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Monte Carlo studies of the quantum XYmodel in two dimensions
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Monte Carlo simulations are performed for the spin-2 XY model in two dimensions for large (up to

24X24 sites) lattices. Results are obtained over a wide temperature range which includes the critical tem-
perature T„estimated to be 0.4-0.5. The energy, specific heat, vortex density, and derivative of the helici-

ty modulus are given as functions of temperature. As the lattice size is increased, the specific heat per spin

approaches a finite value and does not diverge.

Our understanding of the XY model in two dimensions
has grown considerably in the last decade. In 1973, Koster-
litz and Thouless explained the phase transition in the clas-
sical model in terms of topological order since Mermin and
Wagner had already precluded the possibility of conven-
tional long-range order in this system. Numerical work by
Tobochnik and Chester, and by van Himbergen and
Chakravarty have confirmed some of the expected
behavior, and have measured quantities such as the specific
heat C(T), the energy E(T), the derivative 6(py)/Bp of
the helicity modulus y, and the critical temperature T, . The
overall picture is one with bound vortex-antivortex pairs in
the low-temperature phase, which break apart at T, and give
rise to a finite peak in the specific heat just above T, .

Less is known about the corresponding quantum-
mechanical spin-~ problem. Rogiers, Grundke, and Betts'
used high-temperature series expansions to estimate critical
temperatures and exponents. Both Pearson and Suzuki and
Miyashita have variational estimates of the ground-state
energy. Extrapolations from finite-size lattices also provide
approximate values for the ground-state energy, in addition
to other quantities such as the susceptibility, vortex density,
energy, specific heat, and entropy. On the basis of such
calculations, attempts have been made to characterize the
ground state and the phase transition in the quantum
model. A wide variety of real-space renormalization-group
approaches, characterized by uncontrolled approximations,
have also been applied to this problem. ' Unfortunately,
they have been both inconclusive and contradictory. Final-
ly, Suzuki, Miyashita, and Kuroda" have employed Monte
Carlo techniques to measure specific heats and susceptibili-
ties. Their results are expected to be valid at high tempera-
tures.

In this paper, recently developed Monte Carlo techniques
are used to measure E ( T), C ( T), and the vortex density
V(T). Derivatives of the helicity modulus are utilized to
estimate the critical temperature T, . Results for the energy
agree with previous work both at T = 0 and at high tempera-
tures. The vortex density, meanwhile, is reminiscent of the
classical model with the important, though natural, differ-
ence that zero-point fluctuations allow for a finite vortex
density in the ground state. The specific heat has a sharp,
but finite, peak close to the transition temperature, which is
estimated to be T, =0.4—0.5.

Following the approach suggested by Suzuki et al. ," we

where p= Lhr and hr will ultimately be taken to be some
sma11 number. Next, each of the L exponentials is approxi-
mated by

exp( —hrH) = exp( —ArHt) exp( —ArH~)

where

H=H, +H = — (s,"sy+s~sy)
(IJ

summing only once over near-neighbor pairs (ij ) .
Meanwhile, H~ and 02 are each composed of ce11 Hamil-
tonians which commute among themselves. Each cell in-
volves only four sites. This breakup is pictured in Fig. 1.
The partition function trace is now over a product of 2L fac-
tors. By introducing complete sets of states between adja-
cent exponentials, the sum may be thought of as a classical
partition function in 2+1 dimensions. This problem is im-
mediately amenable to Monte Carlo techniques, and one is
required to solve no more than the quantum four-site cell
sub-Hamiltonian.
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FIG. 1. Breakup of the two-dimensional lattice. Terms in the
Hamiltonian are grouped into two parts, Hj and H2, each of which
is composed of four-site cell sub-Hamiltonians which commute
among themselves.

rewrite the partition function using the Trotter formula.
The breakup we use, however, is the checkerboard decom-
position employed by Hirsch, Scalapino, Sugar, and Blank-
enbecler' for the fermion problem in one dimension. We
write the partition function as

Z = Tr(e-«H)~
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FIG. 2. Energy per site as a function of temperature for the 8& 8
lattice with b, ~=0.25. Results for the ground-state energy and a
simple high-temperature expansion are shown for comparison.

FIG. 4. Swendsen's vortex density vs temperature. The vortex
density is nonzero at T =0 and exhibits a noticeable increase just
below the critical temperature.

The problem was run on an IBM 3081 computer with 4v
usually set to 0.25. Dependence of measurements on A~
was tested and found to be quite small. Measurements
were made 15 000 times, with 2 sweeps of the lattice
between measurements. Ten such runs were used to gen-
erate each point along with its error bar. Thus, each point
represents 10x 15 000 x 2 = 300 000 sweeps of the lattice.
Runs on lattices as large as 24X24=576 sites were per-
formed, in contrast with exact diagonalizations, which stop
around 18 sites. In the v direction, we have used as many
as L =40 slices (for T=0.1 with Ar =0.25). Suzuki's work
used only L =1 and 2. Generating measurements of the
desired observables at T =0.5 (L =8) for a 16X16 lattice
with a prescribed set of boundary conditions takes just over
3 h.

The energy per site is plotted in Fig. 2. At high tempera-

tures, the curve fits well to the form E/N ——1/4T, as ex-
pected from theory. At low temperatures, E/N goes to
—0.543+0.002 (Ref. 13) compared to Pearson's value of
—0.550+0.002 and —0.539+0.005, given by both Suzuki
and Miyashita and Betts and Kelland, for the ground-state
energy. In Fig. 3, the specific heat per spin, computed by
measuring fluctuations in the energy, is shown for an 8X 8
lattice. Numerical differentiation of the energy curve can be
used to reproduce these results. The specific-heat peak oc-
curs at T=0.5. The height of this peak clearly levels off,
with lattice size at about C/Nk~ = 0.65, as shown in the in-
set.

The vortex density is given in Fig. 4. It comes in to a
nonzero value at T =0, which is qualitatively consistent
with Betts, Salevsky, and Rogiers, ' and is to be expected
from quantum zero-point fluctuations. Our value for the
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FIG. 3. Specific heat per site as a function of temperature for the
4&4 and 8X 8 lattices. Points are found by directly measuring fluc-
tuations in energy. The inset shows the dependence of the peak
height on size for 4&4 through 24& 24 lattices.

FIG. 5. Increase in the total internal energy due to enforcing a
phase twist of n. Since this quantity is proportional to the deriva-
tive of the helicity modulus, the spike signals a Kosterlitz-Thouless
phase transition.



4714 E. LOH, JR., D. J. SCALAPINO, AND P. M. GRANT 31

ground-state vortex density V(T=O) differs from Betts's,
since we use Swendsen's vortex-density operator'

V(T) = ~ g(I —rrlD3 'rrfrrf)(1 rr2rr4 trftr4)

where cr" and a are the x and y Pauli spin matrices. The
sum is over plaquettes, and the subscripts refer to sites on
the vertices of each plaquette numbered in sequential order
as one circles around. It is worth noting that V(T) begins
to grow noticeably at T=0.35-0.40, which is just below
where we estimate the phase transition to occur.

The helicity modulus y has been proposed as a useful
quantity for investigating Kosterlitz-Thouless phase transi-
tions in the classical two-dimensional problem, ' and has
been used successfully for this purpose in numerical-stud-
ies. For a spin system, the modulus is proportional to the
spin-wave stiffness, and characterizes the change in the free
energy when a slow, in-plane, twist of the spins is made. In
models of two-dimensional systems of bosons, it is propor-
tional to the superfluid density. For the classical system,
the modulus has a universal jump at the critica1 tempera-
ture. ' Thus, we expect that the temperature derivative of

should provide a clear signal of T, . Fortunately, this
derivative is easy to measure, since it is no more than the
increase in the internal energy due to a phase twist of 7r

(Fig. 5). The peak occurs at T = 0.4-0.5, which gives us an
estimate of the transition temperature. Rogiers et al. give
T, =0.39+0.01, but claim that the specific-heat peak lies
below this temperature, contrary to what we find from our
simulations.

We have demonstrated the practicality of our algorithm
for performing interesting measurements on two-
dimensional quantum spin problems. The method produces
reliable results over a wide temperature range, in contrast
with previous work, using a variety of different techniques,
and can be used for large lattices. Work on the two-
dimensional Heisenberg-Ising antiferromagnet is in pro-
gress.
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