).
Nex: define the family of lengths Wk and associated ex-
ponents g» through

= /nkvd(n) —L "

which can be related to the voltage distribution by
~k ——V,"„X„n(V)V . From Eqs. (2), (3), and (5) we
obtain for the HL,

gk
——kp2 —pk = I + In(1+ I/2")/[In(2/&) ]

Then &0 coincides with the total number of bonds in the
backbone, ~ coincides with the number of links (i.e., the
number of bonds with o. =1), and W2 scales as the resis-
tance. In general, ~q is a length measure of the backbone
in which each bond is weighted by a factor o. . Clearly
Wk «Wk+q and (k «(k+~. In one and six dimensions the
gk all coincide with 1, since the blobs are irrelevant, and
constant gap scaling holds. On the other hand, the max-
imum dispersion in the gk occurs in d = 2, where the blobs
are relatively most important, leading to the maximum
departure from constant gap scaling.

In order to test the HL model predictions for the voltage

( Vk) —XVk ( V) L ~k (3)

where

pk
——k —I + [k In(1+ X/4) —,In(1+ h./2») ]/(In2/A. )

and we can identify —po with (s and p2 with g~. Thus a
very interesting feature predicted by our model is that an in-
finite set of exponents is required to describe the moments,
(,V") . Moreover, the average value V,„=( V)/Xvn ( V)

P—L] " and the most probable value of the voltage
~mV, —exp[(ln V),„)—L~ ' scale differently. For exam-

ple, for the hierarchical lattice with k = 1(d = 2),
p,„=1.736. . . , while p ~

= 3.015. . . . However, we do ex-
pect constant-gap scaling in the averages [(lnV)k), „which
we find to vary as (lnLt) "with 5 = 1.

The origin of a nonconstant gap exponent, i.e.,
pk —pk ~~const, and the different scaling laws for V, and
V„becomes more apparent if we write the voltage distribu-
tion after approximating the binomial factor by a Gaussian.
For example, for A. =1, since k =lnV/In2 and N =InLt/
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FIG. 2. The voltage distribution for 1100 realizations of a
100X 100 lattice at pc plotted vs ln V.
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TABLE II. Estimates for the exponents pk and (k=kp2 —pk.

io-i—
Data Model Data Model

tO-2—

—2.18 + 0.02
—0.28 + 0.02

1.31 + 0.02
2.78 + 0.03
4.19 + 0.04

—2.00
—0.263

1.3219
2.7959
4.2003

2.16
1.58
1.30
1.12
1.01

2.00
1.585
1.322
1.17
1.09

IO & l

lol (Q2

~ k=1
o k=5

lO~-I~

FIG. 3. (a) Double logarithmic plot of [ Xv n ( V) V"/

Xv n ( V) lt+, where the overbar refers to configurational averaging,
showing non-constant-gap scaling, and (b) (G )i, showing
constant-gap scaling.

distribution, we have performed numerical simulations for a
random resistor network at the percolation threshold (bond
concentration 50%) on a L x L square lattice for the range
L = 5 (50000 configurations) to L = 130 (1000 configura-
tions). A unit potential drop is imposed across the sample,
and free boundary conditions in the transverse direction are
used. As indicated in Fig. 2, the distribution averaged over
all configurations is more usefully visualized in terms of ln V

rather than in terms of V, where 100 bins on a logarithmic
scale are displayed. In Fig. 3, several moments of this dis-
tribution are plotted versus L. The differing slopes of the
straight line fits to the data confirm that each moment is
governed by an independent exponent as predicted by the
HL model. More strikingly, the estimated values of the ex-
ponents from the simulation agree closely with those
predicted from the HL (Table II), indicating the general
utility of the model for describing even microscopic aspects
of the random resistor network. %e have also computed
numerically the configurational averages of the conductance
and its inverse, 6 and 6 . Both quantities appear to

kgb /v ~

scale as L, with (~/r estimated to be 0.98+0.02, in
agreement with the most recent numerical results for (R,
suggesting that constant gap scaling does occur for the dis-
tribution of conductances.

In conclusion, we have introduced the distribution of vol-
tage drops as a basic quantity to characterize the conductivi-
ty problem and the structure of the percolating backbone.
A simple hierarchical model has been introduced from
which (a) accurate values for exponents of percolation in
d =1—6 can be found easily, and (b) an infinite set of ex-
ponents is required to describe the scaling properties of the
moments of the voltage distribution, and this set can be in-
terpreted in terms of the structure of the backbone. In the
limiting case where only links remain, i.e., d =1 or 6, the
infinite set reduces to a single gap exponent equal to I/v.
This new type of critical phenomena is observed in our
simulations of the two-dimensional random resistor net-
work.
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