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Self-consistent phonons, thermal properties, and vibrationa1 instability of the copper crystal
I

C. S. Jayanthi, * E. Tosatti, and A. Fasolino
International School for Advanced Studies (ISAS), 34014 Trieste, Italy

(Received 5 April 1984)

We have studied the temperature-dependent phonon spectrum and other vibrational properties of
copper using the self-consistent phonon method and also the quasiharmonic method. A model pair
potential suitable for such a study has been constructed. We have also investigated the vibrational
instability of the overheated perfect crystal by studying the system's free energy.

I. INTRODUCTION

The work reported in this paper has three distinct
scopes. First, we study the thermal properties of copper
crystal using the self-consistent phonon method' (SCP)
and also the quasiharmonic' (QH) method. Both these
approaches are based on a pairwise, central, short-ranged
potential. This choice excludes several potential forms
that have been previously constructed to account for vari-
ous properties of Cu, either starting from first princi-
ples, or empirical. ' These forms are either explicitly
or implicitly long ranged and do not easily lend them-
selves to a simple calculation of thermal properties. The
second scope of this work is to show that by careful
choice of the pair potential the above two methods can be
made to give similar thermal properties. A general choice
of pair potential would, of course, not satisfy this require-
ment, as exemplified in Ref, 7. As discussed in a later
section, the disagreement between QH and SCP is not
generally a necessity and it is easily possible to eliminate
it. Once this result is established, one can use the simpler
and cruder QH method for more complicated studies,
such as the study of the thermal properties of copper sur-
faces, where it would not be an easy task to implement
the SCP method. The third scope of this paper is to use
the free energies of the SCP and QH theories to study the
vibrational instability, which the crystal would undergo at
high temperatures, should it somehow be prevented from
melting. This instability is associated with the loss of the
local crystalline free-energy minimum and will occur
quite generally for any solid, corresponding to the max-
imum temperature at which the ideally defect-free crystal
can be overheated. Such an instability is also well known
to occur in self-consistent phonon theories well above
melting. ' Although distinct in principle, and different
numerically from the true melting temperature, the self-
consistent instability temperature is nevertheless a good
indicator of the relative tendency to melt in a given class
of similar crystals. " While we do not plan such a study
here, it seems interesting to establish an explicit connec-
tion between a short-range potential modeling a metal
crystal and the lattice instability it generates. In particu-
lar, we find that, in copper, instability and melting can be
much closer than in a rare-gas solid. ' Another motiva-
tion for studying this kind of bulk instability is that it
provides a starting point for subsequent studies of surface
melting based on lattice instabilities. ' '

The central ingredient to this work is the pair potential
that is chosen empirically to correctly reproduce the
temperature-dependent lattice-dynamical properties of
copper. At this point we shall pause briefly to discuss the
basic difficulty in choosing a two-body short-ranged po-
tential for metals. The pair potentials that were proposed
previously' ' were constructed with purposes of yield-
ing reasonable cohesive and defect properties and of
describing the lattice dynamics at T ='0. It is well
known, however, that cohesion in metals arises because of
the competition between many-body attractive electronic
forces and essentially two-body core-core repulsion.
Therefore any attempt to describe cohesion in metals us-
ing a two-body potential is intrinsically incorrect. If one
insists on such a description, one is forced to choose an
unusually deep potential. The result is, that such a poten-
tial will as a rule yield incorrect thermal properties.

For the purpose of the present investigation we finally
choose a shallow two-body potential which is good for
describing thermal properties and bad for describing
cohesion. This problem does not exist in rare-gas solids,
where cohesion is satisfactorily described by a pair poten-
tial. In our case only a small fraction of the total
cohesion is accounted for by the pair potential. This can
be rationalized by considering, for example, the ratio

C = (cohesive energy per atom)/ks TM,

where T~ is the melting temperature. In the rare-gas
crystals, C=10. In Cu, however, C=30, and it can be
even higher in other fcc metals (e.g., 40 in Al). If we as-
sume, as a first guess, that at melting only the pairwise
energy increases (the total electron density being essential-
ly unchanged), then (C —10)/C can be seen as crudely
representing the fraction of cohesion not due to pairwise
forces. The fact that (C —10)/C is large, of the order —',
in Cu, then justifies a posteriori our finding that the
thermal properties of metals are the best represented by a
shallow pairwise potential.

The plan of the paper is as follows. We present in Sec.
II the standard SCP and QH formulas, as well as some of
the relevant details of our calculation. In Sec. III we deal
with optimizing the pair potential to represent copper.
Finally, in Sec. IV we report the numerical results of our
calculation together with a discussion of them and our
conclusions.
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II. SELF-CONSISTENT PHONON
CALCULATION AND QUASIHARMONIC

CALCULATION

PHo
Fo —P——ln Tre (2.2)

where Ho is an approximate trial harmonic Hamiltonian,
given by

2P;X+4K&v~J2M
(2.3)

u; being the displacetnent of the ith atom from its equili-
brium position, and D is a dynamical matrix whose pa-
rameters are adjustable. Variational optimization of Fo
yields, for the best "self-consistent" dynamical matrix, the
well-known formula'

(2A)

where the thermal average is meant to be self-consistently.
taken over the harmonic states of Ho, i.e., of D;J itself.
For a general quantity g (R; —RJ ), such an average can be
written as

Given a Hamiltonian
2

+ —, QV(IR; —R I), (2.1)
I l,J

1

the true free energy F= —pin Tre ~ (p=llkeT) is
variationally approximated by

(2.5). The second average can be expressed directly, to
second order in u, as

(
R R R RP V / V

( 2) I

IR I' IR I' IR

(u~uv) (R .u)u )+ c 2
—2 " R„. (2.8)

To this order, the factorization (2.7) is actually exact, as is
shown in Appendix A. The explicit form of the dynami-
cal matrix for fcc crystals calculated with the above set of
approximations is given in Appendix B.

It is evident from Eq. (2.5) that evaluation of averages
like (a) and (p) primarily involves calculation of the
quantity

I
q."(k,z)I'

XM co
kA,

coth(Pfico „)
X(l —cosk R )

2

(2 9)

We have similar expressions for other averages like
(u&u„). The summation in Eq. (2.9) is over all the nor-
mal modes of frequency co and polarization vector

kA,

e(k, k) that are obtained as solutions of the eigenvalue
equation

g [D„„(k)—Mco (k, A. )5~v]e„(k,A, ) .
V

(2.10)

=gg(q)exp[iq (R —R )]

)&exp[ ——,(
I q (u —uj) I )], (2.5)

RpR&„=(~&„&+((0—~) (2.6)

where g ( q ) is the Fourier transform of g (R), and
R=R; —RJ, with R; =R;+u;, and R; is the equilibrium
position of the ith atom. In what follows we shall also
use the concise notation R, u for convenience in

0 0representing the relative equilibrium distance (R; —Ri)
and the relative displacement (u; —uj) between first-
neighbor atoms i and j.

Considering a central, first-neighbor pair potential, we
can explicitly write the expression for the dynamical ma-
trix in Eq. (2.4) as

The Brillouin-zone summation in Eq. (2.9) is done with
256 mean-value points. ' This average (

I q u
I

) is cal-
culated for q along the [100], [110],and [111]directions,
and for various first-neighbor positions. The result ob-
tained at T =500 K is given in Table I. We note that the
mean value of this average is close to the one obtained for

q I I
[110] and R

I I
[101]. Thus, we choose this direction

in our subsequent evaluation of the quantity
exp( ——,(

I q u
I ) appearing in Eq. (2.5) and neglect all

other directional dependences. With this approximation,
we have

TABLE I. ( I q u
I

2) calculated for various orientations of
the q vector, u being the relative displacement of first-neighbor

atoms, separated by R . All other directions are related by
symmetry. The temperature used was 500 K.

(IquI2& (A 2)

Here, a(R) =R '[dV(R)/r)R] and P(R) =rl V(R)IBR
are the first- and second-order force constants. Perform-
ing the second average in Eq. (2.6) with general prescrip-
tion (2.5), which involves using the Fourier transform of
(p—a)R&R„/

I
R I, is not straightforward. We approxi-

mately factorize that average in the form

&(P a)RpR /I R
I
'&=—&P a&&RpR-/

I
R

I

'& —.
The first factor, (p —a), can then be evaluated with Eq.

(1,0,0)

(1,1,0)/V 2

(1,1,1)/V 3

(1,1,0)
(0,1,1)

(0,—1,—1)
(1,—1,0)

0.0150
0.0163

0.0159
0.0129
0.0170

0.0141
0.0168
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2

(a(R)) = ga(q) exp
2

with

&& exp(i q R ), (2.11)

a(q)= —I d R a(R)e0
and a similar expression for (P(R)). The values of a(q)
and P(q) are calculated from the empirical values assumed
for P(R), used in the construction of the pair potential
and from

a(R) =—I ~ P(r')dr' .
80 ——ao/~2

Eqs. (2.7)—(2.11) self-consistently for each given tempera-
ture T and crystal lattice spacing a. More explicitly, for a
given T and a, we (i) choose a trial initial value for a and
P; (ii) diagonalize the 3 &&3 dynamical matrix in Eq. (2.10)
to find co- and e; (iii) use these eigenvalues and eigen-

kA, kA, '

vectors to calculate averages like (
~

u
~

), (
~ q u

~
),

(u~u, ), and finally (a) and (P); and (iv) feed back
these (a) and (P) as new input values and then repeat
the entire cycle until the difference in value of these quan-
tities between consecutive steps becomes negligible. The-
self-consistent free energy is then given by

+scp =
2 y ( V(

~
R; —RJ

~
) )

+P ' g ln2sinh
k, A,

The values of a(q) and P(q) are then stored. for later use in
the averaging.

Our scheme for the SCP calculation involves solving

fKO ~—P coth
4

(2.12)

TABLE II. Fourier transform of the potential B. Units of q and Vare 2m. /a and eV, respectively.

V(q)

0.0
0.400 X 10'
0.800 X 10'
0.120x 10'
0.160x 10'
0.200 x 10'
0.240 x 10
0.280 x 10'
0.320x 10'
0.360x 10'
0.400 X 10'
0.440 X 10'
0.480 x 10'
0.520 x 10'
0.560 X 10'
0.600 X 10'
0.640x 10~

0.680 X 10'
0.720 x 10'
0.760x 10'
0;800X10'
0.840 x 10'
0.880x 10'
0.920x 10
0.960x 10'
0.100x 10'
0.104X 10'
0.108x 10'
0.112X 10'
0.116X 10
0.120x 10'
0-124x 10
0.128x 102

0.132x 10
0.136x 10
0.140X 10'
0.144X 10
0.148x 10'

0.141058 12X 10'
0.136327 69X 10
0.122 65471 X 10
0.101 731 82 x 10
0.765 663 44 x 10
0.51107989x 10'
0.292 01604x 10
0.133 344 57 x 10'
0.394 328 99X 10'

—0.294 886 34
—0.144 898 52 X 10'
—0.129 741 32 X 10'
—0.837 90943
—0.406 007 13
—0.533 30023 x 10-'

0.188 673 58
0.273 664 36
0.208 836 09
0.738 993 55 x 10-'

—0.376688 32X 10
—0.820 674 86x 10-'
—0.724445 68 X10-'
—0.418 12063 x 10-'
—0.109476 33x 10-'

0.140 13103 x 10
0.294 143 69x 10
0.302 63749x 10-'
0.168 26645 X 10

—0.183 854 72x 10
—0.142 996 79x 10
—0.15711739x10-'
—0.952 986 81 X 10-'
—0.194027 91X 10

0.34935243X10 2

0.623 855 36 X 10-'
0.648 253 99X 10
0.424 51204x 10
0.364433 15x 10

0.152X 10'
0.156x 10
0.160X 10'
0.164X 10'
0.168x 10
0.172x 10'
0.176x 102

0.180x 10'
0.184x 10'
0.188x10'
0.192x 10'
0.196x 10
0.200 x 10
0.204 X 10
0.208 x 10'
0.212x 10'
0,216X 10'
0.220 x 10
0.224 x 10
0.228 x10'
0.232 X 102

0.236 X 10~

0.240 X 10
0.244 x 10
0.248 X 10
0.252 x 10'
0.256 x 10'
0.260 x 10'
0.264 X 10'
0.268 x 102

0.272 X 10
0.276 x 10'
0.280 x 10'
0.284 x 10'
0.288 X 10
0.292 X 10'
0.296 X 10'
0.300x 10'

—0.312681 77x 10
—0.43704623 x 10—'
—0.317965 43 x 10-'
—0.891 47095 x 10

0.103 15622 X 10
0.197404 64 x 10-'
0.200632 60x 10
0.13442639x10 2

0.239 61671 x 10
—0.854 17025 X 10
—0.13999077x10
—0.117753 33x 10
—0.459 969 17x 10-'

0.264 586 74 X 10-'
0.681 02602 x 10-'
0.748 524 90X 10-'
0.548 674 90X 10-'
0.174185 50 X 10-'

—0.241 19039X 10
—0.510576 89x 10-'
—0.504247 87 x 10-'
—0.262 329 19X 10-'

0.421 259 24 X 10
0.250 652 41 X 10
0.312 730 35 x 10
0.256 758 25 x 10
0.123 96099x 10-'

—0-447289 15X 10
—0.18841647 X 10-'
—0.239 91026 X 10
—0.175 324 89x 10
—0.384 67202 x 10-4

0.925 379 31x 10
0.159975 64X 10
0.15129485x10 '
0.867 844 56 X 10-'

—0.148 912 39x 10-'
—0.803 735 67 x 10
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(a(R))
QH

(2.13)

In particular, the quasiharmonic free energy (which is no
longer variational) is given by

FoH ———,
' gV((

~
R; —R

~
))+P 'g ln2sinh

(2.14)

III. CHOICE OF THE PAIR POTENTIAL

Several short-ranged potentials have been given in the
literature for copper. ' ' Unfortunately, they turn out to
be unsuitable for describing thermal properties, although
they have been used successfully in various other contexts.
They tend to be very deep potentials which generally yield
unreasonably small anharmonicities, and thus very poor
expansion coefficients. Furthermore, we can easily handle
a spherical potential, so any nonspherical potential found
in the literature must be spherically averaged before using
it for our calculation. Ercolessi' has verified by molecu-
lar dynamics that, for example, a spherical average of the
potential of Ref. 13 leads to a bcc rather than a fcc crys-
tal, and therefore has to be discarded at the outset.

where ( V(
~
R; —RJ ~

) ) is calculated with the prescription
given in Eq. (2.5) [through a Fourier-transformed V(q)
given in Table II], and co-„are the self-consistent pho-

nons. This free energy is a parametric function of both T
and a. For a given T, the equilibrium lattice spacing ao
is obtained by varying a and finding the minimum of
Fscp. Figure 3 (in Sec. IV) shows the behavior of Fscp as
a function of the lattice spacing. It is seen that Fscp gen-
erally has a local physical minimum, then a local max-
imum, and then a "runaw'ay" descent, which eventually
terminates at some large lattice spacing where one or
more phonon branches become imaginary. This latter
runaway's "explosive" instability comes from the logarith-
mic divergence in the vibrational entropy term in Eq.
(2.12) which occurs when' the frequency becomes zero.
This divergence is unphysical since it comes from the ar-
tificial entropy divergence S-—ln(Pfuu), which occurs if
~~0 while insisting on a harmonic treatment, which is,
of course, wrong. The local minimum obtained at
a =an(T) corresponds to the stable configuration of the
crystal at temperature T, and when this local minimum
disappears we say that the crystal has become unstable,
and the corresponding temperature at which it occurs is
called the bulk instability temperature Tz. At T =0 the
minimum of Escp occurs at an a =ao(0) value only very
slightly larger than W2RO, where Ro is the position at
which the pair potential has a minimum. The slight ex-
pansion [ao(0) —PRO ]/v 2R o is due to zero-point
motion and amounts to 0.4% in copper, which is negligi-
ble for all purposes.

The quasiharmonic method is similar in spirit to the
SCP method and calculations are analogous to those just
described, except that all thermal averages are not evaluat-
ed explicitly but are instead replaced by their value in the
most probable configuration, e.g.,

R (A)

FIG. 1. Pair potential (B) for copper used in our calculation,
compared with other potentials ( A and C) also examined by us.

We therefore had to construct our own empirical poten-
tial for copper. It was chosen to be short ranged, with a
minimum at a distance Ro very close to the r=0 first-
neighbor distance ao/V2. Apart from this, it had to (i)
yield a reasonable fit of the room-temperature phonons of
copper; (ii) lead to a reasonable thermal expansion in the
entire temperature range 0 K to TM', and (iii) give similar
results with both SCP and QH theories. The SCP thermal
properties for a given potential V(R) generally depend
upon its, global form, i.e., on V(R) at all R around the
equilibrium value Ro(T), within a range which is quite
large at high temperatures. On the other hand, the QH
thermal properties are very sensitively dependent upon the
potential behavior at the equilibrium distance V(RO(T)).
A small change of V near Ro will thus leave the SCP re-
sults unchanged, but will be felt very strongly in the QH
calculations. It is therefore reasonable and easy to adjust,
by trial and error, the actual form of V(R ) near
Ro ——ao/V 2, so that SCP and QH results agree. In other
words, a disagreement between QH and SCP is not a
necessity and can be eliminated to yield a simple yet accu-
rate QH calculation. Figure 1 shows three typical poten-
tial curves among the many examined. The final choice
was made by trial and error, as illustrated in Fig. 2. This
figure shows that the predicted thermal expansions of po-
tential 8 in SCP and QH are sufficiently close to the ex-
periment below T =1350 K and sufficiently similar to
each other (note the expanded scale) to justify the adop-
tion of this potential in the present work. The Fourier
coefficients of this potential are given in Table II.

As mentioned in the Introduction, we note that this po-
tential is extremely shallow, particularly if one compares
its contribution to cohesion, 6

~
V(RO)

~

=0.72 eV, with
the actual cohesive energy per atom, 3.49 eV. The vast
quantity of arbitrariness implied in our procedure of con-
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FIG. 4. Phonon spectrum of copper in SCP for T =300 and
1350 K.

T( K)

FIG. 2. Calculated lattice spacing as a function of tempera-
ture for the potentials A, B, and C. For the model potential
(B), the results obtained from both QH and SCP are shown,
while for others the result obtained from QH alone is shown.

struction might well allow this discrepancy to be reduced.
On the other hand, as discussed in the Introduction, these
two numbers are expected to disagree on physical
grounds, differing only by an unknown volume cohesive
term. When this calculation was completed, a molecular-
dynamics test' showed that potential B does indeed yield
a fcc crystal, with a melting temperature of about 1000 K,
in fair agreement with that of copper, TM = 1356 K.

IV. RESULTS AND DISCUSSIONS

Figure 3 illustrates our results, for free energies of
copper obtained with SCP and QH calculations. It is seen
that the vibrational lattice instability occurs at about 1900
K in SCP and at 1750 K in QH, as signified by the disap-
pearance of the minimum in the free-energy curve. We
note that, while these temperatures are clearly larger than
the melting temperature, 1356 K, they are still in the same
order of magnitude.

The shift in the position of the free-energy minimum
with increasing temperatures leads to the crystal expan-
sion of Fig. 2. We note that the calculated expansion be-
comes very nonlinear at high temperatures, preceding the
instability. The experimental expansion, on the other
hand, remains rather linear all the way up to melting. We
suspect that the many-body forces, which are not included
here, do in fact play a role in preventing even the small
amount of nonlinear expansion predicted by our calcula-
tion below T~ from taking place.

Figure 4 shows the self-consistent phonon spectrum cal-
culated at room temperature and just before melting. . A
general softening of all branches is observed, with no par-
ticular preferential effects. We have singled out, in partic-
ular, two zone-boundary modes, whose temperature-
dependent frequencies are shown in Fig. 5. A similar T
dependence is found for the sound velocities, as shown in
Fig. 6. The general behavior of all these quantities is such
that they decrease initially linearly with temperature, and

—scp
---- QH

0 EXPERIMENT

Fsct(ev)
-0.54

-0.62

-0.70

-1.50

-1.58-

SCP

t

T = 300 K

QH

T=300 K

1500 K

F,„(eV)
- -0.54

- -0.62

- -0.70

-1.34

- -1.40

70-

XI-

0
Z

a~ 60-

R
Qz
Ox
O.

50

-1.68

1750 K

-1.54

-1.76 -. -1.62

2.7 3.1 2.7 3.1
R (A) R (A)

FIG. 3. Free energy (SCP and QH) as a function of the first-
neighbor distance for various temperatures.

I

200 700 1200 1800
TEMP ERATURE (K)

FIG. 5. Temperature dependence of zone-boundary phonon
frequencies of copper, q =(2m/a)(1, 0,0) for both SCP and QH
calculations.
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4500 —SCP
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~ EXPERIMENT

—$CP
---OH

0.3-

3500-

V'aa-

2000
200 700

I

1200
I

1800

then progressively faster. The total decrease at the insta-
bility is generally on the order of 20% of the T =0 value.

We have also calculated the mean-square vibration am-
plitude of an atom (

~
u;

~
) as well as the mean-square

interatomic displacement (
~
u; —uJ ~

), both of which are
shown in Figs. 7 and 8, respectively. Once again, (u;(T))
is linear at low T and then develops a strongly increasing
slope near the instability. This is reminiscent of the sim-
plest version of self-consistent Einstein theory, ' where
the instability condition is

2g2(U') =2g2 kg Tg

Cp
(4.1)

016

+CD

~aos-

TEMPERATURE (K)

FIG. 6. Temperature-dependent [100] sound velocities calcu-
lated with SCP and QH.

1000 2000
TEMPERATURE(K)

FIG. 8. Mean-square interatomic displacement as a function
of temperature (SCP and QH).

( Co being the spring constant, and Q-n/a), implying an
infinite slope, 8/BT(co ) ccconst&((T TI) '~ —Another.
similarity suggested by Eq. (4.1) is that to the Lindemann
melting criterion ((u ))'~ /a-0. 1 —:0.2, independent of
mass and forces. Figure 7 indicates that a similar ratio is
obtained in our calculation, with a value close to 0.11 at
the instability temperature.

In conclusion, we have used the self-consistent phonon
method and the quasiharmonic method to investigate the
thermal properties of copper. In particular, the
temperature-dependent phonon spectrum, crystal expan-
sion, mean-square displacement, and vibrational free ener-

gy have been evaluated explicitly. A model pair potential
for copper has been specially constructed for the present
investigation, which was required to give-similar results in
SCP and QH. Having obtained this result for the bulk,
one could use the simpler QH scheme for more complex
studies involving surfaces and defects with confidence.
The vibrational lattice instability of the crystal has also
been investigated and is found to be qualitatively similar
to that predicted by the simple self-consistent Einstein
model.
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APPENDIX A

We show that, to second order in displacement, the factorization of

—CX 2
~ —CX (Al)

is correct.
We first expand in powers of u,

P &=—(Po &o)—+ gR'(Po —&o»i, + 2 g (Po —&o)uiu~. + 2 g [(Po"—&o")—(Po —&o)] (A2)

and

RiR~ RiRu+uiRp+u~Ri +upui
~
u

~

2 (Ro Q) (Ro. ii)~+4 (A3)

where

are all evaluated at equilibrium position. Using Eqs. (A2) and (A3) it can be seen that, to second order in u, the differ-
ence between the left- the right-hand sides of Eq. (Al) results from the cross product .

g R „u„(Po—ao)
V

0, 0
ugRp upRg
Ro 2 Roi2

2(R D. ix) R iR„)
0 2 0 2

Consider case (i), where A, =@=x; then
r r

r

2(Po —o'o)

~RO~2

R„
", , (R„"(u„')+R,"(u„')+R,"(u,') )

2R
2 (R„Ry ( u„uy ) +R„R,(u„u, ) +RyR, ( usque ) ))Ro(2 x JI x

r

We note that for a fcc crystal with first-neighbor interaction, the cross term X is zero since

R02
R„(u„)= " (R„(u„)+R„(u )+R, (u, ))

2R
. R„R~( u„u„)+R„R,( u„u, ) = (R„R» ( u„u~ ) +R„R, (u„u, ) +R~R, ( u„u, ) ) .

TABLE III. Thermal average of various types of displacement correlations calculated using Eq.
(2.9). Calculations are done at T =500 K, and units are A .

R

(—1,1,0)
(—1,—1,0)
(1,—1,0)
(1,1,0)
(1,0, 1)
(1,0,—1)
(—1,0,—1)
(—1,0,1)
(0,1,1)
(0,—1,1).
(0,—1,—1)
(0,1,—1)

&u„,u„)
0.015 98
0.01598
0.015 98
0.015 98
0.015 98
0.015 98
0.015 98
0.015 98
0.01640
0.01640
0.01640
0.01640

(u„,uy )

0.002 09
—0.002 09

0.002 09
—0.00209

0
0
0
0
0
0
0
0

(u„,u, )

0
0
0
0

—0.002 09
0.00209

—0.002 09
0.002 09

0
0
0
0

(uy, u, )

0
0
0
0
0
0
0
0

—0.00209
0.00209

—0.002 09
0.002 09

0.046 59
0.046 59
0.046 59
0.046 59
0.046 59
0.046 59
0.046 59
0.046 59
0.046 59
0.046 59
0.046 59
0.046 59
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Consider now case (ii), where A,&p, and, for instance, A, =x and p =y; then
I

X . [RxRy((ux)+(uy))+(Rx +Ry )(uxuy)+RxR (u'yu )+RyR (uxux)]2 x & x

2(Po —~o)
iRoi2

R R

[RP~ 2
(Rp2(u2)+R 2(u )+R, (ux)+2R„Ry(uxuy)+2R„R, (xxux)+2RyRx(uyux)) . (A7)

This result is due to symmetry and is evident if one looks at the first-neighbor positions of a fcc crystal, and at the corre-
sponding thermal average of various displacements that are given in Table III. By symmetry, X =0 also for A, =p =y or
z.

We note, as before, that X is zero, because

2R R" ' (R„'&.„'&+R,"( &+R."(..'&),

4R R

[R
R„'R,'&uyu, & =Ry'Ro& u„u, & =0,

and

(A8)

(A9)

as can be seen from Table III and by looking at the first-neighbor positions. From this we can conclude that the cross
product X is, in general, zero, and the factorization given in Eq. (Al) is true up to second order in displacement.

APPENDIX B

Here we explicitly give the dynamical matrix for a fcc crystal used in the self-consistent phonon calculation:

D~ =4((P) +2(a) )+4(P—a)(B +2C —2D) —4cos(re~) cos(mq, )((u) +B(P a) )—
' —2c s(onq„)[ c(omsq~)+c s(omq, )]((P+a)+2C(P—a) 2D(P a—)), —

D~~ =4((P)+2(a) )+4(P—a)(B+2C 2D) 4cos(nq—x ) cos—(mq, )((a)+B(/3 a))—
—2cos(mq„)[cos(mq )+cos(mq, )]((P+a)+2C(P—a) —2D(f3—a)),

D =4((P)+2(a))+4(P—a)(B+2C 2D) 4cos—(rex)—cos(aqua)((a)+B(P —a))
2cos(n q,—)[cos(mq„) +cos(m q~ ) ]( (P+a ) +2C (P—a ) —2D (P—a ) ),

D„~=2(P—a ) sin(mqx ) sin(wq~ )(1—2A —2D),

D =2(P—a) sin(~q, ) sin(mq, )(l —2A —2D),

D», =2(P—a) sin(mq~ ) sin(mq, )( 1 —2A —2D),

where

/
(u„u„)

/

ap/2

is calculated for the neighbor (ap/2)(1, 1,0),

/
(u„u„)

fB=
a p/2

is calculated for the neighbor (ao/2)(0, 1, 1),

/
(u„uy)

/C=
a o/2

is calculated for the neighbor (ap/2)(1, 1,0), and

& lu f')
ao

The first step of the calculation is done by taking (a ) =a =0, (P) =P, and B,C,D =0.
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