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Transverse Ising spin-glass model
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We discuss the zero-temperature behavior of the transverse Ising spin-glass (+Jo) model. The d-

dimensional quantum model is shown to be equivalent to a classical (d+1)-dimensional Ising spin glass

with correlated disorder. A renormalization-group treatment of the one-dimensional quantum model indi-

cates the existence of a spin-glass phase. The Migdal-Kadanoff approximation is used to obtain the phase

diagram of the quantum spin glass in two dimensions.

In a recent report, Chakrabarti' studied transverse Ising
spin-glass models to assess the effects of quantum fluctua-
tions on the usual spin-glass properties. In particular,
the Edwards-Anderson version of the transverse Ising mod-
el6 (TIM) was considered, in which the exchange coupling
between any pair of spins is a random variable symmetrical-
ly distributed about zero. Using Gaussian functional aver-
ages, Chakrabarti' showed that (a) for finite temperatures,
the critical behavior of the d-dimensional transverse Ising
spin-glass model is the same as that of the d-dimensional Is-
ing spin glass, and (b) at zero temperature, however, quan-
tum fluctuations drive the system to (8+1)-dimensional Is-
ing spin-glass behavior. It is worth stressing that these
results are the same as those for the nonrandom (pure)
case.2 7

The purpose of this work is to point out that although
Chakrabarti's analysis is essentially correct, it overlooks
some important features of the corresponding classical
model. To see this, we first briefly discuss how Suzuki's
proof of equivalence between the TIM at zero temperature
and the Ising model in one more spatial dimension is affect-
ed by bond randomness. Secondly, a renormalization-group
(RG) analysis of the one-dimensional quantum spin-glass
model is obtained. And, finally, a crude Migdal-Kadanoff
approximation is used to obtain qualitative information
about the critical behavior in two dimensions.

The transverse Ising Hamiltonian is

0= —I X a.,"—X Jta (r'
(IJ&

where the sums run over sites on a d-dimensional lattice,
(i,j) stands for nearest-neighbor pairs only, and the a's are
Pauli matrices; I and JtI are the transverse field and ex-
change couplings, respectively.

At zero temperature, the critical properties of (1) follow
from the ground-state energy

Ea({J&))= lim( —k&Tin Tre s )T-0

for a given bond configuration {J&). Following along the
same lines as in Ref. 7 we get
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number of sites in d dimensions and an effective classical
Ising Hamiltonian was introduced as

Herr = 1
mn
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(4)

j =~s({jt))= Jtj2J3 ~ ~ Jb (5)

Note that the sums in k lead to an effective extra spatial
dimension; that is, the corresponding classical system con-
sists of a stack of d-dimensional hyperplanes. The coupling
between spins at positions i and j within a particular hyper-
plane is the same, irrespective to which hyperplane (i.e. ,
which k) they belong. There is also a coupling between hy-
perplanes which is independent of JI~. As argued in Ref. 7,
the anisotropy along the extra dimension in (4) does not
play any crucial role in the critical properties of the pure sys-
tem.

The critical properties of the random system can, in prin-
ciple, be obtained by performing a configurational average
over Eo({Jtt)). What is important to stress here is that, un-
like the usual Ising spin glass, randomness is highly corre-
lated along the extra dimension of the equivalent classical
system. Also, there is no randomness whatsoever in the
couplings between hyperplanes. For this reason one should
not expect the critical behavior of a d-dimensional
transverse Ising spin glass at zero temperature to be the
same as that of a (usual) (d+1)-dimensional Ising spin
glass. The fact that correlated randomness crucially alters
the critical behavior of an otherwise uncorrelated system
was also verified in the transverse Ising model in a random
longitudinal field. '

At finite temperatures, however, the equivalent classical
system is still finite in the (d+1)th dimension, 7 so that its
critical behavior is characteristic of d dimensions. The effect
of correlated randomness is simply to shift the critical tem-
perature.

Let us now specialize to one dimension and recall an ex-
act scaling for the dilute transverse Ising chain, as derived
by Stinchcombe: upon rescaling, a "series" combination of
b bonds (jtj2,j3, . . . , js',jt=Jt/I', with J, =O or J)
transforms as

where the n and m limits come from T 0 and from the
noncommutation aspects of H, respectively; N is the total

at zero temperature. Note that if all j's are equal, one has,
in the usual way, "j,= v = 1, which are the exact results. '

To see that (5) is actually more general than originally
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proposed, 9 we perform a finite-size rescaling transforma-
tion' analysis in which a renormalization-group recursion
relation is generated phenomenologically through the rescal-
ing of the energy gap (5) between the two lowest
states. ' A system of size n and coupling constant j is re-
lated to a smaller system of size n/b and coupling constant
j' through

~.&,(j') =~~„(j) .

If we start off with a system of size n = 2b, and allow for
all possible configurations ((j})in which each bond is + j,
we can solve Eq. (6) numerically for each bond configura-
tion to get j'((j}). In Fig. 1 we show g'—= 1/j' as a function
of g—= 1/j for several scaling factors, and for all possible
bond configurations. The essential feature displayed in Fig.
1 is that, for a given scaling factor, all configurations with
an even (including zero) number of negative bonds yield
the same function g+ (g), whereas for an odd number of
negative bonds we get g' (g) = —g+ (g). Although the re-
cursion relations gg (g) we obtain are only approximate,
the fact that the presence of an odd or even number of neg-
ative bonds only affects the sign of the renormalized cou-
pling (but not its magnitude) can hardly be regarded as for-
tuitous. We interpret this as signaling that Eq. (5) still
holds [at least asymptotically, since the curves in Fig. 1 do
not exactly fit g'+ (g) = +ga] when J&=+ J, although we
cannot at present prove it formally (as done by Stin-
chcombe9 for the dilute TIM).

This result is consistent with an exact zero-temperature
critical condition for a transverse Ising chain with (large) N
sites and arbitrary JI's'4

N NIIJ

Q Ji= I =
Q jk (7)

I=l k=1

where the second equality follows from considering a chain
with N/b sites and couplings jk =—(J„'/I"). Although Eq. (7)
is only valid at criticality, it can be regarded as a "phe-
nomenological" condition from which a generalized version
of Eq. (5) follows (at least, at criticality).

Returning to the spin-glass case, consider a model in
which each bond is distributed according to a binary distri-
bution

p(j, ) =pg(j, —jo)+ (1—p)5(j, + jo)

where p and (I —p) are the concentration of positive and
negative couplings + jo, respectively. Then, the renormal-
ization-group (RG) transformations are defined through'5'6

J"(j') =) g dj'l&(JI)8~J' &b('IJI})}— (9)
l
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Taking (5) and (8) into (9) yields a transformed distribu-
tion which is exactly binary (we take b = 3, in order to pre-
serve the symmetry between ferromagnetic and antifer-
romagnetic phases):

J"(J') =p'5(J' —Ji) )+ (I p')5(j'+ l3»— (10)

with p'=p3+3p(1 —p)'. The fixed distribution P' yields
the following nontrivial fixed points (g=1/~j~ plays the
role of temperature) and exponents:

FIG. 1. Recursion relations obtained from Eq. (6) for
b=1.5( —~ —), 2( ——), 2.5( ' '), 3( — —). For a given b,
all configurations with an even (odd) number of negative bonds lie
on the same branch. Upper branches: g+ (g); lower branches:
g' (g).

p =0,
p'= 1

g'= 1 (antiferromagnetic critical point), va = vv = 1

g'= I (ferromagnetic critical point), va= 1; vv=0 ()tv=0)

g'= 1 (spin-glass fixed point), va = vv = 1

In Fig. 2 these fixed points are displayed, together with
the trivial ones. Note that, while the ferromagnetic and an-
tiferromagnetic phases are reduced to lines in the phase dia-
gram (at p = 1 and 0, respectively, for g ~ I ) a spin-glass
phase is present for g ~ 1 and 0 & p ( 1, since all these
points are driven towards the p'= ~, g'=0 fixed point.
From our previous discussion, the critical behavior at g = 1

I

is the same as that of a two-dimensional correlated Ising
spin glass at finite temperatures. Since it is now believed4
that there is no finite temperature (true) spin-glass phase in
two dimensions, this critical behavior is attributed to the
correlations in the classical formulation, which do not gen-
erate frustration effects. If, on the other hand, we accepted
Chakrabarti's results without restrictions we would be led to
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conclude that a spin-glass transition exists in two dimen-
sions.

A qualitative description of what happens in a square lat-
tice for the quantum model may be obtained by means of a
Migdal-Kadanoff approximation. ~ If we neglect commu-
tation aspects in the bond-moving step of the approxima-
tion, we get for a "parallel" combination of bonds j&, j2,
and j3

FIG. 2. Flow diagram for the one-dimensional transverse Ising
spin glass at zero temperature in the field (g=I/Jc) —concen-
tration of positive bonds (p) space. The critical line g =—1 separates
the paramagnetic (P) and spin-glass (SG) phases.

FIG. 3. Flow lines, fixed points, and critical curves for the two-
dimensional transverse Ising spin glass at zero temperature (same
parameters as in Fig. 2). Bold lines are critical frontiers between
antiferro magnetic (A), spin-glass (SG), ferromagnetic (F), and
paramagnetic (P) phases.

p' = ft (p) + f2(p)

where

(13)

cal features of the problem, consists in forcing the trans-
formed distribution back into binary form by (1) grouping
all positive (or negative) outcomes of j' together, and (2)
matching the average of ~j'~ obtained from the (forced)
binary and from the (actual) transformed distributions. '6 It
is then straightforward to show that the (approximate)
renormalization-group equations are

Jp Jl +J2+ J3

since the exchange couplings just add amongst themselves
in the Hamiltonian. With these, and the "series" combina-
tion given by (S) we get for a b = 3 scaling'6

J = ~3( Ii I ) =Jij 2J3+ J4J5J6+ J7J8J9

fi(p) =p'+»p'(I p)'+ 27p'(I —p)—' ~

f2(p) = 9p'(1 —p) + 9p'(I p)'+ S7p'(1 p)'— —

+99p (1 —p) +27p (1 —p)

and (again g—= 1/j)

(IS)

If one starts from a binary distribution (for each of these
bonds) in two dimensions, the transformed distribution is
no longer binary, but has four 5's. Since, under iteration
these distributions will evolve to more complicated forms,
one has to resort to further approximations. A particularly
simple approximation, '6' which retains the essential physi-

go= 1 3

1+2fi(p) + 2fi(l —p)
(16)

Solving (13) and (16) for fixed points and exponents, "
we get the results displayed in Table I. In Fig. 3 we show
the critical lines, i.e., those RG trajectories linking two non-
trivial fixed points. Although these results should be re-

TABLE I. Results for the two-dimensional transverse Ising spin glass, obtained within a Migdal-Kadanoff
approximation, for a scaling factor b = 3. The eigenvalues are given by X = (Bg'/Bg)

~ + + andE g p
X~ = (dp'/dp) [,.

p =1
p =095
p =05
p =005
p =0

Fixed points

g = 1.73
g"= 1.51
g =1.20
g =1.51
g = 1.73

g

g

g

g

Eigenvalues

X =0
P

A.p
= 1.71

z =0
P = 1.71P

Z =0
P

Remarks

Ferromagnetic critical point
Tricritical point (Ref. 16)
Spin-glass fixed point
Tricritical point (Ref. 16)
Antiferromagnetic critical point
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garded as merely qualitative, Fig. 3 shows marked differ-
ences from, the one-dimensional case. In particular, the FM
and AFM phases are now present in a small region of the
phase diagram, unlike the one-dimensional case. This
feature was already observed in the Ising spin glass. '
Again, a spin-glass region is present. It is worth mentioning
that the fact that v~ is the same for all nontrivial fixed
points is an artifact of the Migdal-Kadanoff approximation
for quantum systems. %e are currently investigating this
problem with a cluster technique' that will probably give

the correct trend of v~, as it was the case of dilution. '
Also, other ways of determining an approximate binary dis-
tribution will be tested.
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