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J

A random walk which can visit each lattice site at most twice is considered. The universality of self-
avoiding-walk critical behavior with respect to variations of a fugacity for self-intersections is predicted on
the basis of general renormalization-group arguments and explicitly tested in two dimensions, both by exact
enumeration analysis and by cluster scaling calculations. The meaning of the above universality and its
consequences, as far as a correct formulation of Flory approximations is concerned, are briefly discussed.
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The excluded-volume effect present in all real polymers
in solution is expected to be crucial in determining the ob-
served scaling conformational properties. Much theoretical
effort has been devoted, both in proposing lattice random-
walk models able to simulate the above scaling properties,
and in understanding up to which extent different ways of
modeling an excluded-volume condition can lead to univer-
sal results for the critical behavior.

The simplest and most famous model giving a reasonable
descritpion of the asymptotic properties of long polymers in
a good solvent is the well known self-avoiding walk
(SAW).! Alternative descriptions with excluded volume ef-
fects are given by the model of Domb and Joyce? and by the
v-vertex trail® Investigations by series analysis’? and
renormalization-group considerations* suggest that these
latter walks should belong to the SAW universality class.

More recently, particular attention has been given to the
k-tolerant walk,’> a random walk in which each lattice site
can be visited at most k times (the SAW thus corresponding
to k=1). A generalization of the Flory approximation®®
has been proposed,® which predicts a k-dependent scaling
behavior for k-tolerant walks. On the other hand, series
analysis”® gave evidence for universality of the critical
~ behavior for different k values, for dimensionality d =2 and
d=3.

In order to clarify the mechanism of the above universali-
.ty and to understand better the failure of approximations of
the Flory type,® we concentrate here on the particular case
of the 2-tolerant walk in d =2, generalized with an extra
fugacity, in such a way to allow for a control of the average
number of self-intersections.

In our model, we associate to each 2-tolerant walk of n
steps and / (double) intersections a weight K"p’, in a grand-
canonical formulation. For p =0 we recover the SAW and
for p=1 we get the simple 2-tolerant walk. Self-
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intersections are favored for p > 1, whereas they are dis-
favored for p < 1. In this sense the 2-tolerant walk is a
border case. Our generating function for the numbers ¢,; of
n-step 2-tolerant walks with / intersections, starting from a
given origin, will be

X(K,p)= 3 cuK"p' . m

ni
The average radius of gyration is defined as usual by

§2(K,p ) = x_l Ecm‘K"piRznl ’ (2)
n,i
where R?%, is the mean-square radius of gyration for n-step
2-tolerant walks with / intersections.

The idea of the cluster renormalization group®!° is to re-
scale the lattice by a factor /, such that the new correlation
length ¢, which for K approaching some critical value K. (p)
from below is expected to behave as £ ~ A[K.(p)— K1~?,
scales as

f(K',p’)=%§(K,p) , 3)

where K'(K,p) and p'(K,p) are regular functions of K and
D.
We simply state the rules for obtaining the above map-
ping in our case (more details about the general approach
can be found in the literature).®~!2 Let us consider a parti-
tion of a square lattice in / X/ cells. The renormalized fuga-
cities K’ and p’ can be given by

K = Kn(W)pl(W) (4)

>

and

Klzpi —_

2 Kn(W)pl(W)Kn<W’)pi(W’) owwh )

’

p
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4659 ©1985 The American Physical Society °



4660

where the first sum is over all walks W with n (W) steps
and /(W) intersections, starting at a given point of the
boundary of the cell (e.g., the lower left corner) and going
across it in a given direction. The second sum runs over all
pairs of walks of the same type as above, which cross the
cell in perpendicular directions, without generating triple or
quadruple intersections. The two walks W and W' can have

a number of mutual intersection points, I (W, W’) (includ- .

ing the starting point), as they are meant to belong to the
same 2-tolerant walk; Eq. (5) should indeed be seen as the
result of the coarse graining of a walk which returns to a
given point after a relatively large number of steps. Explicit
calculations show that slight modifications of these rules do
not change the qualitative features of the phase diagram
consistent with Egs. (4) and (5).

From the above rules it is evident that the p =0 line
(SAW) is an invariant subset under the mapping (4)-(5),
with the pure SAW fixed point given by

K*= 2‘8 K* )
Wi(W)=0

Furthermore, one easily realizes that p’ < p, at least for all
p =<1. Indeed, due to the mutual starting point of W and
W' in Eq. (5), we know that I(W,W')=1. Since each
term in (5) corresponds to one of the terms contained in
the square of (4), multiplied by p! *-#"_ we may thus write
for p < 1:K'%p’ < K'?p. This inequality becomes even more
pronounced by the fact that we have to exclude from (5)
those pairs of walks W and W’ that give rise to triple or
higher intersection points inside the cell.

As explicit calculations show below, we thus have to ex-
pect that the p=1 line is not an invariant set of the
transformation, and that the critical 2-tolerant walk is
mapped under renormalization into a critical SAW problem.

Similar conclusions can be drawn for the k-tolerant walk
with k =2 and general d. Obviously, such conclusions are
based on a renormalization scheme which is affected by in-
trinsic approximations. Further support for these con-
clusions comes from the comparison of the renormaliza-
tion-group results with independent results obtained from
series analysis, as presented bélow.

For the d =2, k =2 case, we performed explicitly the cal-
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FIG. 1. (a) Anisotropic 3x1 cell, used for obtaining the recur-
sion Egs. (6)-(8). In (b), (c), and (d) we show some graphs contri-
buting to the renormalized fugacities X{, K,, and p'K{K,, respec-
tively, using the rules suggested by Hoye and Napiorkowski (Ref.
13) for the one-dimensional random walk.
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culation of a transformation of the type (4)-(5). For sim-
plicity we used an anisotropic cell rescaling with /=3.1112
This corresponds to rescaling the lattice successively one
direction at a time, using the 3x 1 cell in Fig. 1. The rules
for renormalizing K and p are essentially the same ones as
described above in the isotropic case; the recursion rela-
tions, however, are now different for the fugacity of bonds
perpendicular (K ) and parallel (K3 ) to the rescaling direc-
tion. In the spirit of the Hoye and Napiorkowski calcula-
tions,' in the recursion equations for K{ and K; we count
also the contribution of walks which go in the interior sites
of the cell below the considered cell (open circles in Fig. 1).
When the walk arrives at the boundary sites in the cell
(crosses in Fig. 1), it stops. For renormalizing K{ we
choose, more symmetrically, the central point (4 in Fig. 1)
as the starting point for the transverse walks. Some exam-
ples of graphs contributing to K, K;, and p’'K{K, are also
shown in Fig. 1.
The resulting recursion equations are

Ki{=K\(142K,+2K?%p +3K3p +2K3p*>+ K3p*+2K3p?) ,

6)
K; =K3(1+K3p +2K}p*+Kip*+ K3p> +K§p*) , @)
P'KiK; =K:\K3pl14+2K,p +K3p(1+K3p)(1+Kp)] .

(8)

In order to obtain an isotropic recursion, we first apply Eq.
(6) and then Eq. (7) to the original fugacity K. This addi-
tional approximation is actually not very crude and the
quantitative results are very little affected by changing the
order of application of the two’transformations.!'? The re-
normalized p is the value obtained after iterating Eqgs.
(6)-(8) twice, rescaling successively the x and y directions,
and using K; =K,=K as starting step fugacity.

In Fig. 2 we report the flow diagram resulting from our
recursion scheme, while values of K, for different values of
p are reported in Table I, together with the v exponent of
the SAW fixed point, obtained from the relation
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FIG. 2. Flow diagram obtained by our renormalization scheme
for the grand-canonical formulation of the 2-tolerant walk for d =2
(square lattice). ‘
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TABLE 1. For different values of p (first row), the values for K, and for the exponent v, as obtained
from our renormalization scheme, are reported in the second and third row, respectively. In the last two
rows, the values for K, and 2v are reported, as obtained from the series analysis method.

p 0.0 0.1 0.9 1.0 1.1 1.5
K, (renormalization) 0.408 0.396 0.349 0.311 0.303 0.296 0.272
v (renormalization) 0.747 0.747 0.747 0.747 0.747 0.747 0.747
K, (series) 0.379 0.369 0.328 0.296 0.289 0.283 0.260
2v (series) 1.50 1.50 1.51 1.50 1.50 1.48 1.45
+0.02 +0.02 +0.01 +0.01 +0.01 +0.02 +0.05

In order to confirm the results of our renormalization-
group analysis, we performed exact enumerations (up to 16
steps on the square lattice) of the 2-tolerant walk for values
of p between 0 and 1.5. To reduce computing time, we
- have worked in Eq. (2) with the mean-square end-to-end
distance, instead of the mean-square radius of gyration.
The assumption is that

Ecnlpi'\'K(:_"n‘y”1 (10)
i
and
2 C,,,p'Rz,,,‘*-' K.~ "nYR—l . 11)
1
This would imply that £2 behaves as
£(Kp)~ (K. —K) 'R, (12)

and thus 2v=vy —vyg. The analysis of ¢? suffers from the
numerical uncertainty on K, and this may be circumvented
by analyzing instead the function

Az(K;P )= EK"[ EcnipiRzm' / zcnlpi , 13)
n i i
for which we must expect
A2Kp)~(1—K) R, (14)

The singular behavior of A2, £2, x, and (x¢?) as functions
of K has been analyzed by various standard methods!*
(Néville tables, Padé analysis of logarithmic derivative,. . .)
and by the recurrence relation method.'*!7 All these
methods give values of v in good agreement with the SAW
value v=20.75,'8 for all values of p considered. In Table I
we report, in particular, the values obtained by the last
mentioned method of analysis, which revealed to be the
most consistent. In the same table, we also report the esti-
mates of K.(p), as obtained from analysis of X and ¢£2.
These values compare rather well with the renormalization-
group values, and thus give further support to the validity
of our conclusions.!®

The model that we have introduced, which includes the
2-tolerant walk as a particular case, is thus in the universali-

ty class of the SAW.% In particular, this also holds for p
much larger than 1. Intersections are favored for large
values of p, and at first sight it might seem contradictory to
still find a SAW behavior. Consistently with the
renormalization-group flow, however, we have to conclude
that the tendency of the walk to have many intersections
leads to the formation of many loops at a small scale, such
that the walk becomes essentially a self-avoiding path at a
coarse-grained level. When dealing with a k-tolerant walk
in general, our guess is that multiple points in the statistical-
ly relevant configurations develop mostly at short distances
along the chain, whereas a kind of self-avoiding constraint is
guaranteed at longer distances (by the finiteness of k).

We may now ask what lessons can be drawn, from the
above considerations, about the Flory approximation for k-
tolerant walks. For a SAW of n steps with radius of gyra-
tion R, this approximation consists! in writing the free ener-
gy as

2
FoaR
n

2
+BZ | 15s)
where the first term is the elastic part of the free energy and
the second term is the repulsive energy, proportional to the
number of monomers, multiplied with their concentration
nR ¢ A and B are suitable dimensional factors. Minimiza-
tion of (15) with respect to R leads to the well known result
v=3/(d+2) for d <4. When p =1, one might be tempt-
ed to suppose that the repulsive energy should be modified
into something proportional to (nR~9)*+!R4 for k-tolerant
walks.® Such an expression would take into account the
excluded-volume effects that start to be felt when k+1
monomers come close together. This would imply
v=_(k+2)/(kd+2) for d<d,(k)=2(k+1)/k*% in con-
tradiction with our result and, for p =1, with series
results.”® The actual excluded-volume mechanism deter-
mining the large scale behavior of the model is the one
which prevents different, large segments of the walk (each
one having many intersections at small scale) to come close
together, such that, in a kind of coarse-grained sense, we
have to conclude that the actual value of k =1 is irrelevant.
The appropriate form of the Flory free energy remains thus
the same as given in Eq. (15).
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19For completeness, we should mention that direct analysis of X and
(x£2) seems to indicate that y and yg are less independent of p
than their difference 2v. We find, e.g., y(p=0)=1.34,
y(p=1)=139, yp(p=0)=2.83, yz(p=1)=2.89, with inter-
mediate values for intermediate p. It is not clear whether this is
due to numerical uncertainties or to a real deviation from univer-
sality for these quantities. It should be noted that the cluster
renormalization-group argument deals only with ¢, and thus
strictly speaking predicts universality only for the exponent v.

200ur conclusion is thus in sharp disagreement with the result ob-
tained by F. Family [Phys. Lett. 92A, 341 (1982)]. On the basis
of a simple renormalization argument, and unconfirmed by series
expansions, this author claims to find universality only under the
condition that no bond may be visited twice. In our model, the
restriction is on the number of visits to the lattice sites. In a pre-
vious paper by J. A. Marqusee and J. M. Deutch [J. Chem. Phys.
75, 5179 (1981)], it was argued that also these so-called k-

. tolerant trails, with restrictions on the bonds, do not exhibit
universality. In view of intrinsic weaknesses of the arguments,
we seriously doubt the correctness of their results, which are not
confirmed by series analysis.



