
PHYSICAL REVIEW 8 VOLUME 31, NUMBER 7 1 APRIL 1985

Solitons and electroacoustic interactions in ferroelectric crystals.
II. Interactions of solitons and radiations
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Multiple-soliton solutions representative of the motion and interaction of walls in ferroelectric

crystals of the same type as NaNO2 are studied, both analytically and numerically, on the basis of a
set of coupled nonlinear electroacoustic equations deduced in paper I [Phys. Rev. B 30, S036 (1984)]
of the present series. Electromechanical couplings are duly taken into account and, in fact, are re-

sponsible for the nonlinear coupling between a d'Alembert wave equation for the transverse elastic

displacement and a sine-Gordon equation that governs the orientation of the dipole-carrying molec-

ular group in each lattice cell. To solve this rather complex problem, a singular perturbation tech-

nique associated with the methods used for solving nonlinear wave equations (Ba',cklund transforma-

tions, etc.) is developed at the first order in the coupling parameter. This allows one to exhibit the
first-order corrective radiative terms which superimpose on the nonlinear zeroth-order solution

(multiple soliton), the free parameters of which are modulated in order to satisfy the secularity con-

dition at the first order. Simultaneously, a numerical solution using a Lax-Wendroff finite-

difference scheme is obtained which illustrates the analytical considerations and models the soliton-

antisoliton collision, the soliton-soliton collision, the "oscillatory soliton, " and the one-soliton solu-

tion (already exhibited in paper I on the basis of a double sine-Gordon equation) along with the ac-

companying elastic displacement field and the radiative contributions.

I. INTRODUCTION

In a previous paper, ' referred to as paper I, having con-
structed a simple model, of elastic ferroelectric bodies in
which an electric polarization is associated with the
orientable molecular group typical of a class of ferroelec-
tric crystals for which NaN02 provides a prototype, we
have described such ferroelectrics when large variations in
the orientation of the polarization can occur, that is,
essentially in the neighborhood of the ferroelectric phase
transition and for strong spatial disuniformities observed
in multidomain structures. Accounting, thus, for the
necessary nonlinearities, it was shown that in the presence
of electromechanical couplings the dynamical problem of
the motion of a single ferroelectric wall could be
represented, after elimination of the elastic displacement
between the two equations at hand, by a double sine-
Gordon equation. The corresponding physical interpreta-
tion found is that the stable solution of this equation
represents the motion of a so-called 180 wall. Both the
energy and the thickness of the wall are affected by elec-
tromechanical couplings. To conclude the previous paper,
an attempt to explain, in the static case, the formation of
domains in terms of an incommensurate-commensurate
phase, was proposed on the basis of an approach of the
Landau-Ginzburg type, including a Lifshitz invariant for
the polarization, elastic terms, and electromechanical cou-
plings. The writing of the fundamental dynamic equation
as a double sine-Gordon equation could be achieved only
for single-soliton solutions for which dynamical progres-
sive solutions depend on one phase variable only. Obvi-
ously, however, ferroelectric structures most often contain

more than a single domain wall, and more mathematically
ambitious solutions that fit physical reality much better
require considering multiple-soliton solutions on the basis
of the nonlinear system of I if one wants to comprehend
the dynamics of the creation and annihilation of ferroelec-
tric domains in ferroelectric elastic crystals. It is the pur-
pose of the present paper to develop the mathematical as-

pects of these multiple-soliton solutions both analytically
(insofar as possible) and numerically.

In order to fulfill the program briefly sketched out
above, note that the basic nonlinear system deduced in I
and recalled in Sec. II below consists of the nonlinear cou-
pling between a d'Alembert wave equation for the trans-
verse elastic displacement and a (simple) sine-Gordon
equation for the orientation of the molecular group of the
ferroelectric crystalline cell, the coupling occurring
through a small parameter representative of elec-
tromechanical couplings. That is, the zeroth-order solu-
tion in this small parameter is already nonlinear since it
contains multiple (purely ferroelectric) -soliton solutions
of the homogeneous sine-Gordon equation. To exploit the
coupled case, in Sec. III we develop a perturbation scheme
which amounts to determining corrective terms of the
first order in the aforementioned small parameter by con-
structing a Green function associated with the zeroth-
order nonlinear problem. This is a generalization to the
case of a system of coupled nonlinear equations of a
method already used by Hirota. In the process the non-
linear coupled solution is sought in the form of an asymp-
totic expansion, and it is ihe secularity condition for the
first-order term in this expansion that imposes a modula-
tion of the free parameters (wave number and phase velo-
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city) of the zeroth-order solution, which would be left free
otherwise. The fact that the zeroth-order solution is al-
ready nonlinear complicates the general solution, but it
happens that the required Green function can be built
with the help of Backlund transformations. The formal
structure of these mathematical developments is given in
Sec. III, while the ferroelectric problem in presence of
electromechanical couplings is treated analytically in Sec.
IV. In the latter, first the zeroth-order multiple-soliton
solution is built by applying the Backlund transformation;
next, the modulation of the free parameters of the zeroth-
order solution is established and, finally, the radiations, or
corrective terms of the first order, in elastic displacement
and orientation angle of electric dipoles, are obtained.

The asymptotic behavior of the solution at the first or-
der is established and proves to be useful, as border condi-
tions, in Sec. V, where, upon using the Hamiltonian for-
mulation of the coupled equations given in I and a "leap-
frog" Lax-Wendroff finite-difference scheme —which is
very efficient for such nonlinear hyperbolic systems—
numerical solutions are obtained graphically

'

for
multiple-soliton solutions which represent the soliton-
antisoliton collision, the soliton-soliton collision, and the
breather or oscillatory soliton, all of these along with the
accompanying elastic displacement field and the corre-
sponding first-order radiations in displacement and orien-
tation of electric dipoles. With the exception of the last
one, these solutions can be interpreted in terms of the
motion of two walls of various types in a ferroelectric
sample. Finally, in Sec. VI we comment generally on the
problem examined in this two-part work and illuminate
other problems of nonlinear electroacoustics which could
be treated on the basis of the available set of coupled non-
linear equations. Of particular interest would be the case
accounting for the influence of external stimuli such as a
stress or an applied electric field. This is also the case of
the problem of reflection and diffraction of acoustic
waves by a wall (or walls) in a ferroelectric crystal.

In all, it is thought that the present paper, along with
the previous one, (i) introduces a relatively new point of
view concerning the formation of domains, and the
motion and interaction of ferroelectric walls in an elastic
ferroelectric, (ii) clearly illustrates this dynamical behavior
through the numerical solution of nonlinear hyperbolic
equations, and (iii) offers an exemplary field of simultane-
ous applications of all methods recently developed for
solving nonlinear wave equations.

Q2p

B7

BP . Bv

BX
—sing —g cosP =0,

BX
(2.2)

where X and ~ are space and time coordinates, P equals
twice the variation in the orientation of electric dipoles,
VT is a transverse-acoustic —wave speed that includes a

stiffening of the elastic constant by the electrostatic dipole
interactions, and g is an electromechanical coupling pa-
rameter. For functions v and P, which depend on X and ~
only through the phase combination g=QX —Q~, where
Q and Q are pseudo wave number and frequency, respec-
tively, Eqs. (2.1) and (2.2) are equivalent to the equations

and

BP BP
Br BX

—sinP+y sin(2$) =0

2 ~2 dV
(Q —QT) = —riQ sing,
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where
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y(Q, Q)=,Q T
——VTQ

Q —QT
(2.5)

Equation (2.3) is a sine-Gordon equation perturbed by the
term with factor y. Alternatively, it may be considered a
double sine-Gordon equation. This equation is invariant
under "Lorentz transformations" of the type

Qr QX—
2 2 1/2 ' 2 2 1/2(Q —Q) (Q —Q)

(2.6)

A stable single-soliton of Eqs. (2.3) and (2.4) was found in
the form

sinhg', i
1

4(1+2y)= —2 tan g =g —Tlnv'1+2y

(2.7)

where 5 is at our disposal, and Q and Q are related by the
"dispersion relation"

[Q —(Qp —2)](Q —QT)+g Q =0, (2 g)

where QF ——1+Q is the uncoupled ferroelectric mode in
an harmonic analysis with parameters Q and Q. Accom-
panying the "electric" soliton (2.7) are stresses and an
elastic displacement field U given by

II. GOVERNING EQUATIONS

Q v'1+2y sinhg'
Q2 —Q T v I+2y+sinh~p

(2.9)

BU ~2 BU 8
a aX'

—VT +g sing=0, (2.1)

In a previous paper (Ref. 1) the coupled equations
which govern (in nondimensional form) the transverse
elastic displacement v and the rotational motion of elec-
tric dipoles rigidly attached to the central molecular
groups in ferroelectrics of the same type as NaNO2 were
deduced from a simple lattice model and then
transformed to the 1ong-wavelength limit. These equa-
tions read

and

V —V
2 Q0—0 —QT

1+2y
—2p

1/3

v' —2y

y=m —2tan —' sinhg'

1 —2y
g'=g ——,ln

4(1 —2y)
5

(2.11)

Another solution can be found which is not stable and
corresponds to
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with the "dispersion relation"

(0 —QF)(Q —Qr)+g Q =0. (2.12)

BU

a~
=~'

+ Vr [a+(g/Vr )sing] =0,
Bt Bx

BQ ~ Bp+Vr =0,
Bt Bx

(2.13)

az gP
Bt Bx

+ = —»nP —(g/Vr )a cosP,

with obvious redefinitions.

III. INTERACTIONS OF SOLITONS
IN THE PRESENCE OF PERTURBATIONS:

GENERAL METHOD

A. Perturbation scheme

In a general manner the system (2.1) and (2.2) has no
simple solution such as a single soliton for rather general
initial conditions at (X,O). However, if the elec-
tromechanical coupling is discarded (r) =0), Eq. (2.1) will
yield a propagative solution u(X —Vrr), while Eq. (2.2)
will reduce to an ordinary sine-Gordon equation which
does admit soliton solutions and, in fact, multiple-soliton
solutions. In particular, if we consider the interaction
of two such solutions, we may envisage "soliton-soliton"

Note for numerical computational purposes that the sys-
tem (2.1) and (2.2) can be given the following Hamiltonian

U+~(U) =gF(U),
B1

where we have set

(3.1)

collisions, "soliton-antisoliton" collisions (or doublets),
and "oscillatory solitons" (or "breathers") .This will
physically correspond to the propagation of several
domain walls or to stationary domain walls. If the elec-
tromechanical coupling is then reintroduced (small ri),
this may be considered as a perturbation which, in some
manner, should alter the uncoupled solutions. As far as
Eq. (2.1) is concerned, it remains linear for u even after
coupling. Its solution is thus composed of a propagative
solution and a particular solution induced by (() through
the parameter g. That is, one may obtain u once P is
known. Regarding Eq. (2.2), it is nonlinear both before
and after perturbation by the g term and, for rt&0, must
account for the coupling with Eq. (2.1). A special pertur-
bation scheme must be devised for treating the general
solution (u, P). In a first step, one must determine the
"principal" solution for which the effect of perturbations
is only to modulate the free parameters (phase and veloci-
ty) of the solution; this requires only general uncoupled
solutions. In a second step, we shall determine corrective
terms of the first order by constructing a Green function
associated with the problem. To that purpose, the
inverse-scattering method must be used. The first-order
correction will represent the radiation of harmonic and/or
soliton waves. The method employed has already been
used with success in the solution of the Korteweg —de
Vries and Schrodinger equations in the presence of pertur-
bations, " and in treating the interactions of solitons for
the double sine-Gordon equation. ' ' Here the method is
generalized to the case of two coupled nonlinear equa-
tions.

Consider the system (2.1) and (2.2) and, for questions of
stability concerning the sine-Gordon equation, replace U

by —u and P by P+m. The system obtained can be cast
in the following operator form ( T denotes transpose):

U=(u, u„g,g,), u = (3.2a)

0
-2 a'—Vg- 0

BX
0

0

(3.2b)

0 — +sin( ) 0
BX

F=(o,f, ( uy), O, f( up)) r=(
0,
—Bsiny/BX, O, cosy gu/gX)r. (3.2c)

For r)=0 the system (3.1) admits solutions up of the
harmonic-wave type for u and Pp of the multiple-soliton
type for P. For small ri&0 we look for an asymptotic ex-
pansion and

Up+~(Up) =0
O'T

(3A)

U(X, r) =Up(X, r, r)+re)(X r,r)+. . . (3.3)
lirn r)U)(X, r/g) =0
r]~0

(3.5)

where U0 is the solution of for fixed I and ~, with ~=q~ a slow time scale. Equation
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W(Uo) =F(Uo) —— Uo+M(Uo)
1

'ii 87
(3.7)

This effective source term accounts for the fact that the
condition (3.5) cannot be checked for an Uo which satis-
fies Eq. (34) exactly. Accordingly, a certain freedom
must be granted to Up which may be modulated on the
time scale 7, so that this modulated Up solution will satis-
fy Eq. (3.4) at the order g (and not zero. ) Equation (3.6)
can be solved by representing the inverse operator
[~(Uo)j ' by means of a Green function, ' ' so that,
formally,

Ui(X, r)= J ($(X,r ~. . . , r'), W(Uo(. . . ,~')))dr', (3.8)

where S is a linear operator on a certain Hilbert space A
equipped with an inner product (. . . , . . . ) involving a
spatial integration; S is such that

[~(Uo)]/=0, r)r')0, lim 9'=1
7 —+7'

(3.9a)

or

[~(U)]TST=O, ~r&r0, lim ST=1 (3.9b)

where [~(Uo)] is the adjoint of ~(Uo) and 1 is the
identity in A .

The efficiency of the above-sketched method relies
heavily on the ease with which the inverse operator can be
found for a given Uo. In most cases this is a difficult
task, but the inverse scattering met-hod allows one to find
the appropriate Green function in the case of integrable
equations of evolution (cf Refs. 1.0 and 16).'7 Fortunate-
ly, here we do not need the technical details for the con-
struction of S. All we need is to know the structure of
the kernel M(~) of ~(Uo) or the kernel of ~ . To
briefly sketch out the required development, let Ip~ j
denote collectively the free parameters that we ascribe to
the Up solution. For instance, these are the speeds and
phases of the solitons in a multiple-soliton solution Up
[e.g., Q and go in the solution (2.7)—(2.10) above].
consists of two parts: a discrete subspace ~d associated
with dispersive waves and a continuum subspace A,
which, physically, corresponds to soliton solutions of
Uo. Because ~(.U ) results from the linearization of the
operator [l(B/r)+~]Uo about Uo, elements of ~(~)
are simply found by differentiating Up with respect to its
free parameters. Thus M~(~) is generated by the finite
family of functions, fBUo/BPij with j=1,2, . . . , 2N if

(3.4) is a secularity condition which guarantees that the ex-
pansion (3.3) is valid for time intervals of the order of g
(equivalently, the term gUi remains bounded for large
time intervals). ' The first-order solution Ui satisfies the
problem

a[~(Uo)]Ui =— Ui+ [M '(Uo)]Ui ——W(Uo),
a7-

Ui(X, O) =0 (3.6)

where ~(Uo) is the linearization of Eq. (3.1) about Uo,
M&' is the perturbed operator ~, vo Po are supposed to
hold good initially, and

Up contains X soliton solutions. Accordingly, one can
decompose S as S=Sd +S„and Sd admits a repre-
sentation on the basis IBUo/Bpj. j, while the "continuous"

component S, is composed of continuous wave trains
(see below).

At this stage the problem consists in determining the
modulation of the free parameters Ipl j. We know that,
for large r s, a multiple-soliton solution is built up of a
sum of N single soliton (Refs. 2—7), each depending on X
and r through a phase QJX —Qjr, j=1,2, . . . , N, the
pseudo wave numbers QJ and frequencies QJ satisfying
the "dispersion relations" QJ =QJ(QJ ), j fixed. The same
space-time dependence will show up in the discrete com-
ponent of S, but secular terms may appear in Ui since
both Uo and 9' are functions of QJX Qjr. —In particu-
lar, with the above-recalled definitions of the inner prod-
uct, the first-order corrective term (3.8) will, after dummy
integration over the time variable, yield a term linear in v.

in Ui which violates the secularity condition (3.5). In
other words, we may also say that any part of the effec-
tive source (3.7) that is parallel to one of the discrete com-
ponents resonates with the Green function and produces
secular terms. In order to eliminate such disturbing per-
turbations, the selection of the modulation of the pj's can
be made such that the effective source (3.7) is orthogonal
to A d(~ ). Let I bJ(X,r); j= 1,2, . . . , 2N j be a basis

which spans Md(~ ). The orthogonality condition
on 3 (Uo) yields a system of ordinary differential equa-
tions

dp.
bk, Uo ——(bk, F(Uo))

pj dr
(3.10)

where r=qr is the slow time scale and (. . . , . . . ) denotes
the inner product in the space of square-summable func-
tions. Equation (3.10) provides the looked-for modula-
tion. In addition, it can be noted that the elements of
Md(~ ) may be generated by differentiating Uo with
respect to the pj' s. In particular, if J is defined by

0 —1 0 0
I 0~=0 0

0 0
0 —1

1 0

(3.11)

0 0

we can generate the elements of Xc"d(~ ) with the 2N
elements IJBUo/Bp~ j, so that Eq. (3.10) can be replaced
by

a a
Bpk Bpj.

aJ Uo, F(Uo)
~pI

B. Green functions

We now must face the problem of finding a basis in the
continuous space A, (~). Following previous works by
other authors (Refs. 16 and 17), the inverse-scattering

(3.12)

where k = 1,2, . . . , 2¹According to Eq. (3.12), we only
need the zeroth-order solution to proceed to the pj (r)'s.
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k (A, ) =2A. —I /8A, . (3.15)

method provides a systematic way for constructing M,
for the subsequent construction of 9. Since our zeroth-
order solution consists of a multiple-soliton solution, 8
here may be built with the help of Backlund transforma-
tions. In our case we need to extend the procedure for
building the Green function of the coupled system (3.1),
which includes a sine-Gordon equation.

The solution of the linear nonhomogeneous system (3.6)
for U~, on account of the inner product and Eq. (3.8), can
be written as

U, (X,~) =f f $,(x,r
~

X',~')W(X', ~')dX'd~',

(3.13)

where only 8, intervenes by virtue of the orthogonality
condition on 9~. In general, the complete solution U
will contain multiple solitons as well as a continuum of
radiation at all wavelengths (continuous frequency spec-
trum). We should differentiate U with respect to the am-
plitudes of the radiation components to obtain the missing
additional basis elements for the whole of Pi (~), that is,
the infinite, but complete, set

a U, j=1,2, . . . , 2X; U, AER
Bpi 5p+ A, ,O

(3.14)

where p+(A, ,O) represents the initial value (at i =0) of a
"positive" or "direct" reflection coefficient that character-
izes the continuous density of radiation at the wave num-
ber (Refs. 3, 4, and 10)

U+(X,v;k)= expt+[k(A, )X+cv(A, )r] I for X—++ ao
1

(3.18b)

with k(A, ) given by Eq. (3.15) and co(A, )=2k, +(1/8A, ).
Once U+ are determined for the problem (3.18), we have
at hand all the ingredients needed to construct Ã, . In the
next section, omitting details, we exploit the method ex-
posed in the present section with particular attention to
the soliton-antisoliton collision.

IV. INTERACTIONS OF SOLITONS
IN THE PRESENCE OF PERTURBATIONS:

SOLUTION

A. Zeroth-order solution

For g=O, Eq. (2.1) admits a solution of the plane-
harmonic-wave type

va =exp[i (KX—cow+ $0)] (4.1)

Q&
—Q2 cosh[(g~ —g2)/2]

&~+ &2 sinh[( g~ +g2 )/2]
(4.2)

where K and co satisfy the usual dispersion law for trans-
verse elastic waves, co= VTK. Under the same condition,
Eq. (2.1) reduces to a sine-Gordon equation, a conserva-
tive nonlinear, dispersive wave equation which admits
multiple-soliton solutions with 2X free parameters (Refs.
2, 4, and 7). In particular, using Backlund transforma-
tions' or Hirota's method, ' ' one may generate a general
two-soliton solution as

We shall not give the detail of the construction of the con-
tinuous part of P' here. With p (A, ,O) a "retrograde" re-
flection coefficient and a(A, ) the maximum transmission
coefficient, noting (since we ultimately need 5U/5p+ at
the zeroth order for p+ ——0) 6,' =6;——,

' ln
Qi —Q2

1+ 2
Q; —Q;=I, i=1,2

where

g,' =g;+5,', g; =Q;X—0;r
(4.3)

u(X, ~;) )=-
5p+(A, ,O) p 0

'

one finally arrives at the representation'

(3.16)

f , —U,(X, ;~)4 —"[a(A, )]2

XU (X', r', l, )J dk . (3.17)

[~(U0)]U+ ——0, XH( —co, + ca) (3.18a)

We have yet to evaluate the derivatives (3.16). Two
methods can be used for that purpose, one using the
squared eigenfunctions of the inverse-scattering method
(Refs. 10 and 16) and the other using Backlund transfor-
mations (Ref. 17). The second method requires less secon-
dary data than the first, and the idea that A (~) or~(~ ) can be spanned by differentiation of UD with
respect to the free parameters underlies it. %'e finally
note that U+ are such that

in which the free parameters are the Q s and 5 s (or 5'~

and 5q). Depending on the type or relation connecting
these parameters, we may have three categories of solu-
tions: the "soliton-soliton" collision, the "soliton-
antisoliton" collision, and the "oscillatory soliton" or
"breather. " For the sake of illustration, in this analytical
part of the paper we consider the second category for
which Q&

———Qz ——Q and 0&——fl2 ——Q. Then the solution
(4.2) assumes the form

$0———4tan '[yP(r)/a(X)], (4.4)

with

y=Q/0, P(~) =sinh(Q~+5), a(X)=cosh(QX) . (4.5)

One is left with three parameters, one of which is taken
zero, so that there remains in the end the free parameters
Q and 5, which will be modulated by the perturbation.
We stress at this point that Eq. (2.1) for v is linear and its
perturbation will contain only the solution in P. Then the
complete solution U is composed of a soliton in the ab-
sence of source terms and a particular solution depending
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on Po, it is useless to introduce a modulation of the free
parameters K and gp. We also note the following asymp-
totic behavior (Ref. 7):

i7A, 7TA,

2
exp — —i (d'or —gp)2

Pp- —4 tan '[exp(QX —Qr —5—5)]
—4tan 't exp[ —(QX—Or+5 —5)]j

for r~co, with 5=1ny.

(4.6)

8 cos(A,B+A)
X

Bv cosA

d5 Q mAQ=—+ exp — i—(d'or —gp)
dv g 2

(4.13)

B. Modulation of the free parameters

One must deduce the modulation Q (r) and 5(r), where
r=gr, from the orthogonality condition (3.12). To that
purpose we first build a basis of Pi d(~), which, here, has
dimension two. This space is spanned by BV/BQ and
BV/85, where V=(gp, Bgp/Br) . The basis should be
determined at the zeroth order. If we set

'TI Ax +Q
cosAB+ A)

cosA

B=ln[p+(p + 1)' ]=sinh 'p, (4.14)

where we have set

A, =E/Q, 0 =Q —1, P=yP(b ) =y sinhb, ,

6=0~+6,
at zeroth order we have

(4.7)
tanA =Ap/(p + I)'~' .

aa aV 1 BV
as=n a

At the same order, J BV/BQ and & 'J BV/&«hus f«m
a basis for Md(~ ). More precisely, we set

(4.8)

b]— b2—
4'o, g.
—0o, g

(4.9)

where the symbol = recalls the approximation at zeroth
order. The Hamiltonian associated with the sine-Gordon
equation governing Po reads

'2+" 1 54o 1 ~4'o
H (Po) =f — +— + 1 —cosPo dX .

2 Br 2 BX

dH(go) dg =iK exp[ i (pTr go) ]- —
dQ d— dr'

X f (sinPo)e' dX,

dH(gp) d5 =i% exp[ &(pTr fo)l- —
dg d- BQ

(4.11)

~ f (sinPo)e' dX,

where the integrals are Fourier transforms of sinpo. We
note that, for the solution (4.4),

H(gp)=16Q . (4.12)

A rather long calculation involving residues leads, from
Eq. (4.11), to the following evolution system for g and b, :

(4.10)

Then, using the exact form of the perturbation given in
Eq. (3.2c), we can show that Eq. (3.12) for k =1,2 and
Ip~] =(Q,5) reads

The modulations Q(r) and b, (r) may be real, imaginary,
or complex depending on the expression of Uo(X, r). Here
the latter is taken to be complex. Note that Pp is even in
X. From the system (4.11) it follows that the right-hand
sides will vanish if Uo is odd in X. In this case the pertur-
bation would not have any effect on Q and 5. Therefore,
only the component of Uo even in X will contribute to the
modulation of Q and 5. In a general manner, the system
(4.13) shows that Q and b, are complex-valued functions
of r. The imaginary parts of Q and 5 are of the order of
g; these parts therefore induce oscillating modulations in
X with frequency rI Im[Q(r)] and in r with frequency
rilm[h(r)], which are both small. As to the real parts,
they contain the principal parts (zeroth order) of Q and b„
Q =Qp and b, =Qor+ 5p, which must be such that the na-
ture of the zeroth-order solution is left unchanged. In ef-
fect, 0 must not become imaginary for the solution Pp
would then become oscillatory while we are considering
the soliton-antisoliton —collision problem. This constraint
forces us to select the initial value Qo such that

~
Q(r)

~

) 1 be satisfied for all times.
It is customary to study systems such as (4.13) in the

(Q, h) plane (Ref. 17), for various initial conditions
Qp kp. In all cases depicted (Fig. 1) we have oscillations
along Q while 6 increases. For values of Qp close to one,
we obtain curves (a) and (b), where the phase b, is strongly
oscillatory while increasing steadily in amplitude simul-
taneously. For Qp far from the value one, the phase 6
behaves like Q~, on which oscillations of the order of g
are superimposed. If b, is much larger than zero —curve
(c)—then the oscillatory regime is well imposed. Other
parameters such as X, VT, and gp do not influence the
behavior of Q (r) and b (r) much. The asymptotic
behavior of Eqs. (4.11) is given in Appendix A.

C. Study of radiations (or corrective terms of the first order)

Here the ideas and methods recalled in Sec. III are ap-
plied to our specific problem. First, we note that the ef-
fective source [3 =(~ ~,~ 2,~ 3,~ 4), Eq. (3.7)] has com-
ponents given by
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M] ——0,
~ 2=fi(4'o»

r)A dg t)4o dA ~

~g dr t)~ dV

(4.15a)

(4.15b)

(4.15c)

~ 4=f2(ko, uo)—
~'4o dg ~'4o da

BQB dr Bb, ar d- (4.15d)

where f~ and f2 are defined by Eq. (3.2c). The derivatives
dg/dr and dhld7 are provided by the modulation prob-
lem (4.13), while the partial derivatives involved in Eqs.
(4.15) are readily computed from the solution (4.4). Of
particular interest is the asymptotic behavior of the corn-
ponents of M for both X and ~ going to infinity in a ratio
/=X/r) 1 (the X behavior is dominant). In these limit
conditions, we obtain

where dg/dr is the asymptotic expression given in Ap-
pendix A. Expressions (4.16) are valid for g )y

' =0/Q,
so that both X and r must go simultaneously to infinity
along a characteristic line g where the wave has a speed
greater than that of the soliton. The ~ 2 component de-
creases for large X values, and thus behaves like the (to
solution at infinity. The a2 component decreases for
large X values and thus behaves like the Po solution at in-
finity. The component ~ z decreases, but this decrease is
accompanied by an oscillation (due to the presence of
dg/dr). However, the &4, component has an oscillatory
contribution Uo—an elastic wave —which dominates the
other terms which are fastly decreasing.

1. Radiation in v(X, ~)

The problem for u& can be stated thus:
r

W] ——0,
M q

——4gy exp( Qz —QX +g),
~ 3——2(X/Q)(dg /dr)exp(Qr —QX+5),
~ 4—EVCuo I I —4y exp[2(Qr —QX+5)] I

—2X(dg /d~)exp(Qr —QX+5),

(4.16a)

. (4.16b)

(4.16c)

(4.16d)

~2
8 BX

ui =fi(4o» (4.17a)

ui(X, O)= (X,O)=0 .
a~

(4.17b)

On account of the linearity of the problem, we should
determine the derivatives ti+ satisfying the problem (cf.
Eq. (3.28)],
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—Vr q
U'~ =0, XE(—0o, ~ ce ) (4.18a)

B BX

1
U+(X,r;~)= exp[+/ [k (A )X+co(g)r] J

7TA,
(4.19)

it+(X, rA)= —exp[+i[k(A)X~co(A)r]I, X~+0D1

(4.18b)

where k(A, ) =A, and co(A, ) = VTA, . The problem (4.18) here
is simple because

satisfies the problem and O(A, )=1. After noting that,
here, (dA, /A, ) = VT(dk/co), and that both k and co vary in
the same manner as A, , and after a somewhat lengthy cal-
culation, the Green function (3.17) is obtained in the form
of a Fourier representation,

VT ~ cos[co(r—r')] (1/co)sin[co(r —r')]
S,(X,r

~

X', r') =
4~ —~ —co sill[Op(r —r )] cos[co(r —r )]

—ik(x —x')gk (4.20)

In order to obtain v~, we especially need the component G&2(X,r
~

X', r') of this Green function (cf. Appendix B). It is fi-
nally found that

U&(X,r) = —,
' sing+(X, r;r')dr'+ —, sing (X,r;r')dr',

0

where P+ and P are zeroth or-der solutions of Pp given by

P~ ——Pp(Y~, r') = —4 tan

with

sinh[b, (r') ]
y~ ——y, , Y~ ——X+ VT(r —r') .

cosh[Q (r') Y+ ]

(4.21)

(4.22)

(4.23)

Clearly, U~ consists of two radiations, v ~ and U &, which correspond to the first and second integrals, respectively, in Eq.
(4.21). From Eq. (4.22) we see that P+ is a soliton which propagates with speed + VT (of transverse elastic waves), while

is a soliton which propagates with speed —VT. Consequently, both sing+ and sing have the same features as (()+
and P, respectively. This means that, through electromechanical couplings, a "soliton-antisoliton" collision generates

radiations of solitons U~ and U~ of speeds VT and —VT. Note that the speed of these radiated elastic solitons is larger
than the one of the soliton in P. These results are later illustrated in the numerical study. Finally, we note that the
asymptotic behavior of u~ for large X values can be examined either by looking for the asymptotic expression of sing+
from the integral representations given in Appendix B or by considering the asymptotic form of Eqs. (4.17). Using the
latter method, for X~ oo one thus obtains

U ~
——

I sinh(Or~5) —(II/co)(cosh5) [sinh(d'or)] —(sinh5) [cosh(d'or)] I e8yQ —QX

Q —B
(4.24)

where co= VTQ. If r~oo, then X and r go simultaneously to infinity in a finite ratio /=X/r& VT. Therefore, the radi-
ation U~ behaves asymptotically like a soliton having two components, one propagating at a speed +y =+0/Q—
hence at the speed of the soliton waves in P—and the other at a speed + VT of elastic waves. By replacing Q by —Q in

Eq. (4.24), one obtains the behavior for X~—oo.

2. Radiation in $(X,r)

Here the problem is markedly more difficult than for U since both the operator ~ and the perturbing term are non-
linear, and the latter contains both Up and Pp. First, one must search for the derivative P+(P~, BP~/Br), which must
satisfy a problem of the type of (3.18). In particular, since P+ is an element of A (~), the component P+ satisfies the
linear problem

~cosPp P~ ——0, X&(—ao, + oo)
aH ax'

j~(X,r;A)= expI+i[k(k)X~co(A, )r]], X~+ ~1

(4.25a)

(4.25b)

(

where the previously defined k(A) and co(A) check the dispersion relation co (A, )=k (A)+1. The detail of the obtain-
ment of the Green function 9', in this case is reported in Appendix C. The following remarks can be noted The.
zeroth-order solution Pp, a two-soliton solution, can be generated by means of a Backlund transformation. %'e also use
such a transformation to obtain P~. However, while the solution Pp is defined in the absence of radiation, one must dif-
ferentiate it with respect to the amplitude of the radiation of wave number k so as to generate solutions of Eqs. (4.25).
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One therefore needs a generalization of solitons in which radiations are superimposed on solitons. Then, in applying the
Backlund transformations, the idea is to start, not from a vanishing fundamental state, but rather from a zero state that
is one of pure radiation at wave number k. Then the resulting wave solution can be differentiated with respect to the
amplitude of this radiation and, only thereafter, is this amplitude set equal to zero.

The general Green function deduced by applying Eq. (3.17) is obtained in Appendix C. The radiation P~ can be writ-
ten as

y, =f ' f '"
G„(X,r ~X,r )~,(X,~ )dX dr +f f '"

G„(X,r ~X,~ )~,(X,~ )dX dr, (4.26)

where the components G» and G~2 are defined in Appen-
dix C and M3 and ~ 4 are defined in Eq. (4.15). A general
study of the behavior of P~ here is out of the question on
account of the complexity of the components of the Green
function. However, an asymptotic estimate of P~ as

~

X
~

goes to infinity is reasonable. Referring to the asymptotic
behavior of the source terms —Eqs, (4.16)—we see that

3 goes to zero while a 4—iKuo(X, r) for
~

X
~

~ co and
r~ oo, which means that the contribution of ~ 3 can be
neglected compared to that of ~4, so that only G~2 will
intervene in the asymptotic behavior of expression (4.26).
However, as for u&, we prefer to argue directly from the
differential equation obtained by letting

~

X
~

~ ao.
Indeed, Eq. (2.2) becomes (P=vr —P~)

BP BP
+P, =iKuo(x, r), (4.27a)

a aX'
8 ]

(X,O) =Pi(X,O) =0 .
Br (4.27b)

Direct computations yield the following result (
~

X
~

~ oo

with fixed r):

[(co/Q)i sin(Qr) —cos(Qr) —e+'"']e'
Q —co

(4.28)

where we have set co= VIE and 0 =1+E . In the case
where there exists K such that oY=O„we have resonance,
and we shall have secondary secular terms. In reality, in
order to smooth out this effect one should introduce relax-
ation terms for P& (physically, an orientational relaxation
of molecular groups). We note that when

~

X
~

goes to
infinity, the radiation P, consists of a component which
propagates at the speed VT of transverse elastic waves and
another component which propagates at the speed 0/K of
the ferroelectric mode (or, in our model, the libration
mode of the molecular groups). 3' This radiation super-
imposes itself on the solitons by means of electromechani-
cal couplings.

To conclude this section. it is of interest to gather, in
one place, the common remarks regarding the radiations
u& and P&. The essential point is that the perturbing term
(small parameter ri) plays the role of an electromechanical

I

resonance coupling, since we have exchange of the nature
of waves at the level of radiations. Concerning the elastic
behavior, one can notice that u&(x, r) is a radiated soliton
generated by the "soliton-antisoliton" collision through
the coupling. This radiation can be schematized by the
collision of two solitons traveling with speeds of +VT.
This is sketched out in the foregoing numerical study.
Regarding the radiation P&, it behaves essentially like an
harmonic wave traveling at the elastic speed VT, but also
possesses components with a speed 0,/K & VT. This radi-
ation is generated by the electromechanical coupling and
superimposes itself on solitons as will be shown in the up-
coming numerical study.

V. NUMERICAL STUDY

A. Numerical scheme

U+ F(U) =G(U),
Bt Bx

with

U= (u,y, a,g,z,P)
r r

F(U)= 0, VT a+ sing, VTy, O pz
VT

G(U) =(y, O, O, z, —sing —(g/VT)cosg, 0)

the discretization scheme is given by

(5.1)

(5.2)

In order to illustrate the interaction problem between
solitons and harmonic waves, we shall treat the system
(2.1) and (2.2) numerically. Intending to compare the
present results with the analytical ones of Sec. IV, we
shall first consider the "soliton-antisoliton" collision with
coupling to an elastic wave. In this problem it is assumed
that, initially, u(X, O) and P(X,O) are given by Eqs. (4.1)
and (4.4). The numerical scheme must be selected in or-
der to treat the system of nonlinear hyperbolic equations
at hand in the easiest manner. All reasoning will be done
on the Hamilt'onian form (2.13), for which a "leap-frog"
Lax-Wendroff scheme ' is well adapted. If m and n
denote vertical and horizontal nodes, then for a system
such as (2.13), which reads.

U" =U((m+ ,')h, (n+ —,')h, )—=—,'(U" + U„" ))——(F" )
—F" )+n+ 2 Nl

(5.3)

n
U~+~I ——U((m+1)h„, (n+1)h, )= —,'(U" +U +()— (F" +) F" )+ 6——
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where o=h„/h„and h and h, are steps in space and
time, respectively. The caret over U, I', and 6 indicates
that the function is evaluated at the intermediate point
((m + —,

' )h„, (n + —,
'

)h, ). The numerical scheme is stable

for o VT & 1 (Ref. 25), which yields the stability for Eqs.
(2.13), since, in a general manner, VT & 1. The scheme is
accurate to second order in h„and h„and is started with
the knowledge of U(x, O), the initial value that is assumed
to equal the uncoupled solution. Theoretically, the prob-
lem takes place in the entire (x, t) plane. Obviously, con-
ditions at xz and xI (the borders at the right and left,
respectively), must be specified. It is naturally assumed
that for sufficiently large

~

X
~

values the solutions u and
P are very close to the uncoupled solutions. On the other
hand, on account of the very expression of Eq. (2.1), we
can write v =vo+Uz, where Uo is the uncoupled solution
in U and v& is a particular solution such that
u&(X, O) = [Buz(X,O)/Bt] =0. Similarly we have a =ao
+a&, so that we will solve the problem for Uz

——U —Uo,
where 'uz is of the order of g (the border condition can be
of the same order). For

~

X'
~

sufficiently large, we con-
sider the asymptotic expression obtained for u

&
in Sec. IV.

)(V

X
I

(b)

B. Results and comments

The above-described scheme allows one to compute and
draw the curves P(X,r) and uz(X, r) =v (X,r) —uo(X, r) in
perspective. Figure 2 gives the soliton-antisoliton —col-
lision case that was studied analytically in Sec. IV. The
first panel, Fig. 2(a), gives the evolution of the orientation
P (or 8=//2) of dipoles. In this case two solitons of
equal but opposite speed meet, and, after the collision,
each goes on, but with a reversed amplitude. In the same
figure oscillations are superimposed and we recover the
harmonic-wave radiation due to electromechanical cou-
plings and the prediction in Sec. IV. The corresponding
radiation of elastic waves is given in Fig. (9b), where
curves are odd with respect to X. The principal peaks
which constitute the graph follow the evolution of the sol-
itons of Fig. 2(a). We also have a "collision" of these
humps which behave like solitons, but these are "elastic
displacement" solitons because, after collision, they pur-
sue their way unaltered. In addition, we note two small
humps at the left and right of the graph. These are the ra-
diations of solitons at speeds —VT and + VT, respective-
ly. This numerical study illustrates efficiently the analyti-
cal results of Sec. IV, particularly insofar as the radiations
P~ and u& are concerned. However, it is clearly difficult
to comment on the modulation in speed and phase on
these figures.

Cases which were not studied analytically in Sec. IV
can be treated numerically. This is the case of the
soliton-soliton collision in Fig. 3, where, in (a), we give the
solution P after filtering of the harmonic-wave radiation.
The u~ radiation is given in Fig. 3(b). Here the radiation
is even with respect to X, and we also note the collision
phenomenon between peaks as well as the radiation of sol-
itons with speeds —VT and + VT (left- and right-hand
bumps, respectively). If we consider the solution m+P
and then the rotation angle of dipoles 8=(m+P)/2, then
the soliton-soliton collision corresponds to a domain

FIG. 2. Soliton-antisoliton collision. (a) Rotation P(X,r) and
radiation of harmonic waves; (b) associated radiation of elastic
soliton waves.

oriented at 3~/2, then at ~/2, and finally at —m/2, while
the electric dipoles rotate in the indirect sense on the pass-
ing of the wall. In the soliton-antisoliton collision we had
a sequence of a domain oriented at m/2, then 3m./2, and
finally at m/2, but with the dipoles rotated in the direct
sense on the passing of the first wall and in the indirect
sense for the second wall. The first series of panels of
Fig. 4 illustrates the case of an oscillating soliton
("breather" ), i.e., waves localized in X which evolve in
time, but with a wave number smaller than 1. It seems
that no interpretation of this class of solitons in terms of
domains and walls exists. Figure 4(b) gives the radiation
in v, while the wave evolves along X, which is not the case
in Fig. 4(a), which illustrates the P solution. This is ex-
plained by the fact that P(X,r) is localized by its very na-
ture, whereas the v radiation is obtained after application
of a wave operator which creates components which trav-
el at thc spccd of clastic waves. Finally, Figs. 5(a) and
5(b) illustrate the case of a single soliton already examined
in a previous paper (papcr I) on the basis of the double
sine-Gordon equation (2.3). However, we note a different
behavior from this previous solution, because, in Ref. 1,
we studied the motion of a single soliton in steady regime
by looking for propagative-solution functions of
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tent, the depth of the single soliton (not very marked). To
explain the presence of this. deepening effect, one should
examine the correction of second-order Pz. Tv sub I, tau I

he present numerical study takes its place in a series of
works ' which use other numerical schemes to study a
variety, of equations (sine-Gordon equation, equation in

P, etc.). To end this point we note that'the results illus-
trated in Fig. 5 may be related to the phenomenon of
acoustic emission generated by the motion of a wall in a
ferroelectric (cf. Ref. 29), but a theoretical support is
missing from this conjecture.

VI. CONCLUDING SUMMARY AND PROSPECTS

In this two-part work we pursued several purposes
within the framework of mechanics and physics. In the
first part (Ref. 1) we first constructed a model of fer-
roelectric bodies in which a polarization is associated with
the orientable molecular group (a prototype of which is
provided by NaNOz). This microscopic model was then
used to elaborate on a more sophisticated model including
nonlinearities related to the rotation of electric dipoles.
Thereby, we described ferroelectrics where large variations
in the electric polarization could be accounted for—hence
a description well adapted to media with strong spatial
disuniformities —which is the case of ferroelectrics with a
multidomain structure The .domains are separated by
walls which can be set in motion under the action of
external stimuli (e.g., an electric field). A crucial point in
the model obtained is the reciprocal influence of elec-
tromechanical couplings on the motion of walls and the
mechanical behavior of the solid. This model necessarily
implies couplings between perturbations in polarization
(via the orientation of dipoles) and the elastic perturba-
tions. Paper I concluded with the study of the relatively
simple case provided by the motion of one ferroelectric
wall. In the present part, of an obvious mathematical
orientation, we have considered the problem of the in-
teractions between a harmonic elastic wave and solitons in
a broad sense (i.e., multiple-soliton solutions) by using a
theory of perturbations. A zeroth-order solution was thus
constructed with a temporal modulation of its speed and
phase at the origin. Furthermore, first-order terms have
allowed us to exhibit radiation phenomena, and a conclud-
ing numerical analysis has proved the correctness of the
analytical considerations.

The single-soliton solution of paper I, insofar as the
stable solution is concerned, can be interpreted as the
motion of a so-called 180' wall. That is, starting from a
globally paraelectric (no global remanent polarization)
configuration, by moving inside the specimen, the wall
motion transforms the specimen to a ferroelectric configu-
ration. In other words, we can also say that one ferroelec-
tric domain was created where there were initially two.
This phenomenon is obviously closely related to the phase
transition of such crystals. Indeed, from a macroscopic
point of view, the paraelectric phase is characterized by a
vanishing global polarization for T & Tc ( Tc denotes
transition temperature). However, for T(Tc, a
"remanent" or spontaneous polarization is present. The
precise relationship between wall motion and phase transi-

tion is not simple. Nonetheless, if there is a sufficient in-
put of energy (including caloric energy), we should have
formation of domains and motion of walls so as to reach a
ferroelectric phase. More precisely, if the energy input
(electrostatic energy where the electric field is involved) is
larger than the depolarization energy, ' ' then domains
form. Beyond these energy considerations, there is also an
important "dynamic" point of view, namely the explana-
tion of the anomaly in the speed of elastic waves in the
neighborhood of the phase transition (see also Refs. 30
and 31). This anomaly is carried to the level of the fre-
quency spectrum in spectroscopic experiments. This is
the "central-peak" phenomenon for which the wall
motion is essential. Experimentalists are interested in
measuring a response function which is expressed by the
correlation between elementary oscillations, and hence,
that between quantities involving the solutions P and u of
the problem. Accordingly, it is in the neighborhood of
the phase transition that the effects are of interest. How-
ever, it is also in this neighborhood that nonlinearities
play a dominant role. In addition. to the physical prob-
lem, we also think that we gave a very interesting example
of the use of the double sine-Gordon equation. Finally,
the model presented can be adapted to ferroelectrics with
molecular groups [such as NaNO2 or SC(NH2)2] in which
an electromechanical coupling exists between modes of ro-
tation of dipoles and the acoustic modes. ' However,
ferroelectric crystals such as NaNOz present more com-
plex phase transitions for which a so-called incommensu
rate, intermediate phase fits in a narrow temperature in-
terval between the disordered and ordered phases. ' An
attempt at the explanation, in the static case, of the for-
mation of domains in terms of the incommensurate-
commensurate phase transition, was given in the last sec-
tion of paper I. In order to do this we introduced a con-
tinuous model in the manner of Landau, with the polari-
zation as the order parameter, the model being completed
by the elastic potential, electromechanical couplings in the
form of electrostriction, and piezoelectricity when neces-
sary, and a term of interaction between the polarization
and its spatial gradient ' ' that is necessary to account
for the modulated incommensurate phase and which may
be considered the analog of the Lifshitz invariant. In
this description we have a vectorial order parameter, the
polarization with two components which allows one to
model the evolution of the polarization within a wall.
The model thus obtained provides an explanation of the
formation of domains (in which the polarization is well
defined) as the emergence of the ferroelectric phase within
the incommensurate phase.

The present work has been devoted to a full exploitation
of the coupled equations (2.1) and (2.2) by considering the
coupling to yield a perturbation. A perturbation scheme
has been devised which follows from the theory of singu-
lar perturbations. The idea consists of the elimination of
secularly terms which result from resonances between the
source (coupling term) and the zeroth-order solution.
This is achieved by adjusting the free parameters of the
zeroth-order solution. The use of the inverse-scattering
method is avoided at this level, but its use becomes neces-
sary in order to obtain the corrective terms at the first or-
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der. It also allows one to build an adequate basis on
which the necessary Green function can be represented.
The nature of the corrective term, for the elastic displace-
ment, can be interpreted as the radiation of elastic waves

in the form of solitons traveling at speeds of + VT, while,
for the libration of electric dipoles, it can be interpreted as
a radiation of harmonic waves traveling with the speed of
solitons and elastic waves. As a matter of fact, only the
asymptotic behavior of these radiations can be reasonably
examined. The analysis is exemplified by the soliton-
antisoliton collision, where the interaction between the
harmonic elastic wave and the solitons is characterized, at
the first order in the corrective term by an exchange of
nature between the radiated waves. The soliton-
antisoliton collision can be interpreted as the motion of
two walls meeting one another in a three-domain speci-
men (two domains at 90' and one at —90 ). The simple
numerical scheme of Sec. V yields excellent results which
have been easily generated to cases which were not studied
analytically in the present work (e.g., soliton-soliton col-
lision, breather soliton, and single soliton with radiation).
One can envisage the adaptation of this numerical scheme
to other cases of perturbation: forced oscillations, and re-
laxation of elastic waves (viscoelasticity), orientational re-
laxation of electric dipoles, and also perturbation of the
motion of one or several walls by a defect (dislocation,
point lattice defect, defect in polarization, etc.). This last
point is essential in solid-state physics.

Obviously, the model of ferroelectrics with domain
structure we have considered remains "ideal" since we
have only two or three domains, but a real ferroelectric
crystal presents many domains of various sizes and orien-
tations (but always along crystallographic axes;" also
see Ref. 30). In solid-state physics this real multidomain
structure is taken into account by the introduction of a
statistical theory using partition functions ' (Ref. 33).
In such an approach the case of a crystal with two
domains is extended to a multidomain structure by com-
puting the correlation function corresponding to the
response of a specimen in a neutron-diffraction experi-
ment. An altogether different view of the matter accounts
for the periodic distribution of domains in many fer-
roelectric crystals. In this view it is possible to define a
cell comprised of two 180' domains (Ref. 30) and then en-

visage a method of "homogenization" (i.e., obtaining a
"macroscopic" behavior) by a method akin to the one now
used in continuum mechanics. Other generalizations of
the present model are, first, a three-dimensional lattice
theory for molecular crystals of which the molecular
group may be subjected to rotations of large amplitude
(Refs. 35—37). Staying in the domain of the continuum,
one can also envisage a nonlinear "micropolar" description
of crystals with molecular groups. ' In the latter case
nonlinearities in the micropolar variables and elec-
troacoustic interactions must be taken into account (pon-
deromotive force and couple).

In conclusion, let us emphasize several problems of
practical and theoretical interest, the solution of which
can be based on the equations provided in the present
work. One is the problem of the reflection and diffraction
of an acoustic wave by a wall (or walls) in a ferroelectric

and

BU 2 BU 8
BH BX2

—VT ———q (P cosPo) (6.2)

Q2p

Br
Q2p ~Up BU

ax'2
——costa+ g singo P+ g(cosPo)ax ax

Solutions are sought in the form

(v, g)=(V(X), @(X)}e

yielding

2dV 2 d
VT ———co V+g (@costa),

dX dX

(6.3)

(6.4)

(6.5a)

d N dvp dV
dX

= —co @—costa+ g sin&Pa 4—g cosgo
dX dX '

(6.5b)

which is an eigenvalue problem for which one must look
for a complete basis of orthogonal eigenfunctions, with
the help of which V and @ can be represented. Then
several particular problems can be envisaged

(i) In the expansion of Eqs. (2.1) and (2.2) it is possible
to introduce terms nonlinear in the perturbations u and P,
up to the third order, for instance, so that this anharmon-
ic model allows one to study the interaction of phonons
with ferroelectric domain walls. This leads to a problem
of reflection and transmission of phonons by walls. The
triggering of domain-wall motion by phonons resorts to
the same approach. An example of this type of problem
has already been given for a double-well potential. 5

(ii) Another problem is the influence of external pertur-
bations on the solutions u and P for a stationary or mov-
ing perturbation [the transformations (2.6) can be used to
return to the first case]. This leads to the study of the
wali resonance ' in the presence, or the absence, of dis-
sipative processes. This problem can also be tackled with
the aid of the perturbation scheme developed in Sec. III.

(iii} If the electromechanical coupling is envisioned as a
perturbing effect, we can also view the interaction of pho-
nons with a stationary or moving wall as acoustic pertur-
bations u(X, r) induced by the external stimulus. In this
case the problem can be expanded in terms of g and the

crystal. This is certainly a complex problem since one
must study the superimposition of small signals (acoustic
waves) on a nonhomogeneous state, taking nonlinear ef-
fects into account. For this one needs Eqs. (2.1) and (2.2),
for which it was shown in paper I that a static solution
[v(X), P(X)j could be found which represents a wall
separating two 180 domains; here, u(X) is the elastic dis-
placement induced by the inhomogeneous domain struc-
ture. Perturbations are considered about such a state by

u(X r) =vo(X)+u(X, r), P(X,v) =(ho(X)+P(X r) . (6.1)

Then, Eqs. (2.1) and (2.2), linearized in the perturbations,
read
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small signals u and P. To this aim one considers an un-
coupled solution ( vo, go). Then an external perturbation is
introduced (applied field, defect, etc.) which modifies the
zeroth-order solution and generates the fields ui and P&,
the ui —uo and P&

—$0 thus being the generated altera-
tions. Then we account for the electromechanical cou-
plings (terms in g) and look for perturbations induced by
g, i.e., u and P. The latter two fields are influenced by u&

and P&, which are themselves consequences of the external
stimulus, so that v and P finally correspond to the solu-
tion affected by both the external stimulus and the elec-
tromechanical couplings. Nonlinear terms can be includ-
ed in such calculations if needed. This procedure, at least
in theory, allows one to account for the mutual influence

of the effects of external sources and couplings, and, thus,
an action on the field of mechanical stresses (for instance,
defects) will have an effect, through the electromechanical
coupling, on the motion of a wall (alteration in the speed,
for instance). The study of the interaction between a wall
and a defect is of the utmost importance for a good
knowledge of domain structure and crystallography.
Another problem involves the ultrasonic investigation of
domains in ferroelectric crystals: if such a crystal is excit-
ed by an ultrasonic source, we can detect signals transmit-
ted and reflected by moving or stationary walls. The
detected mode is altered by the wall features (thickness,
speed) and this, in theory, provides a nondestructive
means of measurement.

APPENDIX A: ASYMPTOTIC BEHAVIOR OF THE SYSTEM (4.13)

For r~ op, P= z e since b.~ co, and the system (4.13) yields

dQ nA,
exp

d7 2
i(co—r go) — [(1 +A. )'i cos(Ab, +A, lny+Al )],a~ (A 1)

dh Q mAQ=—+ exp — i (co—r go)—
d7- n 2 2

77A a
2 aQ

( 1+g2)1/2
cos(A, b, +k iny+ Al ) (A2)

where A~ is such that tanAI ——A..

APPENDIX B: GREEN FUNCTION FOR RADIATIONS IN u

Qn account of f, given by Eq. (3.26), the G&z component of Eq. (4.20) is given by

1 ~. , dk 1 dkGiz(X, r
i
X', r') = f sin(a+k') — f sin(a k)4~ o + k 4w o k

where

(B1)

a+ —(X—X')+ Vr(r —r') . (B2)

A tedious calculation yields

G„=—,
' for (7',X')C[0,X/V7]&&[Vr(r' r)+X, ——Vr(r' r)+X], —

Giq= —
~ for ( Xr')&[X/V , 7])r&[V (vr' r)+X, ——Vr(r' —r)+X],

Giq ——0 otherwise .

(B3a)

(B3b)

APPENDIX C: GREEN FUNCTION FOR RADIATIONS IN P (CF. Ref. 17)

Consider the coordinate change

X~Z = —,
' (X r), r~ T= —,(—X+r)

so that the sine-Gordon equation reads

a2$
az aT

(Cl)

(C2)

Let P„be one solution of this equation. Gne can generate another solution P through the Backlund transformation
(Ref. 2),

(P —P„)=4igsin[ —,(P+P„)], — (P+P, ) = sin[ —,(P —P, )],1 8 1

2 az " ' " '
2 aT ' 4ig

where g is a parameter related to k and co by

k =2/ —1/8$, co=2/+I/Sg .

(C3)

(C4)
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In the case of a tu)o so-liton solution, the integrals of Eqs. (C3) can be algebraically obtained from the commutativity of
the Backlund transformation. Thus,

(4'2 0 )] tan[ (0A '4)]0A +NB

0A gB
(C5)

where pA(pB) represents a single-soliton solution with parameter gA(gB) and wave number kA ——2/A —(S(A) ' (kB),
and &)I&z is a Backlund transformation of pA (pB) through the parameter gB (gA ). For the present problem, we assume
that P„(X,r;&)(,,p) is a state of pure radiation with wave number k(A, ) and fixed amplitude p. Since P„depends on p, so
does its Backlund transformation Pz, which satisfies Eq. (C5). Therefore, we note

P„(X,r, k,,) = P„(X,r;A,p),
P p=p

where P„and P satisfy the equations

(t(X,r;A, ) = P(X, r;A, ,p)
P p=p

(C6)

(C7)

azp + (cos&)(o)(t =0, (CS)

respectively, where &t&o is the two-soliton solution (4.4). Upon differentiating Eq. (C5) with respect to p and setting p=0
we obtain

~ ~ gA +gB cos ($0/4)

&A
—&B cos'[(PoA —PoB)/4]

(C9)

0

where poA (&t&oB) represents a pure soliton with parameter gA (gB) and (tA (pB) is the derivative of pA (pB) with respect
to p. In fact, by differentiation of Eq. (C3) we obtain a linear first-order system in pA and ()I&B which is easier to solve
than Eq. (CS). Furthermore, since &I)„satisfies Eq. (C7), any solution of this linear system will also satisfy Eq. (CS). In
order to build the Careen function, we must determine P z from Eq. (C9). We can select a radiation in the form

with

f A(BA, )e xIp+i [k(A)X —co(A, )r]],'+ 1

7TA,
(C10)

kA +NB +KB

4 —PB

Then the linear system in pA and pB provides p A and p B, and Eq. (C9) finally produces &)(& 2 as

(Cl 1)

~ + 4+kB
2 + 4 —kB

cos(t)no/4) /A+A, +2k,JAtanhXA

cos[(4'oA (( oB )/41
gB+A, +2k,QBtanhXB

~' —0B
(C12)

where Xz and Xz are such that

cos(po „(B)/2)= tanhX„(B) .

exp I i [k (A)(—X —X')—co(&)()(r—r') ] IfAB (A)

Now applying the general representation (3.17), one obtains the Green function

Gii G(2$,(X,r
~

X',r') = I4i AT@

(C13)

(C14)

Being essentially interested in P(, we need the components G() and G,z. On account of the expression of the com-
ponents W3 and W4 of W, we obtain

G)) ——$2+ —— t I I+FAB(X&r)—[GA (A, ) —GB+(A, )]( co(A, ) FAB(X'&w')[G A (A, ) —6 B—(A, )]a~

~+~a
(X',r')[GA (A, ) —GB (A, )] (C15)
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G(2 = —(() 2+0'2 = —
I 1++~a(»~)[g~+(~)—Ga+(~)]] Il+F~a(X', ~')[G~ (~)—Ga (~)]I

where we have set [g=g~ ———(16(~) ']

gg (g)+A, +2Agg (g)tanhXg (g)
Ga (a)(~) =

0A (B)

g ~ =+~(g)g„-++ g„'-=+, , [~(A)(g, '+A'+, 2AgtanhX„) —2AJQ sech'X„],
()r $2 $2

g z —+co(g)gz + Gz —+ tco(A, )[1+(16/A, ) +32igtanhX~]+32k/A sech X~ I,
Br (16/A, ) —1

FAt) (X,~)=y
&+a'x'
1+g

(C16)

(C17)

(C18)

(C19)

aI„ 2 2"(X,r)= ~, —",, cot a, (C21)
Br Q (1+y )

and we recall that sech= 1/cosh, y=yP(r)/ct(X), and Gz (G)s ), are obtained by replacing Xz (Xz) by X z (X~), and,
hence, (X,r) by (X',r').
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