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Phase diagrams and magnetic excitations in holmium phosphide
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New neutron scattering studies were made on holmium phosphide {HoP) in order to resolve exist-

ing ambiguities. Neutron-diffraction investigations were performed on single-crystal and powdered
samples of HoP in external fields up to 40 kOe as well as in zero field. In addition to obtaining
phase diagrams, we have determined that the easy directions of magnetization are ( 100) in the fer-

romagnetic and paramagnetic states. Depending on the history of the samples, structural defects
presumably of Schottky type tend to shorten the range of magnetic order. Inelastic neutron scatter-
ing was used to measure the magnetic excitation spectrum of HoP in the flopside phase. Four spin-

wave branches were found which are almost independent of wave vector. The results are analyzed
in terms of a mean-field Hamiltonian containing a crystal field and the effects of bilinear and qua-

drupolar pair interactions. On the basis of the resulting model parameters, we are able to explain
the salient features of the magnetic behavior of HoP, in particular, the appearance of first the fer-
romagnetic and then the fiopside phases, and the variations with fields of the paramagnetic-flopside
transitions and the Aopside-ferromagnetic transitions.

I. INTRODUCTION

Holmium phosphide (HoP) belongs to the rare-earth
monopnictides which have a rocksalt structure. At
T~ ——5.4 K it undergoes a second-order phase transition
and orders ferromagnetically. ' There is a first-order
phase transition at TF 4.8 K from the fe——rromagnetic to
a flopside phase" in which the fcc lattice of holmium
ions breaks up into two sublattices each one consisting of
alternate (111)planes. The sublattice magnetizations Mz
and M~ are approximately oriented along cube edges and
perpendicular to one another. In the subsequent analysis
we assume equivalent sublattices, i.e., M~ ——(M„,M~, O)

and M~ ——(M~, M„,O). HoP has strong crystal fields; the
parameters as determined by neutron spectroscopy '"
(W= —0.025 meV and x=0.75) are such that the six
lowest-lying states of the ground-state multiplet I8 of
Ho + are nearly degenerate and well separated from the
other levels. This level scheme forms the basis of the cu-
bic model.

The magnetic behavior of HoP was recently studied
within the cubic-model approximation, and the appear-
ance of first a ferromagnetic and then a flopside phase
was ascribed to two features of the model. First, a weak
intersublattice coupling due to competing first- and

second-neighbor bilinear interactions, and second, appreci-
able antiferroquadrupolar pair interactions. At the time it
was not possible to determine a unique set of model pa-
rameters; only conditions that the parameters must satisfy
were found. To determine these parameters we measured
the magnetic excitation spectra of HoP by means of in-
elastic neutron scattering. An analysis of these data based
on the Hamiltonian used to understand the magneto-
thermal behavior of -HoP has yielded a unique set of pa-
rameters.

Also, as previous neutron diffraction studies were made
in zero field, the easy directions in the ferromagnetic state
were not known. According to the theory either (100)
or ( 111) was possible. To resolve this, neutron-
diffraction measurements were made in HoP in external
fields (a brief summary of the results is published in Ref.
1). In addition to answering this question, recently per-
formed single-crystal studies have provided us with phase
diagrams of HoP in external fields.

In Sec. II we describe these neutron-diffraction studies
and the results. The inelastic neutron-scattering experi-
ments used to determine the magnetic excitation spectra
of HoP and the analysis used to determine the model pa-
rameters are described in Sec. III. By using the model
Hamiltonian previously developed for HoP, and the pa-
rameters determined in Sec. III, we describe in Sec. IV a
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mean-field analysis of the phase behavior of HoP in exter-
nal fields. We summarize our findings in the last section.

II. NEUTRON DIFFRACTION:
MAGNETIC PHASES

A. Samples

The sample preparation has been previously described.
The characteristic properties of the specimens used in the
neutron-diffraction investigations are summarized in
Table I. The holmium content was determined by chemi-
cal analysis. Apparently the lattice constant depends to a
large measure on sample perfection. Most neutron-
diffraction investigations were made on stoichiometric
samples (S2,P2). The single-crystal S2 has approximate
dimensions (1.5—3.5)&(2.5&&2.5 mm (the latter edge is
parallel to [001]). The samples were enclosed in cylindri-
cal vanadium or aluminum containers (1 cm in diameter
for powders) under a pure helium atmosphere

B. Experiments

Elastic neutron-scattering experiments were performed
on two-axis spectrometers at the reactor 8aphir in
Wurenlingen. Without external magnetic fields neutron
wavelengths of A, =0.9 A (Er filter) and 2.34 A were used
in cases of single crystals and powders, respectively. The
powder sample P2 was also measured at X=1.06 A in
external magnetic fields H with magnitudes up to 8.3
kOe, using an electromagnetic and a variable temperature
cryostat. The magnetic field was oriented parallel to the
scattering vector Q. This method permits the determina-
tion of the easy direction of magnetization also for cubic
systems. Although there might arise some problems in
such measurements due to preferred orientations, the
main advantage of using powders in the present case is the
absence of extinction. This would be particularly associ-
ated with magnetic intensities because of the large mag-
netic moment of Ho + (-10pii). For the determination
of magnetic phase diagrams the single-crystal S2 was
mounted in a superconducting magnet with magnetic field

perpendicular to the scattering plane. By means of a
two-axis spectrometer equipped with a tilting counter
fields parallel [001] and [011] could be studied. For this
purpose the crystal was glued on an aluminum sample
holder permitting changes of orientation. The tempera-
ture was controlled by means of a field-independent capa-
citance sensor. Powder diffraction patterns corrected for
absorption were analyzed by means of the profile
method, using scattering lengths bH, ——0.808 X 10 ' cm
b p

——0.513& 10 ' cm, . and a relativistic neutron magnet-
ic form factor f for Ho + in the dipole approximation.

C. Results

1. Long range m-agnetic order in zero magnetic field

In Fig. 1 we show typical neutron-diffraction patterns
of HoP as function of temperature. In the paramagnetic
state at 7.0 K one observes only nuclear Bragg peaks. The
large intensity increase of weak nuclear refiections such as
1 1 1 and the absence of any additional peaks clearly indi-
cate the existence of long-range ferromagnetic order in
HoP at 5.0 K. As no deviations from cubic symmetry are
observed, only the magnitude of the ordered magnetic mo-
ment p of Ho may be derived from this diagram. At 4.2
K the diffraction pattern contains both large ferromagnet-
ic and antiferromagnetic Bragg intensities which confirm
the flopside model. Assuming two equivalent magnetic
sublattices pz and p~, the ferromagnetic intensities de-

pend on the magnitude of' the vector p+ ——p~+ p~
which is oriented parallel to the direction [110]. The anti-
ferromagnetic peaks yield information both on the magni-
tude of p =p z —pti (in the model parallel to [110],i.e.,
perpendicular to [111]) and on the angle of itt with
respect to the cubic [111]direction. ' Thus it is possible to
determine both components p„and p~. At 4.2 K the fit
of observed and calculated profile intensities is shown in
Fig. 2. The refined structural parameters are summarized
in Table II. Scale factors were determined in the
paramagnetic state from the nuclear intensities. The
overall temperature factor 8 decreased from 0.09(8) A at

TABLE I. Characteristic properties of the HoP samples used in the neutron™diffraction studies. S denotes a single crystal, P a
powder.

Sample

S1

Annealing
temperature

(C)

2500

X-ray lattice
constant

(A)

5.604

Ho content
{percent of theoretical

value by weight)

100.8

Magnetic
ordering

Short-range order

S2 1400 5.624 100.3 Flopside structure,
ferromagnetism

P1' 5.624 Flopside structure

1600 5.627 100.6 Flopside structure
ferromagnetism

P3

'Measured at temperature T &4.2 K.

5.614 86.9 Short-range order
(predominant)



458 FISCHER, FURRER, KALDIS, KIM, KJEMS, AND LEVY 31

10 3J„

10"

5-

10

5»

MoP P2,4.2K

C7
Ol
Ala

I
I

Ã0
I

co
CO

5.0 K

70K
Al

I

le
COr

0 0
o

if B is set equal to zero. The tem. perature dependence of
p and pz, see Fig. 3, was determined from the measured
integrated intensities of the reflections 111, —,
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(with respect to the chemical cell). The moments
are normalized to the more accurate values obtained by
profile refinement, see Table II. Concerning transition
temperatures more precise new single-crystal results are
shown in Fig. 4. We use inflection points for the defini-
tion of transition temperatures. In particular this holds
for Tc, where critical scattering is expected

Maxima of diffuse magnetic intensity were indeed ob-
served at temperatures near Tc in the vicinity of reflec-
tions 1 1 1 and —,

'
—,
'

—,'. From Fig. 4 we find a Curie tem-
perature Tc ——5.4(l) K, in good agreement with that re-
ported in previous studies. ' The phase transition ap-
pears to be of second order. At TF ——4.8(1) K there is a
first-order phase transition from ferromagnetism to a
flopside configuration. At T~ a small hysteresis of the
order of 0.07 K is observed.

30 80 $0 120

2e (deg)
FIG. 1. Temperature dependence of neutron-diffraction pat-

tern of the Hop powder sample P2. At 4.2 K the indexing cor-
responds to the magnetic unit cell with lattice constant a =2a.
Inserts indicate corresponding magnetic structures.

293 K to —0.13(4) A at 4.2 K. Presumably the latter
negative value corresponds to residual errors in absorption
corrections and estimates of the background. The values
of the parameters change only within standard deviations,

2. Magnetic short range ord-er caased by defects

In the single-crystal sample S1 only short-range antifer-
romaynetic intensity was observed in the vicinity of the

peak position for the temperature range from 1.4
to 4.2 K. At the same time the integrated intensity of the
nuclear reflection 1 1 1 remained constant. ' As the
single-crystal Sl was synthesized and annealed at high
temperatures of the order of 2500 C, see Table I, the
creation of a substantial number of Schottky defects is
probable, which presumably tends to shorten the range of
magnetic order in zero field.

Further evidence for the important influence of defects
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FICi. 2. Observed (points) and calculated profile intensities (line, assuming a cubic lattice) of polycrystalline HoP P2 at 4.2 K in the
Aopside phase.
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TABLE II. Refined lattice constant a, ordered magnetic moment p =(p„,p~, 0) of Ho +, and agreement values R,RR'~, see Ref.
7, for the HoP powder sample P2. Temperature is denoted by T. Standard deviations are given in the parentheses. The magnetic
moment for the slightly nonstoichiometric sample P1 (HoPO9$($) according to neutron intensities) at 4.2 K is p„=7.40(4)pz and

p~ =0.33(4)p~.

293
7.0
5.0
4.2

a (A)

5.627(7)
5.620(7}
5.622{7)
5.617(7} 9.16{4)

py

0.18{3)
5.18(3)
9.16(4)

R„

0.033
0.024
0.017
0.025

0.019
0.035

0.111
0.083
0.062
0.098

on the magnetic properties of HoP was obtained on a
similar powder sample which also deviates from 1:1
stoichiometry, see Table I, P3 (HoPp94(i) according to
neutron intensities). Sections of corresponding neutron-
diffraction patterns are shown in Fig. 5. Compared to
Fig. 1 the coherent magnetic intensity due to long-range
order appears to be very weak even at 4.2 K; the ordered
magnetic moment of holmium pH, is about 0.9iMii. The
magnetic scattering is mainly incoherent, corresponding
to broad diffuse peaks, e.g., in the vicinity of 3 11~, see
Fig. 5. Such "critical" modulations of the paramagnetic
intensity which is proportional to f (Q), indicate short-
range magnetic correlations, similar to those found in
TbSe. ' The differences in the saturation values of ordered
magnetic moments of different HoP samples, see Fig. 3,
appear to depend mainly on Schottky defects (possible on
both anion and cation sites), corresponding to the anneal-
ing temperature. Nonstoichiometry seems to be of secon-
dary importance. In contrast to chemical analysis, see
Table I, neutron intensities indicate both for sample P1
and P3 the composition HoPO 94.. Presumably the concen-
trations of Schottky defects in these specimens are dif-
ferent. Another difference is the presence of an impurity
phase in sample P3, see Fig. 5. On the other hand, in the
case of the stoichiometric powder sample P2 the free-ion
value of 10pz for the ordered magnetic moment per Ho +

ion is nearly attained at low temperatures pp=9.7(1)pii,
i.e., corresponding crystal-field effects are weak. This is
in perfect agreement with calculation, cf. Fig. 14.

3. Effects of external magnetic fields

In order to determine magnetic phase diagrams the
HoP single-crystal S2 was investigated in external mag-
netic fields H up to 4 T (40 kOe) and within the tempera-
ture range from approximately 2 to 10 K. The orientation
of the magnetic field along axes [001] and [011] were
studied. Generally we measured peak intensities as a
function of decreasing temperature at various magnetic
fields, i.e., starting from the paramagnetic state. We use
inflection points for the definition of phase boundaries.
Additional measurements were performed at constant
temperature (reached from the paramagnetic state) as
function of increasing and decreasing magnetic field. The
resulting average phase diagrams are shown in Figs. 6 and
7. In the case of the [001] diagram all four (111)
domains have the. same angle of 54.7' with respect to the
magnetic field, i.e., the normals to the ferromagnetic
planes make this angle with respect to the field. For each
(111) domain up to 12 different (110) orientations of
LM+ exist. In the case of the [011] phase diagram the
behavior of the [111]domain (perpendicular to H) resem-

HoP

'lo
Jg

TF
d d +dd dddd d

H I

I

I

5- bp~

i

6, TC

\

o------~- --0 -a- ~--+-4-~--~-p

HoP t011],H=O

0 1 2 3 4 5 6 7

T {K}
FIG. 3. Temperature dependence of ordered magnetic mo-

rnent components p„of Ho + in polycrystalhne HoP. Circles

and triangles denote samples P2 and P1, respectively; squares
represent data from Ref. 2. Solid symbols indicate results from
profile fits.

FICx. 4. Temperature dependence of neutron peak intensities
of HoP single-crystal S2 on decreasing temperature (arbitrary
units, external magnetic field H =0).
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FIG. 5. Sections of the neutron-diffraction patterns of the
HoP powder sample P3 illustrating predominant short-range
correlations at 4.2 K, in comparison to the paramagnetic state at
293 K. The small peak at 20-45' originates from an unidenti-
fied impurity phase.

FIG. 7. Magnetic phase diagram of HoP for external mag-
netic field along a (110) direction. This diagram contains re-
flections from two inequiva1ent (111) domains; see text. The
dashed and dotted lines indicate the boundaries within which
the flopside phase (domains [111], [111]) goes over to the
paramagnetic phase.

HoP [011)

bles the [001] phase boundaries. On the other hand, the
stable [111]domain, with angle 35.3' to H, corresponding
to sublattice magnetizations p ~ ~ j

—[010] and p, z ~ ~

-[001],shows a marked field dependence~see Figs. 4, 7,
and 8. In particular, the magnetic peak —,

'
—,
'

—, suggests a
change from first-order transition in zero field to second-
order transition in larger external magnetic fields () 5
kOe). Similar observations were made with magnetic
fields oriented along [001]. In this context domain
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FICx. 9. Dependence of peak intensities of se1ected magnetic peaks of HoP single-crystal S2 on increasing magnetic field H~
~
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at 4.2 K.

reorientation effects are presumably important. An exam-
ple of the magnetic field dependence of magnetic intensi-
ties is shown in Fig. 9. The transition to the ferromagnet-
ic state appears to occur rather gradually. The 111peak
shown in Fig. 8, in particular the weak temperature
dependence at H=20 kOe, characterizes a paramagnet in
an external magnetic field and suggests a substantial in-
duced moment. This is seen more clearly in Fig. 10,
which shows the field dependence of the induced magnet-

ic moment per Ho + ion in the paramagnetic state, calcu-
lated from the magnetic intensity of the 1 1 1 reflection
(demagnetization corrections were neglected). In particu-
lar, these results indicate easy directions of magnetization
(100) in the paramagnetic state (p[011] -@[001]/W2)
in agreement with crystal-field considerations.

In order to determine the easy directions of magnetiza-
tion also in the ferromagnetic state, the powder sample
P2, see Table I, was studied by means of neutron diffrac-
tion in external magnetic fields H (H (8.3 koe) oriented
along the scattering vector Q. Typical powder results are
reproduced in Fig. 11. The measurement of the tempera-
ture dependence of reflection —', —,

'
—,
'

yields a shift of the
phase boundary ( T~ ) between flopside phase and

100 =

HoP, 5.0 K

0+ I I I0 5 10 15 20
H (koe)

FIG. 10. Dependence of induced ferromagnetic moment on
field in the paramagnetic HoP single-crystal S2 at 9.2 K: (a) for
fields along [001]; (b) for fields along [011]. We also show by
lines the moments calculated from the 17-level scheme, see text,
including corrections for demagnetization in the approximation
of spherical shape. The differences between the observed and
calculated values of the moments may be due to the irregular
sample geometry.

0
0 2.5

l I I 1

5
H {sac)

FICx. 11. Magnetic field dependence (increasing external field
H parallel to Q) of normalized integrated magnetic neutron in-
tensities of the polycrystalhne sample P2 of HoP at 5.0 K. The
arrow indicates a phase boundary {ferromagnetism to flopside
phase) for the [110]direction.
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which is installed at a neutron guide connected to a cold
H2 source. The measurements were carried out in the
neutron energy-loss configuration in the flopside phase
(1.5 & T & 2.2 K). The analyzer energy was kept fixed at 4
and 5 meV for the measurements of the polycrystalline
sample and the single crystal, respectively, and a berylli-
um filter cooled to liquid-nitrogen temperature was used
to reduce higher-order contamination of the scattered neu-
tron beam.

In Figs. 12 and 13 we show the resulting energy distri-
butions of the scattered neutrons. Besides the elastic line
which is almost entirely due to scattering from the vana-
dium container there is an intense double-peaked structure
at 2 meV and a weaker line at 3 meV. A fourth inelastic
peak appears as an unresolved shoulder on the low-energy
side of the dominant inelastic line near 1.5 meV. The tails
of the elastic peak extend up to an energy transfer of 1

meV; however, the symmetric shape of the elastic line (no
excess intensity in the energy-loss part compared to the
equivalent energy-gain part of the spectrum) suggests that
there is no inelastic scattering in that region. In the data
analysis the lines were approximataed by Gaussians. The
results of the least-squares-fitting procedure are shown in
Tables III and IV as well as by the solid lines in Figs. 12
and 13. The dashed lines indicate the background level
and subdivision into individual lines.

paramagnetic state from 4.8(l) K at H =0 to 5.0(1) K at
8.3 kQe for the magnetic field H parallel to [331]. The
large decrease of magnetic neutron intensity for the 200
reflection, see Fig. 11, proves that the easy directions are
(100) in ferromagnetic HoP. With respect to the limited
magnetic field range of the ferromagnetic state of HoP at
5.0 K, we performed similar measurements at 5.3 K. In
the latter case zero magnetic intensity was first attained in
the Bragg peak 200 at approximately 6 kOe, which con-
firms that the easy directions of magnetization are ( 100).
Effects due to induced magnetic moment were observed
particularly for the reflection 1 1 1 in the sense that the in-
tensity increases up to about 4 kOe.

D. Discussion

B. Analysis of results

Following Kim and Levy we describe the magnetic
behavior of HoP by a Hamiltonian which contains
crystal-field, bilinear, and quadrupolar pair interactions:

A =A CF —g J(JS; SJ
l)j

—y„ it J[—', g(S;)g(S, )+P(S;)P(S,.)],

where

The present neutron-diffraction investigations on HoP
prove the existence of a first-order magnetic phase transi-
tion from the flopside structure to the ferromagnetic
phase at T~ ——4.8(1) K in zero magnetic field. Near TF
the component p~ of the ordered magnetic moment per
Ho + ion reaches its maximum value, but remains consid-
erably smaller than p„. At saturation, a stoichiometric
sample of HoP nearly attains its free-ion value of 10@~.
The ferromagnetic-paramagnetic transition at Tc 5.4(1)——
K is second order. At low temperatures (& 1.7 K), " in
the ferromagnetic and paramagnetic states the easy direc-
tions of magnetization are (100). The transitions from
the flopside phase to the ferromagnetic or paramagnetic
states depends essentially on both directions and magni-
tude of the magnetic field. With increasing field this
transition appears to change from first to second order,
provided that effects due to magnetic domains do not
simulate such a change. Depending on the thermal histo-
ry of the samples and on the nonstoichiometry, structural
defects presumably of the Schottky type have a profound
influence on the lattice constants and magnetic properties
of HoP, e.g., they break up long-range magnetic order.

III. INELASTIC NEUTRON SCATTERING:
MAGNETIC EXCITATIONS and

g(S;)=3S;,—S(S+1)

A. Experiments

Earlier studies of the magnetic excitations of HoP were
performed on the single-crystal S1 which only exhibited
short-range magnetic order presumably caused by
Schottky defects. ' Some years later inelastic neutron
scattering experiments were carried out on the same poly-
crystalline sample P2 which was used for the neutron-
diffraction study however, the instrumental energy reso-
lution was not sufficient to reliably determine the magnet-
ic excitation energies. ' Now we have made a new at-
tempt to measure the magnetic excitation spectrum of
Hop by means of inelastic neutron scattering under im-
proved experimental conditions for the polycrystalline
sample P2 and the single-crystal S2 (see Table I and Sec.
IIA).

The inelastic neutron scattering experiments were per-
formed at the DR3 reactor at Ris@ National Laboratory
in Denmark using the triple-axis spectrometer TAS7

P(S;)=S;„—S,y .

Note that we have neglected the other three components

a 200-

4a

40
C:

100-

%as (meV)

FIG. 12. Energy spectrum of neutrons scattered from poly-
crystalline HoP at Q=1.34 A ' and T=2.2 K. The lines are
the results of a least-squares fit as explained in the text.
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energy scale for the model, a is the total strength of the
biquadratic interactions, and a,a' characterize the
strengths of the antiferromagnetic and antiferroquadrupo-
lar components of the interactions. The expectation
values in Eq. (2) are defined by

Mg+Mg
C &00-
@,

50-
x500 ~ ~

q, Q~+Qa
q~ 2v3

p, &~+&a

P2 2

(4)

FIG. 13. Energy spectra of neutrons scattered from a single

crystal of HoP at T=1.5 K for Q=(2n ja) (h, k, o). The lines
are the results of a least-squares fit as explained in the text.

of the quadrupolar pair interactions, e.g., S„S„—S„S„,
as we have anticipated using the cubic model in which
these components are zero, see discussion below. In order
to obtain a numerically tractable model we treat Eq. (1) in
the mean-field approximation. This is a reasonable ap-
proximation, since there is no experimental evidence for
dispersion effects in the magnetic excitation spectrum, see
Fig. 13. Furthermore, we consider only the first- and
second-neighbor bilinear interactions J„J2 and first- and
second-neighbor quadrupolar pair interactions K&,K2.
%'e then obtain

with

M, =(s, ),
g, =(g(s, )),

and

p„=(p(s, )),
when i belongs to the sublattice 2; similar definitions ap-
ply for the sublattice B. The flopside phase is character-
ized by

Mg ——(M„,My, M, )

Ms ——(My, M„,M, ) .

A =A cF—J (/+a f).s+ (q&+a'qq)g(s)
3

+a(p i+a'p2)P(S) (2)

When Eq. (5) is valid, we have Qz ——Qs and Pz —— Ps, —
i.e., q2

——p] ——0, and we arrive at the following sublattice
Hamiltonian for HoP in the flopside phase

where the + sign refers to the sublattice A or B, and the
model parameters are defined by

and

J= 12JI +6J2,
a =(12E)+6%2)/J,
a= —Jz/(2J]+ J2)

(3)

a'= —Kz/(2X) +Ep) . '

Here J is the total bilinear coupling which sets the overall

A g
——A CF—6([J)M„+(J)+J2)My]S„

+ [(J,+J, )M„+J,M, ]S,
+(2J)+J2)M,S, I

—2(2K|+Kq)gag(S)+6K2PgP(S) .

This Hamiltonian contains, besides A cF, four parameters
and five expectation values which have to be determined
self-consistently. This is a difficult task if we have no pri-
or knowledge about the model parameter's. From neutron
spectroscopy ' we know that the crystal-field ground

TABLE III. Energies in meV and intensities of the magnetic excitations of polycrystalline Hop in
the flopside phase at T=2.2 K.

Es-El
E6 —E)1

~4 El

Observed

1.42 +0.10

1.79+0.02

2.11+0.03
2.92+0.10

Energies
Calculated

1.62

2.06
2.91

Observed

0.12+0.04

1.00+0.15

0.59+0.10
0.05+0.03

Intensities
Calculated

0.10

1.00

0.45
0.02
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Es —Ei

E4 —Ei
E2 —Ei

Q = (2m /a )(1.1,0,0)

1.40+0.10

1.72+0.03

2.04+0.03
2.78+0.10

Q =(2'/a )(1,0.5,0)

1.50+0.10

1.80+0.02

2.08+0.04
2.75+0.10

TABLE IV. Observed energies in meV of the magnetic exci-
tations of a single crystal of HoP in the flopside phase at T= 1.5
K.

on the basis of the Hamiltonian, Eq. (6).' In the calcula-
tion we took the three sets of parameters derived in the
cubic-model approximation as starting values.

The crystal-field parameters '" were kept fixed. It
turned out that only one set of parameters was able to
predict the correct intensities. These parameters were
then varied until the best possible agreement was obtained
between the spectroscopic data obtained from the poly-
crystalline sample and the calculated spectra; see Fig. 12.
We found the following model parameters:

state is nearly sixfold degenerate, while the excited
crystal-field states are at least 100 K above the ground
state. Since the energies of the magnetic interactions are
of the order of Tc, the dynamics of the spin system of
HoP is essentially determined by the sixfold degenerate
ground state. For this particular case one can make use of
the "cubic model. "' In this model the spin operators are
projected onto the sixfold degenerate ground-state mani-
fold; the crystal-field operator is a constant because the
upper levels are neglected and the ground manifold is de-
generate. For the sublattice A we have M ))M~ and
M, =0 for T~O, thus in a first approximation the eigen-
values of Eq. (6) are

J& ——0.24+0.01 meV,

J2 ———0.21+0.01 meV,

K ~

——0.006+0.002 meV,

K2 ———0.043+0.002 meV .

These yield

J=1.62+0. 18 meV,

a = —0.11+0.03 meV,

a =0.78+0.12 meV,

o."=—1.39+0.33 meV .

(9a)

(9b)

E) ———6J) —4E) +4E2,
E,=6J, —4Z, +4Z, ,

E3 ———6J) —6J2 —4' ) —8E2,

E4 ——6J) +6J2 —4X( —SK2,

E, 6 ——8X, +4K, ,

where we have used normalized spin operators
~
S

~

= 1.
There is no straightforward way to attribute the ob-

served lines to particular transitions between the states de-
fined by Eqs. (7). This is made possible on the basis of
the work performed by Kim and Levy who derived the
following conditions for the model parameters:

J)+J2 &0,
2J)+J2 )0,
E)+E2 (0,
2E)+L2 (0,
J$+J2 & —2(x/+%2),

2J( —J2 ) —2(2K) —K2 ),
2J)+Jg) 4(2'( ~I(.p) . —

From these conditions we conclude that the state with en-

ergy E j is the ground state, and we end up with three pos-
sible schemes. No one scheme is favored over the other
two within the cubic-model approximation.

So far we have not made use of the intensities of the
lines in the energy spectra. In order to do this one has to
go beyond the cubic model because there are no dipole
transition matrix elements between the six states in this
model. Therefore we performed a full 17-level calculation

and (9c)

K/ =K;/8

C. Discussion

No attempt was made in the present work to extend the
inelastic neutron scattering experiments to higher-energy
transfers, although a very intense line is expected to occur
at around 10 meV. The position of this line, however, is a
measure of the overall crystal-field strength; it does not
contribute to a detailed understanding of the magnetic
behavior of HoP at low temperatures.

Some measurements were also carried out in the fer-
romagnetic phase. The observed energy spectra, however,
have the shape of a broad quasielastic line and conse-
quently are not suited for a detailed analysis. This is a
consequence of the fact that in the ferromagnetic phase

The observed and calculated energies and intensities are
summarized in Tables III and IV. While the lowest in-
elastic line corresponding to the splitting E5 6

—E~ is dou-

bly degenerate in the cubic model, the full 17-level scheme
lifts this degeneracy and makes the level E6 lie close to
E3 The corresponding splitting, however, could not be
resolved in the experiments, and only an enhanced
linewidth was observed. The peak identification is given
in Tables III and IV.

Again it should be mentioned that the model parame-
ters given above are "reduced parameters, " i.e., they are
obtained by using normalized spin operators

~

S
~

= 1.
This is also true for the interpretation of Eqs. (7) and (8).
The actual model parameters J and K are obtained by
using

~

S
~

= 8 and given by

Jg' ——J;/8
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10-
Mx

HoP and P~ I——'g ——0; thus the Hamiltonian Eq. (2) reads

~CF—6(2J) +J2)MgS, —2(2KI +%2)Qg Q(S)

0.5

j

FIG. 14. Dependence of the order parameter M of the Ho +

ions in HoP on temperature. The circles represent the experi-
mental data, see Fig. 3. The solid line corresponds to the values
calculated from the model parameters. The dashed line is a
guide to the eye.

the spin waves are overdamped, because the system is far
from saturation.

We used the model parameters determined from the
magnetic excitation spectra to calculate the temperature
dependence of the order parameters of Ho + in HoP. The
results for M obtained by using the full crystal-field level
scheme are shown in Fig. 14. Results based on the cubic
model, i.e., six degenerate ground states, give nearly iden-
tical results. The calculations were performed both for
the flopside and the ferromagnetic phase in order to de-
cide which solution is energetically more favorable. For
the ferromagnetic phase we have M=(O, O, M, ), Q~ ——Q~,

-0.13575

-0.13580

-0.13585
5.68 5.70 5.72

r (K)

FIG. 15. Temperature dependence of the free energies of the
flopside and ferromagnetic phases in zero field. As the slope of
the flopside phase is less than that for the ferromagnetic phase
at T+, we find the entropy of the flopside phase is less than that
of the ferromagnetic phase at T~. Note: S= —BI'!BT.

(10)
The temperature dependence of the free energy predicts a
transition from the flopside to the ferromagnetic phase at
T~ ——5.7 K, see Fig. 15. The discontinuities in the order
parameters found in our calculation indicate that this
transition is first order, whereas the transition from the
ferromagnetic to the paramagnetic phase at T~ ——6.0 K is
second order. Thus the model can qualitatively account
for all the features of the zero-field magnetization deter-
mined by neutron diffraction. The difference between
theory and experiment is that the model predicts transi-
tion temperatures which exceed the observed transition
temperatures by about 20%. However, a discrepancy of
this order of magnitude should be expected from the
mean-field approximation.

IV. PHASE DIAGRAMS FOR FINITE FIELDS

We have just seen that the model Hamiltonian Eq. (1)
together with the parameters determined from the mag-
netic excitation spectrum is able to account for the spon-
taneous magnetization (zero field) of HoP as a function of
temperature. To further test the ability of this Hamiltoni-
an and the parameters to reproduce the magnetothermal
behavior of HoP we will compare the field-temperature
phase diagrams found by using them and mean-field
theory to the experimental data in Sec. II. We will limit
our discussion to a model with only tow sublattices. Each
sublattice represents ferromagnetic (111) planes of spins
pointing along one of the cube axes: x, y, or z. It is con-
ceivable that in certain directions of the field a multisub-
lattice structure is more stable but we have not considered
this in the present analysis.

For small fields' the nature of these diagrams depends
critically on the orientation of the external field relative to
the crystal axes, because of the relatively strong crystal-
field anisotropy. This anisotropy is such as to rigidly
orient the magnetic moments along one of the cube edges
(100). When the external field makes an angle with
respect to the cube edges the magnetization does not fol-
low. In the magnetically ordered phase the best HoP can
do is to break up into sublattices with each moment point-
ing along a different cube edge, i.e., in such a configura-
tion that the resultant magnetization has its maximum
projection along the field.

In the presence of a field, the paramagnetic phase is
characterized by the magnetization having components of
the form (M,M,M) for H~ ~[111], (M,M, O) when-

H~ ~[110], and (M, O, O) for H( ~[100]. However, when

H~
~ [ 1 la ] (0 & a & 1), the paramagnetic state has M

=(M,M,M') where M' is not necessarily M'=aM, i.e.,
M may not be parallel to H. For example, when H~ 00

(remaining within our rigid cubic model) M=( —,', —,',0) re-
gardless of (a &1) since any spin going out of x or y
direction must overcome infinite magnetic energy.

When there is a small magnetic field H. in our model of
HoP (Ref. 5) the direction of the magnetization in the fer-
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romagnetic phase will be along one of the six cube edges
depending on the relative magnitudes of H„, H», and
H, . For example,

'

when H„& ~H» ~

or H„& ~H, ~, it
will be [100]. Therefore, in the (T,H) phase space the
H =0 line for T~ & T & Tc will be the coexistence line for
six phases. Likewise, for T&Tz 12 phases whose net
magnetizations are along [110], [110],. . . , [011],respec-
tively, coexist on the FI =0 line. Therefore, for H =0,
when we say that the [001] ferromagnetic phase goes into
the xy flopside phase' we really mean that it goes into
any one of the 12 possible flopside phases. However, if
there is a small field, say H„ the ferromagnetic phase
along [001] would go into one of the four flopside phases
(xz), (xz), (yz), or (yz).

The qualitative features of the temperature-field phase
diagrams can be obtained analytically for the regions
along the temperature axis for small fields and along the
field axis at zero temperature. Near the flopside transi-
tion (T=TF) and to first order in the field we can write
the free energy as

bers. Thus the slope dH/dT depends crucially on this
difference. Also, the entropy has been estimated by tak-
ing the difference of the free energy at low temperature.
Since the mean-field approximation is not particularly re-
liable for quantitative results, the numerical value of the
slopes obtained by using the above numbers cannot be ex-
pected to be accurate. Nonethe1ess, as we now show we
obtain qualitative predictions, from Eq. (14), of how the
slope dH/dT varies with the direction of the field, which
are borne out by the experiments described in Sec. II.

For fields along the cube edge H = [001], the
"ferromagnetic" phase' (001) and the flopside phases
(yz), (yz), (xz),(xz) come into play. The component of the
magnetization along the field in the flopside phase is

(15)

and the denominator in Eq. (14) is 0.15pii. This is indeed
a small difference of much larger numbers, and yields a
slope, for the field along (001), of

(op»

F(T,H)=F(T, O) —M(T) H+O(H ), dH
dT

=43 kOe/K, (16)

where M(T) is the uniform magnetization per spin in zero
field. When T=T» +e (e « 1), we find

F(T~+e,H)=F(Tp, O) S(T~)e M(—T~) H—, (12)

where S(TF)=(—8/BT)F(T+, 0) is the entropy in zero
field and at T= T~. For H =0 and T= Tz many phases
coexist, i.e., many phases with the same free energy

F(Tp, O) but different S.and M. As we apply a field,
coexistence surfaces grow and their location E(H) is deter-
mined by the condition that the free energies, Eq. (12), are
the same. Thus, the condition for a phase transition is

Fi(Tp+e, H) F2(T~+E,H)—

in approximate agreement with the experimental value;
see Fig. 6.

For a field

H=, (1,1,a),
(2+g 2)1/2

as long as
~

a
~

&1, the ferromagnetic phase with order
parameter (M, OO) (in zero field) coexists with the flopside
phase [(M„+M»)/2, (M„+M»)/2, 0] at T=TF. By us-
ing the numerical values found from our model we find
that the initial slope of the flopside ferromagnetic coex-
istence line is

(r&o&

(13)

=0=Fi ( T~,O) —F2( T», 0)—[Si( T» ) —S2( Tp) ]e
—[Mi(Tp) —M2(T~)] H,

dT .: =2.0(2+a )'~ kOe/K

2.8 kOe/K for a =0,
3.5 kOe/K for a=1 .

(17)where 1 refers to the ferromagnetic or paramagnetic phase
and 2 refers to the flopside phase. As the free energies of
the ferromagnetic and flopside phases in zero field are
equal at TI; by definition, we find

This slope is typically one-tenth as large compared to the
slope in the [001] direction. By comparing the slopes in

the phase diagrams for H~
~
[001]and [011],see Figs. 6 and

7, we confirm that the slope is much steeper for fields
along [001].'

At zero temperature we can determine the field at
which the Aopside phase stable in zero field goes over to
the "ferromagnetic"' phase. By including a Zeeman en-

ergy term in our simplified six-level model of HoP, the
ground-state energy is

SI —Sp

U= ——,
' J(g' +ai) +ay +au'5 +ho. g),

where

h p =—10pgHp/ —,J,

dH
(14)

cxs (Mz —Mi ).H
where we set e=dT, H=dHH, and the subscript cxs
means along the coexistence line.

Near TF and for H =0 the magnetization and free en-

ergy of the ferromagnetic and flopside phases have the
behaviors shown in Figs. 14 and 15. As the slope of the
free energy versus temperature is smaller for the flopside
phase we can see that at T» the entropy of the flopside
phase is less than that of the ferromagnetic phase. Nu-
merical calculations based on our model using the full
17-level scheme yield at Tz and H =0: S(ferro) = 1.56kii,
S(flop) =1.18kii, M, (ferro) =3.0p~, M„(flop) =5 8@ii, .
and M»(flop)=0. 5pz. As can be seen from these num-
bers, for certain orientations of the field the denominator
in Eq. (14) will be the small difference between large num-
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and the M, Q, I', g, and il are defined by Eq. (4). »
our definition of ho we used gj ———„ for the J=8 state of
Ho +.

For a field along [001] the energy of the flopside phase
(xz) ls

U = ——,
' J[—,

' (1+a}+a(—,
' +a')+ —,

'
ho] ~

while for a "ferromagnetic" phase [001] the energy in a
field is

U' = ——,'(1+—', a+A, ) . (20)

When the energies of the two phases are equal they coexist
and we find the critical field at T=0 K to go from the
flopside to ferromagnetic phase by equating Eqs. (19) and
(20),

(21)h, =(a —1)+2a(a' —1) .

By using the parameters found from the magnetic excita-
tion spectrum, see Sec. III, we find

Hc =4 28 kOe . (22)
However, numerical calculations of the free energies of
the flopside and ferromagnetic phases at T =2 K based
an the full 17-level scheme yield H, =12.3 kOe. This is
in much better agreement with the experimental results
shown in Fig. 6.

For directions of H other than (100) the situation is
more complicated. I.et us consider H~~[lla] (0(a &1)
and Tz ~ T ~ Tc. In this case the magnetization is
(M, O, O) for H =0. When a small field is present, M
grows starting from its zero-field value but with different
rates for each direction. Therefore, a phase with
M=(M„,M~, M, ) where M„&M~=M, can exist. Since
there is a symmetry between the y and z axes for H =0
(M is along the x direction), we expect that the zero-field
susceptibility is the same for the y and z directions; and
M, =aM~ for small fields. This phase is what we call the
ferromagnetic phase: As temperature is lowered the sym-
metry M~ =My present in the paramagnetic phase is bro-
ken at Tc(H) and the system goes into a state where
M„&M~. Therefore the transition at Tc(H) should be of
the Ising universality class, i.e., a second-order transition
with Ising-like critical behavior.

Specifically for a =0, i.e., for H[~[110], the ferromag-
netic phase has a magnetization of the form (M„,M~, O)
with M„&M». When H~ ~[111], the ferromagnetic state
has a magnetization of the form (M„,M~, M, ) with
3f Q 3fy M, . The transition from the paramagnetic to
the ferromagnetic phase breaks the symmetry between the
x, y, and z directions and one of the directions, say x, is
preferred. Therefore the transition in a field H~

~
[111]is

of the three-state Potts-model universality class and we
expect a first-order transition for d =3.

These ferromagnetic phases disappear in relatively weak
fields at least in the mean-field approximation (MFA).
For H~((110) or H~~{11—,

' ), H=0.02 (H=0.56 kOe),
while for H~

~
(111), H=0.01 (H=0.28 kOe). Note

H= 10IJ AH/J.
To obtain more details of the phase diagrams away

from the temperature (H =0) and field (T=0) axes it
was necessary to numerically solve the mean-field equa-

(23)

The ferromagnetic-to-flopside transitions and the
paramagnetic-to-flopside transitions for low fields are
first order. The paramagnetic-to-flopside transitions for
H &0.07 for H~ ~(110) and H &0.09 for H~~(11 —, ) are
second order. However, the appearance of a line of
second-order transitions in high fields seems to be an ar-
tifact of using the mean-field approximation: When H
tends to infinity and H~ ~(1la ) the cubic model reduces
to an Ising model, and the corresponding Ising Hamiltoni-
an 1s

H,tt —Ji goo——'+Lli g oa',
NN NNN

(24)

where Ji ——0.126 meV, A, = 1.16, NN denotes nearest
neighbor, and NNN denotes next-nearest neighbor. Here
o; = + 1 ( —1} corresponds to S;= [100] ([010]}. The
flopside phase corresponds to a type-II antiferromagnetic
phase of this Ising model, and siinple mean-field theory
predicts a second-order phase transition at k~Tc ——6'],
or k~Tc/J=0. 543 (J=1.62 meV). However, this model
is sufficiently simple and we have extended our investiga-
tion in two ways.

First we made a Monte Carlo simulation for a
20&&20&&20 system of spins. This predicts a first order-
transition at king T&/J=0. 3+0 05. Second we. used a corre-
lated mean-field theory. This also predicts a first-order
transition at ktiTc/J=0. 311 (J=1.62 meV) or Tc—5.8
K.

These two results strongly suggest that in better ap-
proximations our cubic model should have a line of first-
order transitions all the way up to H= Do. Furthermore
the correction to Tc of the Ising model from the MFA is
drastic. Therefore, when better approximations are used
to solve our cubic model we expect the phase diagrams in
Fig. 16 will look more like those found experimentally, see
Figs. 6 and 7.

Finally for the field along H~
~
(111),see Fig. 16(d), all

transitions are first order. The limit H~ ~ in this case
reduces our system to the three-state Potts model and a
first-order transition is expected. Also, the
ferromagnetic-to-paramagnetic transition is first order as

tions for the free energy of our system in a field .In our
calculations we used the cubic model with the parameters
found in Sec. III. The results of our analyses are summa-
rized in Fig. 16, where we show the regions where the
paramagnetic, ferromagnetic, and flopside phases exist
and the lines of coexistence between them.

For H~
~

(100) we find the diagram shown in Fig. 16(a).
This is as expected and qualitatively similar to the experi-
mental data, although our curve is more rounded near TF.
The transition is first order everywhere. It intercepts the
T =0 axis at H=0.153 (H=4.28 kOe). The initial slope
at H =0 is positive but soon curves around.

For H~
~

(110) or (11—,
' ), see Figs. 16(b) and 16(c},the

ferromagnetic-to-paramagnetic transition is second order.
When H tends to zero Tc(H) behaves like

Tc(H)=TC(0) —constXH ~
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FIG. 16. Phase diagrams for different directions of the magnetic field found by using the cubic model; see Ref. 5 with the parame-
ters found in Sec. III, J=1.62 meV, a=0.78, a = —0.11, and o.' = —1.39. Solid lines denote first-order transitions; dashed lines
denote second-order transitions. The fields and temperatures are given in terms of the reduced units H:—10pgH/'J and T=kT/J.
TF(H =0)=0.318 and Tc(H =0)=0.333. The insets are enlargements of the areas indicated by the boxes near the H =0 axes. The
arrows on the T axes indicate the value of TF when H = 00. This value is significantly lower in better approximations as discussed in
Ref. 20.

can be seen from symmetry arguments.
From the variation of the magnetization versus tem-

perature it is not possible to tell whether the transitions in
finite fields are first or second order. In zero field, see
Figs. 3 and 4, it is obvious that the fiopside transition is
first order as the magnetization is discontinuous. Howev-
er in finite fields the fact that the samples contain dif-
ferently oriented domains means that the field is oriented
in different directions for the various domains. This
causes the transition to be smeared out, and it is not possi-
ble at present to unequivocally identify the order of the
phase transitions in a field; see Fig. 8.

V. SUMMARY
We have shown, that the model Hamiltonian proposed

for HoP in zero field also is able to reproduce the qualita-

tive feature of its phase behavior in fields. Because of the
strong anisotropy present in this system the phase
behavior depends on the direction of the field with respect
to the crystal axes. For fields along (100) the flopside
phase goes over to a ferromagnetic phase at sufficiently
high fields, while for fields along (lla) the flopside
phase is stable for all fields at low temperature. Also, we
find the slope of the coexistence line dHidT ~,„, is much
steeper in the (100) directions than in the ( 1 la ) direc-
tions. These features of the phase diagrams have been
confirmed by the new neutron scattering studies reported
here. Quantitative estimates of the transition temperature
as a function of field were made by using the parameters
determined from an analysis of the magnetic excitation
spectrum of HoP. These parameters correctly predict that
in zero field HoP has first a second-order paramagnetic-
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to-ferromagnetic transition followed by a first-order
ferromagnetic-to-flopside transition. The transition tem-
peratures are reasonably well described by these parame-
ters (to within 20%%uo).

While the cubic model is quite good in predicting the
properties of HoP in zero field, .it is of limited value in
predicting the phase beha, vior of HoP in a field. As we
have seen in Sec. IV the phase diagrams found from the
cubic model, Figs. 16, have features. that are qualitatively
similar to the experimental diagrams; see Figs. 6 and 7.
However, the estimate of the flopside-to-ferromagnetic
transition temperature, Eq. (22), and other quantitative
features of the phase diagrams based on calculations using
the cubic model are off by factors of 2 to 3. When we
used the full 17-level scheme to calculate this transition
temperature the agreement was much better. In addition,
the slopes dH/dT ~,„,obtained by using Eq. (14) are quite
close to those observed when we use the entropies and
magnetic moments determined from the full 17-level cal-
culation.

Finally, for fields along [011]it has been found that the
[111]domain is preferred, i.e., more stable than the [111]
domain and they produce different phase boundaries.
This can be seen from Fig. 7 where we see that the reflec-
tion —,

'
—,
'

—,
' from the [111] domain disappears in fields

above 10 kOe. Our model Hamiltonians, Eqs. (2) or (6),
do not favor one domain over the other. This is probably
due to our neglecting the two-ion magnetoelastic interac-
tions between the holmium ions. ' In the magnetically or-
dered phase these interactions produce anisotropic pair in-
teractions which may yield different energies for the [111]
and [1T1]domains in field along [011].

ACKNOWLEDGMENTS

We would like to thank A. Wisard for his help in pre-
paring the samples. This work was supported in part by
the Research Institute for Basic Sciences of Seoul Nation-
al University (D.K.), and by a grant from the National
Science Foundation, No. DMR-81-20673 (P.M.L.).

~P. Fischer, W. Halg, and E. Kaldis, J. Magn. Magn. Mater. 14,
301 (1979); P. Fischer, W. Halg, E. Kaldis, F. J. A. M.
Greidanus, and K. H. J. Buschow, in neutron Scattering—
1981 (Argonne 1Vational Laboratory), proceedings of the Sym-
posium on Neutron Scattering, Argonne, 1981, edited by J.
Faber, Jr. (AIP, New York, 1982), p. 321.

H. R. Child, M. K. Wilkinson, J. W. Cable, W. C. Koehler,
and E. O. Wollan, Phys. Rev. 131,922 (1963).

R. J. Birgeneau, E. Bucher, J. P. Maita, L. Passell, and K. C.
Turberfield, Phys. Rev. B 8, 5345 (1973).

4A. Furrer and E. Kaldis, in Magnetism and Magnetic
Materials 1975 (Philadelph—ia), proceedings of the 21st An-
nual Conference on Magnetism and Magnetic Materials, edit-
ed by J. J. Becker, G. H. Lander, and J. J. Rhyne (AIP, New
York, 1976), p. 264; K. R. Lea, M. J. M. Leask, and W. P.
Wolf, J. Phys. Chem. Solids 23, 1381 (1962).

5D. Kim and P. M. Levy, J. Magn. Magn. Mater. 27, 257
(1982).

E. Kaldis, Crystal Growth Theory and Techniques 1, edited by
C. H. I. Goodman (Plenum, New York, 1974), p. 47; E.
Kaldis, J. Cryst. Growth 24/2$, 53 (1974).

7H. M. Rietveld, J. Appl. Cryst. 2, 65 (1969).
L. Koester and W. B. Yelon, Neutron Diffraction Newsletter,

1983 (unpublished).
A. J. Freeman and J. P. Desclaux, J. Magn. Magn. Mat. 12, 11

{1979).
P. Fischer, P. Schobinger-Papamantellos, and E. Kaldis, in
Proceedings of the Discussion Meeting on Magnetic Semicon
ductors, Julich, edited by W. Zinn (North-Holland, Amster-
.dam, 1976), p. 200.
G. Busch, P. Schwob, and O. Vogt, Phys. Lett. 23, 636 (1966).

izA. Furrer, P. M. Levy, and E. Kaldis, Crystal Field Effects in
Metals and Alloys, edited by A. Furrer (Plenum, New York,
1977), p. 24.

~3A. Furrer and E. Kaldis, Crystalline Electric Field and

Structural Effects in f Electron S-ystems, edited by J. E. Grow,
R. P. Guertin, and T. W. Mihalisin (Plenum, New York,
1980), p. 497.

D. Kim, P. M. Levy, and L. F. Uffer, Phys. Rev. B 12, 989
{1975).

H. H. Chen and P. M. Levy, Phys. Rev. B 7, 4267 (1973).
When the fields are extremely large, i.e., when they overcome
the crystal-field anisotropy, which is of the order of several
hundred degrees Kelvin, HoP behaves like a paramagnet.
However, we limit our discussion to fields small compared to
the crystal field, so that we can limit ourselves to the sixfold
nearly degenerate, ground manifold.
The ferromagnetic phase exists only in zero field for
H~~(100). For H~ ~[100] the magnetization is of the form
(M', 0,0) and there is no clear distinction between the
paramagnetic and ferromagnetic phases. The phase diagram
has a coexistence line sticking out from T~ to T~ along
H =0.

' In the flopside phase one sublattice is M~ ——(M, M~, O) while

the other is M~ ——(M~, M,O). A uniform field sees the aver-

age 2 (M&+M~) per spin.

If one used the values of the magnetization at T+ and H =0
found from neutron scattering experiments, i.e., M„=8.1p~,
M„=0.2p~, and M, =5.8@~, we would find (dH /
dT)&00~& &0. This negative slope in the (001) directions is in
contradiction with the observed phase diagram, see Fig. 6.
Either [z (M„+Mr) —M, ] should be positive or the experi-

mental phase diagram [001] should have a negative initial
slope.

OJ. Y. Lee and D. Kim (unpublished}; T. Kaneyoshi, J. Magn.
Magn. Mater. 15-18, 119 (1980); D. C. Mattis, Phys. Rev. B
19, 4737 (1979); H. I. Zhang and D. Kim, ibid. 21, 4173
(1980).
G. Lacueva, P. M. Levy, and P. Morin (unpublished).


