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Botet and Jullien [Phys. Rev. B 27, 613 (1983)] and Botet, Jullien, and Kolb [Phys. Rev. B 28, 3914
(1983)] performed a finite-size scaling analysis of the spin-1 antiferromagnetic Heisenberg-Ising chain.
Their work was criticized by Bonner and Miiller [Phys. Rev. B 29, 5216 (1984)] on the grounds that a simi-

lar analysis for spin % yields misleading results. In the present work, we show that the plane-rotator ver-

sion of spin-1 chain has some features similar to that obtained by Botet et al, although, unfortunately, our
model can be solved analytically only over a restricted set of the parameters, and thus does not unambigu-
ously confirm their results. The need for further studies is emphasized.

There have been a number of solutions of the spin-1
linear chain antiferromagnet, with or without crystal-field
anisotropy, and the results to date are confusing.

The latest controversy centers about recent studies by
Botet, Jullien, and Kolb.! Following upon qualitative sug-
gestions by Haldane,? these authors set out to demonstrate
“‘experimentally’’ by finite-size scaling methods, some of
the differences between integer-spin systems and those of
half-odd integer spins. Indeed, some of their results are
truly unusual, and differ from well-known properties® of
analogous s = e} spin chains. For example, they find at the
isotropic antiferromagnetic (A=1) point that the excitation
spectrum has a finite gap. This energy gap disappears when
the anisotropy parameter D < — -}-, or at D =1 precisely. A

number of other properties also appear unusual, and un-
doubtedly motivated Bonner and Miiller* to reexamine the
method of calculation.

In their Comment on the work of Botet, Jullien, and
Kolb, Bonner and Miuiller* stated that their application of the
same finite-size scaling techniques to the s=é— chain also

led to unusual, and incorrect, results and therefore the
method should be considered suspect, for short chains at
least. In their reply, Botet, Jullien, and Kolb’ (BJK) indi-
cated that the convergence of integer-spin chains might
differ from that of half-odd—integer-spin chains, and
showed some similarities between s=-§- and s=-§-, as dis-

tinguished from s=1. At the present time, the situation
may be said to be unsettled with respect to these questions.
In the present Comment, we introduce a modified,
plane-rotator-like model of integer spin. This we can solve
approximately, but analytically on the parameter lines
D =\=0, and also A=0, 0 < D. Other values of D, \ can-
not be examined simply by our methods, although they
might be amenable to more sophisticated analyses. Our
conclusions are that an energy gap does exist for D=\ > 2,
and for A=0, D>1. For D=A=<2, and for A=0,
0 < D =1, the energy gap vanishes and the correlations de-
cay dlgebraically. The line D=\ appears to be special;

there, decoupling of the chain into two interpenetrating, but
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noninteracting, chains occurs. It would certainly be interest-
ing to see whether this also appears in the model studied by
BJK.

Consider . the spin-1 Hamiltonian on the linear chain
1==np=<N,

H =3 [S5S5+1 +S4S% 1 +AS2S241 +D(85)?]
n

=3 [5(S,*Sy41 +H.c.) +\SZSZ ., +D(S5)?] , (1)
n

where SZ2= —1,0,1 and the matrix elements of S ¥ include
V2. If D is sufficiently large, we can enlarge the Hilbert
space to include higher integer values of SZ without appreci-
ably affecting the results, provided the matrix elements con-
necting to the unphysical states, arising from S ¥, are not
too big. Suppose we introduce the continuous angular vari-
ables 6,, and replace

L L
V2 V2

Then the conjugate variables p, must be the (discrete)
operators

1 9
- =p = +
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S, by e, S, by e (2a)

(2b)

replacing SZ. We have thus motivated our modified spin-1
model. It is defined by the following Hamiltonian:

N
H =3 12c0s(8,—0,4+1) +\pupn+1+Dp7] . 3)
n
We now perform a duality transformation
1 9
0n+1'—0n~'i—axn+lx Dn+1 " Xp+1— Xy . 4)

The x,’s are discrete (integers). On the line D =\, (3) now
simplifies to the following:
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31 COMMENTS

The Hamiltonian has separated into two interlacing parts:
that on the even-numbered ‘‘particles’’ and that on the
odd-numbered ones. We can treat either one of them, or
the case A=0, D >0 by the same method that we now il-
lustrate.

We concentrate first on the coefficient of D. Replacing
Xom bY (X2 —2m), we find x3,, — X2m -2 is replaced by

Ame(XZM_x2m—2_2) . 6

Next, defining ‘u,, by

Ax2=up+Ax, , @)
we obtain
N/2 N/2
';-D 2Ax,f,=é—D 2u,,,+(x~—x2—N) . (8)
m m

We make the term in parentheses vanish in the thermo-
dynamic limit by requiring (Ax,—2) =0, i.e., by requiring
that the density of even-subscripted particles be exactly 7‘-
This becomes a strict requirement if we realize that u,, is
“large” at Ax, <0 [u,(0)=6], and thus only Ax,=1
[un(1) =21, Axp=2 [u,(2) =01, and Ax,=3 [u,(3) =01
can have significant amplitudes in the state vectors, assum-
ing the potentials at Ax,, =<0 are replaced by a ‘‘hard wall”’
boundary condition. (We have already discussed this pro-
cedure elsewhere® in connection with the solution of the
transfer matrix in the plane-rotator model, and the conju-
gate problems of surface roughening.) The hard wall and
the density é— suggest that a replacement of the even-

subscripted Hamiltonian by a spin-é— linear amiferromagnet
would be advantageous. In terms of spin-%— operators o,,,i'
and o7,

+Dup <> Dloial -+ 5]
and
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Thus,

H aen=2 3+ (ofom1+He) ++D(chof-1+7)]
m

(10)

The properties of this s =% chain are known.>* In particu-
lar, the critical point is at D, =2, corresponding to an essen-
tial singularity. For D =<2 the spectrum is gapless. For
D >2 an energy gap given by A=4 exp(—B/~/D-2)
opens up, with 4,B being known constants, a law also satis-
fied in the Kosterlitz-Thouless model where the S=1
model also plays an interesting role.®

The odd-numbered subchain yields identical results; thus,
the system breaks up into two interpenetrating, identical,
noninteracting s =+ chains on the A =D line.

On the A =0 line, the reduction of (3) leads to just one
Hamiltonian, identical to what we have already studied,
with, however, D replacing é—D. Thus, for A=0 we find
D.=1.

We are unable to solve the model when D =0, and so
cannot confirm that A,=1 in that case, at the isotropy point
of Eq. (1). The reason is not merely technical—it seems
that (3) does not have a finite ground state when D=0,
without a formal cutoff on the |p,|’s being imposed addi-
tionally.

Because our model, Eq. (3), differs in some essentials
from the original, Eq. (1), it should not be surprising if the
numerical value of some critical constants differs. The
feature—the decoupling of the spectrum into two disjoint
spectra on the line D =\—may be a feature of both, how-
ever, and may indicate a singular line in the phase diagram.
The search for such a “‘trajectory’” would be a worthwhile
numerical goal, in our estimation.

This work was supported through Grant No. DMR 81-
06223 of the National Science Foundation. I am grateful to
S. Rudin for bringing the details of this controversy to my
attention.
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