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Anomalous temperature dependence of diffusion coefficient
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A model is proposed which yields an anomalous diffusion coefficient, with a maximum in its tem-
perature dependence, in contrast to the linear temperature dependence of simple diffusion processes.
It is found that the anomalous temperature dependence of this diffusion coefficient is obtained by
taking into account "memory effects" or "correlation" in the usual random walks. As an example,
random motions of paramecium, which show the anomalous temperature dependence of this dif-
fusion coefficient, are considered.

I. INTRODUCTION g P~(m+a 1
~

m)=1 (2)

For many problems it is important to use a stochastic
approach. The basic equations describe Markovian pro-
cesses in which memory or correlation effects are not tak-
en into account. Recently, however, non-Markovian char-
acter has been observed in many fields. Specifically, in
rapidly relaxed systems, rapidly quenched systems,
disordered lattice systems, and ecological systems, the
processes show anomalous behaviors which cannot be
described by the usual random walks. The anomalous
behaviors arise from nonlinear, non-Markovian diffusing
elements.

Kawakubo and Tsuchiya observed interesting behavior
in the random motions of paramecium, which show an
anomalous temperature dependence of their diffusion
coefficient: The diffusion coefficient has a maximum
value at the temperature at which they were cultivated.
The anomalous behavior seems to come from memory ef-
fects or correlations between elements, proper to biologi-
cal species.

So far, the random-walk theory has been applied to
various problems and valuable results have been obtained.
For the nonlinear, non-Markovian processes, however, the
usual random walks have to be generalized. For this pur-
pose a generalization of the random walks has been pro-
posed in previous papers. '

In this paper, the generalized random walk (GRW) hav-
ing memory or correlation effects between the walker's
behaviors is applied to setting up a model yielding the
anomalous behavior. mentioned above. ' Here we focus
our attention on the "random motions" of paramecium
(the walker), which are studied as diffusion processes.

and W(m, N) is the probability that a walker starting at
the origin arrives at the site m after X steps. The symbol
P ~ ~(m

~

m —a 1) represents the probability of jumping
from the site m —a. 1 to the site m at the ( N —1)th step.
The summation over a in Eqs. (1) and (2) goes over
a= +, —,and 0. Memory effects in the processes are
considered in terms of a function f connecting the jump-
ing probabilities with a set of the corresponding ones at
previous steps;

P~=f(IP~ k]) (k=1,2, . . . , N) . (3)

Here, for simplicity we have omitted the m dependence of
P &. The continuum limit of the recursion relation speci-
fied by Eqs. (1) and (3) leads us to a nonlinear Fokker-
Planck (FP) equation

Bw 8 a +—[p +(t) —p (t)]w
Bt BX t0

a2 2

+ [1 p(t)]w, —
2t0

where the jumping probabilities satisfy the relation

g p (t) =1. In the derivation of Eq. (4), we have set

X =ma, t =Xt0

(a equals the unit distance, to equals the unit time) in Eq.
(1) and expanded the corresponding quantities around
a=O and to=0 while keeping a /to constant. ' Note
that the quantities w and p (t) are continuous ones, cor-
responding to W and P &, respectively.

II. GENERALIZED RANDOM %'ALKS

We review the basic expressions of the generalized ran-
dom walk. ' The recursion relation for the CxRW reads

g (m, N)= g P»(m
~

m —a. l)fV(m a. l, N 1), — —
a=+,0

A. Simple memory case

Firstly, we consider a simple case for the memory, in
which the jumping probabilities are specified by the
walker's "memory box": The f in Eq. (3) for P g is given
in the form

. ClV —1(ct
~

ot)P ~ I +&N [(+
~

ct)PQ —1—
where ( P~ represents N-independent P ), for a = + and
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A prime on the summation sign-means that the case 0.=0
is excluded. The continuum limit of the relation (6) leads
to

ap (t)
at

=c(a
I

—a)p (t) —c( —a
I
a)p (t)

[po(t) equals t independent po], where c (a
I

a')
C~,&, (a Ia')/to. With the aid of g + op (t)= 1,

where p (t) =po, the solution of Eq. (8) reads

p +(t)=p-+(0)e -' +p+ (~)(-1—e "') (9)

where

ci ——[c(+ I
—)+c ( —I + )]/2,
c(+

I
+)(1—. po)

p +-(~)=
c(+

I
—)+c(—

I +)
and the p

+—(0) are initial values satisfying p
+—(0)

= (1 —po)/2. A quantity defined by

(10b)

Q(t)=p+(t) —p (t)

is therefore written from Eq. (9) as follows:

Q(t)=Q(0)e ' +Q(ao)(1 —e ") . (12)
I

Cz i(a
I

a') is a correlation factor (or transition rate) be-
tween P~ and Pz i or P~, . The correlation factors
satisfy

i(a
I

a') =1 .
+

For a homogeneous system expressed by
c(+

I

—)=c(—
I +), the Q(t) given in Eq. (11) is re-

duced to Q(t)=Q(0)exp( —cot), where co ——c(+
I
—) or

c ( —
I + ). It is important to note that the recursion rela-

tion (6) itself is Markovian but the recursion relation (1)
[or (4)] specialized by Eq. (6) [or Eq. (8)] is non-
Markovian.

B. More general case

Here we consider the more general case that the jump-
ing probabilities are determined by the walker's n memory
boxes. This model yields the anomalous temperature
dependence of the diffusion coefficient. In this model,
each memory box can store a direction denoted by a;
(i = 1,2, . . . , n), and the direction is correlated with other
ones. To represent the states of the n memory boxes, we
use a set of directions a; (i = 1,2, . . . , n) and express it by
new probability functions PN' ' ". The P&'
is a generalization of P ~ used in Sec. IIA.

Step (time) evolution of the P~' ' " is supposed
to be expressed by the corresponding probabili-

ties P~' i' " and the correlation factors
C~ i(a;Iaj j I a,' Iaj j) in a recursive form; cf. Eq. (6).
The C& i(a; I ai j I a,' I aj j }means a correlation factor (or
transition rate) of the ith memory box from a,' to a;, with
the other memory boxes denoted by a~ fixed.

In the continuum limit, the time evolution of
p

' ' ' "(t) corresponding to P&' ' " reads

n= X c(a Iajj I

—a (a, j}p ' ' '
n—X c( —a'Iajj Ia Ia, j}p ' ' (13)

[p ' ' '' (t) equals t-independent po], for a; (i =1,
2, . . . , n) =+. The correlation factor

leads to a version of the Glauber model for Ising spin. "
Let a; (t) ) be an expectation value' defined by

is

(a;(t))= g a,"p ' '" ' "(t) (k =1,2) .
Ia

(14)

CN=~r, (a [a, j I
a' Ia, j)/to .

Summation of the p
' ' ' ' ' "(t) with respect to I a j

leads to a t-independent quantity:

y p~t ~2 . . . ~ ~s(t)

The summation denotes a sum taken over all 2" configura-
tions for n directions. Also, the summation over Iaj of
c(a; faj j I a,' Iai j ) gives a t-independent result, normali-
zation

g c(a; Iaj. j I
a; Iaj j )=1 .

a

If we regard the c (a; [aj j I
a,' [aj j ) as a probability of

"flipping of directions" from a,' to a;, the present model

Here we restrict the consideration to a case where the ex-
pectation values (a;(t)) and (a;(t) } specialize the jump-
ing probabilities p —(t) used in Eq. (4) as follows:

n—g (a;(t) }=p+(t)+( —1)"p -(t)
n,.

or

—= ((a (t)» (k =1,2),

p -(t)=-,' [(1—p.}+«a(t}»],

p (t)=po,

(15a)

(15b)

where we have used p +(t)+p (t)+pa ——1. The state-
ment (15a) or (15b} means that Q(t) in Eq. (11) is ex-
pressed by
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Q (t) = ((a(t) )) .

The time evolution of Q(t) is written in the form

(16)

c(a [a j —a. [a.j),,a, , . . . , a, , , a„
E J 1 J Est

(23)

n

((a(t))) =—g (a;(t)),
n i=1

where

(a(t))= —2(a;c( —a;Ia, j ~a;Iajj))

(17a)

(17b)

(18)

from Eqs. (13) and (14). For the derivation of Eq. (17b),
we have used the relation g,. a; 1=0 and replaced a; by
—a; in the summation for a;c (a; I aj j ~

—a; [aj j ).
In the following, we consider processes in which the

correlation factor c ( —a; I aj j ~
a; jaj j ) ls given by

~'

c(—a;[a, j ~a;[a;j)= 1 — a;(a; i+a;+i)
co

y = tanhPJ, (24)

where the parameters J and T are defined by Eqs. (20)
and (21), respectively. Here note that the expression (19)
is obtained from the equation'

where

1(a;(t)) = — [(a;(t))—(a;(t)),],
Tp

(25)

where p „' ' " denotes the steady state of
p

' " ' "(t). Here we impose the periodicity condition,

a„+i——ai, and rewrite the p„' ' "
by exp( —PA ).

Then the p„' ' " in Eq. (23) becomes the p(a;) given
by Eq. (21), and algebraic manipulation of the result leads
to an expression for y,

where co is 1/to and y is a constant. With Eq. (18) and
a; 1 = 1, the expression (17b) can be rewritten as follows:

(a;(t)) = —(a, (t))+—[(a;,(t))+(a; —,(t))] .
Cp

(19)

The specialization y =0 leads to the case considered previ-
ously below Eq. (12).

70—
Cp

(a;(t)),=

(26)

g a; exp I
——,

' PJa;[(a;,(t) ) + (a;~,(t) ) ] j
a;

y exp[ ——PJa;[(a; (t))+(a; (t))]j

(27)

III. EVALUATION OF ((a(t) ))

In this section, to calculate the ((a(t))) explicitly, we
must consider some parameters specifying the model.
Firstly, we introduce a coupling constant between
nearest-neighbor directions in the walker's n memory
boxes. Secondly, we specify the temperature of the envi-
ronment of the walker and introduce a probability that
the ith box stores a direction o.;.

The coupling constant J specializes "correlations" of
the directions stored in the n memory boxes in the form

QF =M—0
tp

(29)

Q
[1—po(T)l

2tp
(30a)

The nonlinear FP equation (4) having the memory effects
specialized by Eqs. (13), (15a), and (15b) is reduced to

au a +0
m+D (28)at ax 7j

where

(20)

Let the probability p(a; ) that the direction of the ith box
isa; be

[p +(t) —p (t)]=tp

M
1 ((a(t))) (q, =~/t, ),

90

(30b)

p(aj ) cx e ' (P= 1/kJl T), (21)

where kz is the Boltzmann constant and T is the tem-
perature mentioned above. The quantity A J characterizes
the memory in terms of the correlation between direc-
tions,

J= ——a (a i+a +i) .
2

(22)

The statement (21) with Eq. (22) implies that the nearest-
neighbor directions show behaviors similar to that of fer-
romagnet when J& 0. The function A ( = g". , A J. ) is a
"Hamiltonian, " which determines the correlation between
directions in the n memory boxes.

Steady state of p
' ' '' "(t) in Eq. (13) leads us to

the detailed balance expressed by the form

and M is the mass of the diffusion particles.
In Eq. (30a), we rewrite the constant po in Eq. (15b) as

po( T), which indicates the temperature dependence.
From the expression (25) with Eqs. (26) and (27), we note
that for t & ro we can use a simplified relation for ((a(t) ))
in the steady state; that is,

((a)) =tanh(PJ)((a)), (31a)

where ((a )) denotes the value of ((a(t) ))
[=(1/n) g,".

i (a;(t))] in, the steady state and leads to
the relation

((a))=[p+(t)—p (t)], , (r&r,). (31b)

Graphical consideration for Eq. (31a) leads us to a fa-
miliar curve for ((a))/((a))0 as shown in Fig. 1, where
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((~&) («&)
kaT

A, 'P o

0.5 I.O T/Tc

FIG. 1. Qualitative behavior of ((a)) /((a))o.

((a))o is an expectation value independent of T. In Fig.
1, T, (=J/k~) is a critical temperature defined by the
parameter J which specializes the coupling or the correla-
tion between the directions o,; and a~ stored in the ith and
jth memory boxes.

Here we postulate that the steady state of w(x, t) and
w„(x) is expressed in the form

w„(x)=e —A,$(x)/k~ T
(32)

where P is a potential and its derivative is a force
Fo( = —BP/Bx), and the A, is a numerical factor adjusting
the behavior of w„(x) in the interval [O, L] under con-
sideration. The steady state then becomes

A,Fox/k~ T
(33)w„(x)=e

The condition that the local flux is balanced in the steady
state gives the Einstein relation

FIG. 2. Temperature dependence of diffusion coefficient D.
Linear curve (k&T!A,go) denotes a usual temperature depen-
dence of diffusion coefficient. The linear curve multiplied by
((a)) leads to the D showing a maximum in its temperature
dependence.

to-10 sec, a-2X10 cm . (35)

These values are estimated from the diffusion coefficient
(-4X10 cm /sec) and the velocity of paramecia ( —1
mm/sec) observed experimentally. s'~ Furthermore, we

ficients for the paramecia observed by Kawakubo and
Tsuchiya. They find that the behavior of w(x, t) quickly
approaches "uniform distribution" after the initial distri-
bution; see Fig. 4.

The temperature dependence of the diffusion coefficient
obtained with Eq. (34) shows a behavior similar to the ob-
served ones. For numerical evaluation, we take the fol-
lowing units:

((~&& .
kgT
Ar Qo

(34)

From substitution of the solution determined by Eq. (31a)
into Eq. (34), we are able to get behavior as shown in Fig.
2. If we neglect the temperature dependence of ((a))
arising from the memory effects, ((a)) becomes a con-
stant. Relation (34) then leads to the usual Einstein rela-
tion, D =k~T/A, go. A physical reason for why ((a)) ex-
hibits a maximum in its temperature dependence is that,
by considering the walker's memory, we were able to in-
troduce correlation effects, which are strongly influenced
by the environment-specified temperature T. The
memory effects, mathematically, lead to non-Markovian
processes. The strongly influenced motions yield an
anomaly in the diffusion coefficient which is not ex-
pressed by the usual linear-T dependence of the environ-
ment.

D (mrrf/s)

5-

l0 l5 20 25 30
IV. RANDOM MOTIONS OF PARAMECIA

With the aid of Eq. (34), we can study the random
motions of paramecia. Figure 3 shows the diffusion coef-

Temperature ( C)
FICx. 3. Observed temperature dependence of the diffusion

coefficient for paramecium (Ref. 6).
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set M-10 g, L —10 cm, J=5.5& 10 ' ergs
( T, =40'C), A, -10 ", and ((a)) —((a))0-5X 10
Here we regard the uniform distribution shown in Fig.
4(b) as the distribution in the steady state w„(x). Agree-
ment of the distribution (33) with the observed ones is not
clear. However, it is important to note that the values
taken above are not essential to the present qualitative
temperature dependence of & In the present model, the
memory effects are specified by Eqs. (13), (15a), (15b),
(21), and (22), and we consider a single walker, but we can
treat many walkers by using the coupled random walks. '

If we use the two-dimensional (2D) GRW and the Work-
Fujita model' for the jumping probabilities, the present
treatment leads to a more realistic 2D model for the ran-
dom motions of paramecia.

Finally we note that there are other interesting phenom-
ena, similar to the present, with anomalous temperature
dependence of the diffusion coefficient: The longitudinal
diffusion coefficient of a spherical particle shows a max-
imum with respect to the radius, ' diffusion processes in a
magnetic field yield diffusion coefficients showing a max-
imum with respect to the field parameter. ' The
anomalous behavior of memory effects in solid-state
tracer diffusion processes have been extensively studied. '

FIG. 4. Distributions observed for w(x, t) due to Kawakubo
and Tsuchiya (Ref. 6). {a) An initial distribution of m(x, t) at
t=0. (b) A "uniform distribution" observed after 7.5 sec; we re-

gard it as a steady state in Eq. (33).
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