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First-order transition in systems of finite thickness
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Film systems, limited by two parallel disrupting surfaces and undergoing a first-order bulk transition, are
shown to possess a number of specific features essentially governed by the ratio of the film thickness L to
the "characteristic" length Lc of the transition. For disordering boundaries, it is found that (1) the transi-

tion temperature scales as L for L/Lc » 1, (2) the continuous transition of the surface order parame-

ter, predicted to occur in semi-infinite systems, transforms into a weak first-order transition, and (3) below

a critical thickness, no transition occurs. Comparisons with experimental systems are discussed.

In studies of critical behavior in "finite" systems, the
concept of finite-size scaling has provided a powerful tool to
predict the characteristics of the transition in the limit of
large finite systems, once the infinite case is known. ' For
example, systems bounded with some scale L in one direc-
tion but infinite in the others (so-called films) can be
viewed as bridging the gap between d- and (d —1)-dimen-
sional behavior. 4 7 Another type of such interdimensional
system is an infinite pile of (d —1)-dimensional layers cou-
pled by a tunable interaction which yields so-called
d-(d —1) anisotropy crossover. s 'c

Much less attention has been paid to a first-order phase
transition which, in such film systems, is expected to be
strongly dependent on the presence of two surface boun-
daries. Of particular interest is the case of systems, exhibit-
ing a phase transition in d dimensions which disappears or
changes character in d —1 dimensions. This can occur, for
instance, when d=3 and the group of symmetry under
which the Hamiltonian is invariant is continuous, as is the
case for the melting transition. "

By varying the width of the film, one may expect a con-
tinuous crossover from (d —1)-dimensional (small L) to
d-dimensional behavior (large L). Examples of relevant
physical systems are multilayer adsorbates of simple atoms
or molecules on smooth substrates, antiferromagnetic crys-

I

tal films, free-standing thin liquid-crystal films, lipid mono-
layers at an air (alkane)-water interface or lipid membranes
in which the scale L is proportional to the hydrocarbon
chain length of the lipid molecules. It has recently been
sho~n within mean-field theory that for semi-infinite sys-
tems which undergo a first-order bulk transition, the surface
order parameter may nevertheless exhibit a continuous tran-
sition. ' Here, I consider the influence of a second inter-
face, and I show that as a consequence of the disrupting ef-
fect of the two boundary surfaces, the transition tempera-
ture is different from that of the infinite or semi-infinite
case. I find that, with disordering boundaries, (i) the transi-
tion temperature is lowered and follows a L ' power law for
"large" L, (ii) contrary to the semi-infinite case, the surface
order parameter undergoes a weak first-order transition with
a jump scaling as L '2, and (iii) for finite thickness no
transition occurs below a critical width I., which depends on
the disordering strength of the boundaries.

Consider a d-dimensional film system bounded by two
(d —1)-dimensional parallel surfaces separated by a distance
L, large compared to the microscopic structure. The one-
component order parameter M depends on z, the coordinate
perpendicular to the two surfaces.

Generalizing the semi-infinite case, ' I write the generic
form of the Landau free-energy functional as

1 dMF(MI = J dz — + f(M)+5(z) fi(M)+5(z —L)f2(M)
2 dz

f(M) is the bulk free energy for a homogeneous field con-
figuration M, and fi(M) and f2(M) are the surface contri-
butions describing the influence of the two walls on the
order-parameter field. In the mean-field approximation, the
order-parameter profile is determined by the Euler-Lagrange
equation which yields

d2M df
dz2 dM f(M) = Ta(T)M ~uM4+ ~uM (4)

I

Order-parameter profiles, which obey (2) and (3) and
yield the absolute minimum of the free energy, describe the
equilibrium thermodynamic state of the system. As will be
discussed below, the features of the systems considered are
qualitatively independent of the specific form of the bulk
free energy f(M). However, to be specific, let us consider
the case of a system exhibiting a bulk tricritical point

with the boundary condition

dz
+ dfi, 2
-'dM -.. '

where Mii = M(z = 0) and ML, = M(z = L).

(3)

Here, I am concerned with u & 0, which leads to a first-
order bulk transition at a=a'= ~u2/v. At T= T' (with

T T' proportional to—a —a'), the bulk order parameter
jumps by the amount (3u/4u)' 2.

For the surface contributions fi(M) and f2(M), one can

31 4672 QC1985 The American Physical Society



31 BRIEF REPORTS

take124 13

fi.2(M) = &&1,2M'

which reflects the disordering effects of the boundaries. In order to extract the relevant parameter of the problem, I intro-
duce the dimensioniess variables

x= —,l=L2
L'

/2
' ' 1/2

M
g2 0

7'i 2= ai 2
U

4 4

r

2
i/2

Q (6)

With (4), (5), and (6), the free-energy functional becomes

I

f(M) = ~a ( T)M TbM + 7uM—4 (9)

also possesses a natural length scale Lp= (u/b )' which
diverges on the critical line (b=0). Since, for a given sys-
tem, the characteristics of the transitions are governed by
the dimensionless parameter I = L/Lp, any form of the free
energy, for which a characteristic length can be defined, wi11

yield the same qualitative features. The behavior of the sys-
tem as a function of the temperature emerges on examina-
tion of Eq. (7). For very large L(I ~), the total free en-
ergy F approaches that of the free-energy density f(M)
times the width l. As expected, the transition is then affect-
ed very little and the effects of the two walls become in-
dependen, t so that the problem reduces to the analysis
presented in Ref. 12. For finite but still large l, the pres-
ence of boundaries and of the gradient term introduces ad-
ditional contributions to the free energy. For all tempera-
tures, the order parameter profile Q(x= z/L) has two solu-
tions which satisfy the set of Eqs. (2) and (3) and yield an
extremum for F{@}.As the temperature is lowered below
the transition temperature r'(I), the trivial solution Q(x)

0 no longer yields the absolute minimum of F{$}.The
system condenses in an ordered phase whose profile $(x)
strongly depends on the disrupting effect of the boundaries,
as illustrated in Fig. 1. The l dependence of the transition
temperature 2."(I) is determined as follows. Integration of
Eq. (2) and use of (6) yields, for the generic symmetric
case,

where Qp=p(x=0), pi=&(x= 1), and

f(4) = T~A' ~4'+ ~4' .

Scaling introdtices a characteristic length scale Lp = (v/
u2)II2, which defines two regimes: (i) L » Lp, "thick"
films far from the tricritical line (u =0) where Lp diverges,
and (ii) L Lp, "thin" films near the tricritical point.

Note that no loss of generality follows from the particular
form chosen for f(M) [Eq. (4)]. For example, a system
with a bulk critica1 point characterized by the free-energy
density

I

plicit elliptic integral. Inserting the profile @(x) into (7)
yields the extremum of the total free enej. gy as a function of

Tllc11 thc stalilc pllasc ls determined by II11111I111zatloll

of F with respect to QII2', in general, this cannot be per-
formed analytically. However, in the asymptotic regime
I » 1, the leading behavior of the total free energy F{@}
can be obtained explicitly. One could argue that, because of
the finite thickness of the disordered phase wetting the
boundaries, the contribution of the bulk to F{$}is propor-
tional to I and can be expressed as Klf(@II2) where K is a
constant of order unity. This argument is valid as long as
the layer of the disordered phase does not pervade the film,
but becomes questionable in the light of the semi-infinite
case where the width of the disordered layer diverges at
r=r' like In(v" —v). Nevertheless, substitution of the
asymptotic expression of the solution of (10) into (7) con-
firms the linear l dependence of the bulk contribution to
F{$}.This means that the logarithmic divergence is weak
and vanishes in the finite thickness case: at the transition,
only a small layer of disordered phase wets the walls, as il-

lustrated in Fig. 1.'4 So F{P}can be written as the sum of
the bulk term Klf(@II2) and of two positive contributions,
the gradient term and the surface energy whose leading
behaviors for I &~ 1 are independent of l.

Since for I » 1, $1~2= ps (where @s is the bulk order-
parameter value), f (pig) scales as r —v', for small v —v'.
Then F{$} will vanish at a lower temperature r=r'(I)

=v 2I[f($)—f(4'I/2)]' ', @II2=4(x=7) (10)

which is the equation for the order-parameter profile.
Therefore, the boundary conditions (3) can be written as

f(41j2) f(4p) —~rH( .

For a given $1~2, $(x) is given by (10) in terms of an im-

0

FIG. 1. Order-parameter profile $(x): (a) large I, ~i ~ ~ i/2; (b)
small I, 71((r I~; (c) smail I, vi & r II2
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given by

(12)

P(x) =yt(p[1 —eE(x)]

and expanding Eq. (10) to first order in e, one obtains, for
small l, the parabolic profile

y(x) = P)(p[1 —~(I —2x)'] (13)

as shown in Fig. 1.
Substitution of (13) into (7) yields the total free energy

which is found to stay positive at all positive temperatures if
the width l of the film is less than a critical length l, —v~.

At this temperature r'(I), the disordered phase [Q(x) =0]
condenses to the ordered phase.

This result can be compared with the same result for
second-order transitions 4 and reflects simply the L
dependence of the relative weight of surface to bulk contri-
butions.

A decrease in the transition temperature r'(l) with di-
minishing width l is found in many physical systems as, for
example, in multilayer adsorbates on graphites, ' paraf-
fins, '6' and liquid crystals. '

However, in order to observe the l ' power law, the sys-
tem must be in the I= L/Lo » 1 asymptotic regime. This
condition should be met in lipid bilayer systems made of
highly flexible hydrocarbon chains whose lengths are of the
order of 12-22 C-C bonds and for which the typical corre-
lation length Lo can bc estimated to be of the order of a
carbon-carbon link length. In such systems, the power law
(12) was found experimentally. 's

The displacement of the transition temperature given by
Eq. (12) has an interesting consequence as to the nature of
surface transitions. For strong disordering boundaries
(namely, r~ & r" ) and semi-infinite systems, a continuous
surface transition was predicted. ' In the film system, the
free-energy density f (Pt~q) in the middle of the film no
longer vanishes at the shifted transition temperature r"(I)
Thus, Eq. (11), yielding the surface order parameter @0 as a
function of @tgq, implies that the surface order parameter $0
undergoes a jump proportional to l ' . In other words, due
to the finite width l of the film, the continuous transition of
the surface order parameter $0 transforms into a weak
first-order transition.

For arbitrary l, the picture holds, at least qualitatively. As
l decreases, the transition temperature lowers but correc-
tions to the l ' power law become important, reflecting the
increase of the thickness of the layer of the disordered
phase between the surface and the ordered phase, as shown
in Fig. 1. However, a new phenomenon occurs when the
thickness of the film becomes of the order of the natural
length scale, i.e., l 1. To illustrate this regime, I first con-
sider the simple case of weak disordering boundaries: i.e.,
v') &( 1.

Then Eq. (11) implies that @tyq
—$0 is small and equal to,

say, e$t~q, where e is a small parameter, itself a function of
r t and @tgq. Introducing the new function K(x) defined by

In other words, for thin films with width l ( l„no transi-
tion occurs. This result holds for arbitrary value of 7~ with
a critical length which is an increasing function of v~ and
goes to a constant of thc order of the characteristic length
scale for strong disordering boundary parameters (r~ && 1).
For l marginally higher than l„ the layer of the disordered
phase at the surface pervades the whole film, as shown in
Fig. 1.

Such a behavior has been observed in the rotational tran-
sition in adsorbed methane films for which heat-capacity
measurements suggest that the order-disorder transition is
absent when the adsorbed film is less than —3—4 layers
thick.

This disappearance of the bulk first-order phase transition
in very thin films is also reminiscent of the change in nature
and in range of transition temperature of the melting transi-
tion when going from a three- to a two-dimensional sys-
tem.""

The results reported here correspond to disordering boun-
daries but we could have considered alternatively the influ-
ence of a local chemical potential or surface field and also of
ordering boundaries by replacing expression (5) with
ft(M) = ~a~(M —Mt)~ —0~M It is easy to show that for
a finite range of values of M~, the presence of the gradient
term in the total free energy induces an increase in the tran-
sition temperature for decreasing thickness. The transition
occurs from a disordered phase surrounded by two layers of
ordered phase wetting the boundaries to an ordered phase
pervading the whole system. This effect has been observed
in liquid-crystal films.

The mean-field approach used here does not take into ac-
count the effect of fluctuations which can be very important
in low-dimensional systems. A step beyond the classical ap-
proximation towards fluctuation theory should include
corrections to the mean-field profile @(x) and the evalua-
tion of their contribution to the partition function. We are
presently developing this approach.

Note added. After this work was submitted, I became
aware that similar results appear in Phys. Rev. 8 29, 5213
(1984) by Lipowsky and Gompper (LG). The mathematical
analysis developed in the two papers is mean field and thus
similar. LG discuss the case f ($) =

~ a@ —~b@ + 4 c@,
whereas I study f (@)= ~a $' —

4 u $"+ ~v@ . However, as

stressed in the text, qualitative differences in the predictions
of the two models should not exist, a result which is con-
firmed by comparing the two papers. LG postpone the ex-
position of their analysis to a work to bc published, whereas
this paper is self-contained and some details on the treat-
ment are given. The conclusions of the two works are
essentially identical except that I dwell on the significance of
the absence of transition in thin films and discuss its experi-
mental relevance, an aspect just touched upon in Ref. 21 of
LG's paper. LG discuss more thoroughly the dependence
on dimensionality (d = 2 or d = 3) of the thickness of disor-
dering layer and transverse correlation lengths, whereas this
work focuses more on dimensional crossover behaviors.

I am grateful to J. P. Boon and N. Ostrowsky for stimulat-
ing discussions and a critical reading of the manuscript.
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