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The effects of random fields on the critical scattering of neutrons in a d =3, diluted Ising antifer-

romagnet have been observed for the first time. The experiments were made on the same crystal of
Feo 6Zn04F2 in which earlier birefringence (An) studies showed a sharp phase transition T, (H) to ex-

ist. Only the scattering in the region above T,(H) was studied, where hysteretic behavior is absent.
In this equilibrium region, new random-field critical behavior is observed, indicative of an approach
to a sharp, second-order phase transition at T,(H), unlike the d =2 case where rounding of the

phase transition occurs within the same region. Hence the lower critical dimensionality of the
equilibrium random-field Ising model (RFIM) is bounded by 2&dI &3. The critical scattering is

well described by S(q)=A/(~ +q )+8/(~ +q ), with A scaling as sP and 8 as ~ ~. A prelimi-

nary analysis yields v=1.0+0.15, T =1.75+0.20, and TI= ~ for the random-field thermal correla-

tion length (it ), staggered susceptibility Q„), and correlation function ((SOS„'))critical exponents,

respectively. It scales with the random field haF as s ~hap "' ~
~

t t, ~" a—s expected, with

t t, = ( T T, )—/Tz a—nd P and v the crossover and random- exchange thermal correlation-length ex-

ponents, respectively. %'hen taken together with the previously measured specific-heat critical ex-

ponent K=O. OO 0.03 and amplitude ratio A/A '=1, the values of v, T, and g are consistent with

an effective dimensionality d-2 for a d =3 Ising system subject to an hRF. Implicit in this is a
modified hyperscaling relation d v=2 —cz for the RFIM. The present neutron scattering results, in-

cluding the striking field dependence of the phase transition, agree with and complement the inter-

pretation previously given to the hn critical-behavior measurements. The conclusion obtained from
earlier neutron scattering experiments below T„ that di )3, must then result from an incorrect iden-

tification of the nonequilibrium, field-cooled configuration with the ground state of the RFIM.

I. INTRODUCTION

The intriguing question of what is the lower critical
dimensionality di of the random-field Ising model
(RFIM) has occupied the attention of both theorists and
experimentalists alike, since Imry and Ma' first defined
the problem and suggested an answer (namely, di =2) in
1975. A review of current theories as regards dI may be
found elsewhere. Of equal interest is the prediction '

that, at a dimension d ~dE, new critical behavior will
occur with critical exponents characteristic of a lower di-
mensional Ising system, d & d.

However, it was not until Fishman and Aharony (FA)
showed that the randomly diluted antiferromagnet in a
uniform field H, applied collinearly with the direction of
spontaneous ordering, maps directly into the RFIM for
the ferromagnet, were any experimental tests of the
theoretical predictions made. The experimental studies
have been of two kinds: first, to attempt to determine the
ground state (in practice, the nature of the low-
temperature state) of the RFIM either by cooling in a
field or by first zero-field cooling and then applying the
field. A11 previous neutron scattering work has con-
centrated on this aspect of the problem; second, to investi-
gate the region near the phase boundary so as to ascertain

whether or not a sharp phase transition occurs. If it does,
one would obviously want to determine the critical
behavior associated with the RFIM fixed point. In
this latter category there have been susceptibility, '

birefringence, " ' specific-heat, ' and thermal-expan-
sion studies.

Qf the many experiments that have probed the RFIM,
only one, the linear birefringence (An) determination of
the magnetic specific heat' of the randomly diluted, 4=3
antiferromagnet Fe„Zn~ F2, has given evidence of both
a sharp phase transition and of critical behavior that is
characteristic of an effective dimensionality d =2. Simi-
lar An studies on the d =2 diluted antiferromagnet
Rb2Co„Mg~ „F4 have revealed' a progressive rounding
of the specific heat with increasing field. Thus from these
two investigations, it has been established that 2&dI &3
for the RFIM. (We shall return to the interpretation of
the b, n studies in Sec. VI.)

Our goals in the present experiment in the vicinity of
the phase boundary were threefold: (1) to see if the sharp
transition found in the d= 3 system using the An method
was also observable with the neutron scattering technique;
(2) if so, to measure the exponents v and y associated with
the thermal correlation length (tc ') and staggered suscep-
tibility (X„),respectively, and (3) to determine whether or
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II. RANDOM-FIELD CRITICAL BEHAVIOR
AND SCALING RELATIONS

The application of site-random fields to a uniform Ising
ferromagnet has been predicted to alter both the lower
critical dimensionality and the critical exponents. Such
site-random fields may be defined by their quenched con-
figurational averages, (H;) =0, (H; ):H2RF &0 (w—here
RF denotes random field). Hardly any experimental in-
terest was generated, however, until FA (Ref. 5) showed
that an antiferromagnet with random exchange, placed in
a uniform field, was a physical realization of a random-
field system. Wong et al. ' ' first suggested an extension
of the FA argument to the actual experimental situation
of site dilution. Cardy' demonstrated a mapping of the
site-diluted Ising antiferromagnet in a uniform field onto
the problem of a random-field ferromagnet and identified
the effective random field in the weak-field limit. The
equivalence is shown to be exact in the sense that both
systems belong to the same universality class.

Amongst the results of FA is the prediction that new
critical behavior will be observed within a crossover re-
gion

where

t= (T—T~+bH )/T~— (2)

is the reduced temperature measured relative to the
mean-field (MF) phase boundary, Tz T~ bH, hRF———
is the reduced rms random field, and P is the crossover
exponent predicted to be equal to the hRF ——0 susceptibili-
ty exponent y.

not the exponents were consistent with d=2 and with a
modified hyperscaling (d v=2 —a).

For this first study we have concentrated on the equili-
brium region above T, (H). Equilibrium is assumed to
prevail, at a given T and H, when identical results are ob-
tained for any measured quantity independent of the field
and temperature cycling procedure used to arrive at that
point. The most common procedures are field cooling
(FC) and zero-field cooling (ZFC). It has recently been es-
tablished' that the equilibrium boundary T,q(H) lies very
close to but slightly above T, (H) and that T,q(H) scales
as h Rp, as does T, (H). Presumably, it is the field cooling
through T,q(H) that results in the freezing-in of domains
which is manifest below T, (H) as the broadened Bragg
peaks seen in the early neutron scattering experiments.
To avoid confusing this static source of broadening with
that which arises from critical fluctuations in the vicinity
to T, (H), we deliberately restrict ourselves to investigat-
ing the region T & T,q(H).

In Sec. II the scaling and crossover behavior and the
shift of T, (H) in the presence of a random field are
presented. Sections III and IV give the experimental de-
tails and experimental results, respectively. In Sec. V an
interpretation of the results is developed on the basis of
certain simplifying assumptions and in the last section a
summary is provided in which the results of the present
experiment and relevant earlier ones are compared.

T,(H) = Tiv bH —T~(—ch RF ) ~&, (4)

where c is a constant of order unity.
The free energy was shown to have a scaling form

which can be written as

F=
i
t

i f(thRp ~), (5)

which exhibits the leading
i

t
i

behavior in hRp ——0
and describes the crossover to new critical behavior when
hRF&0. From (5) it follows that the specific heat has the
form

f(thRF" ) (6)

The staggered susceptibility 7„ is similarly expected to
exhibit the behavior

(7)

where y is the zero-field, i.e., hR„——0, exponent. The
random field behav-ior can be seen more clearly if we
rewrite (7) to suppress the leading zero-field, i.e., hRp ——0,
behavior, as

X„-hR r ~g(thR ~)

If a sharp phase transition occurs, g(y) is expected to
behave as

i y —y, i

r, giving

(9)

where t, —:[T,(H) —Tz+bK ]/Tiv ——(ch. RF)' ~, so that
t t, represents —the relative departure from the actual
phase boundary in any given field. The new exponent y is
expected to be one characteristic of an Ising system of
lower dimensionality d. Likewise, the inverse correlation
length ~ is expected to behave according to

a.—
i
t

i
"f"(th ~Rp~), (10)

where v is the zero-field, i.e., hRF ——0, exponent. This
may be rewritten, as for X„,as

if a sharp transition exists, where v is a new random field-
exponent.

Previous neutron scattering and birefringence experi-
ments' on Fe Zn~ Fe2 have determined the critical ex-
ponents in zero field to be the random-exchange ex-
ponents, which are y = 1.44+0.06, v= 0.73+0.03, and
a= —0.09+0.03 in good agreement with theoretical pre-
dictions. Since it is the random-exchange exponents, not
the "pure" d=3 Ising ones, which describe the observed
behavior of the phase transition at H=0, it is these quan-
tities, with P =y, which should be used in Eqs. (4)—(11) as

The mean-square reduced random field for the site-
diluted case' ' has been shown to be

x (1 x)f—T& "(1)/T] (gptiSH/k~ T)

[1+8 "(x)/TJ
where T~ "(1) is the mean-field T~ in the pure system,
and e "(x) is the mean-field Curie-Weiss parameter.

If a sharp phase transition exists, the new transition
temperature is expected to be
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TABLE I. The critical exponents of the Ising d=3 pure, random exchange and random field systems. Only the theoretical values
are given for the pure system. It is clear the exponents differ for the three cases. The pure Ising d=2 case is also shown to em-
phasize the similarity between it and d=3 random field results. The specific-heat amplitude ratio 3 /A is shown for only the d=3
random field and the pure d= 2 cases, again to emphasize the same point. Question marks indicate no theory exists, as yet.

Critical
exponents

Pure
(theory)'

Ising; d=3
Random exchange

Expt. ' Theory'
Random field

Expt. d Theory

Ising; d=2
pure

(theory)'

a; 3/3' 0.11

0.63

1.24

0.325

0.02

—0.09 +0.03
0.73 +0.03

1.44 +0.06

0.349+0.008

0.02 +0.07

(—0.04) —0.09
(0.68) 0.70

(1.34) —1.39

(0.35) 0.35

(0.02) 0.01

0.00+0.03; =1
1.0 +0.15

1.75 +0.20

1

4

0; 1

7
4
1

8

1

4

'J. C. LeGuillou and J. Zinn-Justin, Phys. Rev. B 13, 3081 (1976) and other references therein.
Reference 19 and R. A. Dunlap and A. M. Gottlieb, Phys. Rev. B 23, 6106 (1981).

'K. E. Newman and E. K. Riedel, Phys. Rev. B 25, 264 (1982); values in parentheses are from G. Jug, ibid. 25, 609 (1983).
Value of a from Ref. 12; all others from this work.

'L. Onsager, Phys. Rev. 65, 117 (1944).

q calculated from g=2v —y except for random-field value.

the h RF
——0 exponents. The experimental and theoretical

values of the random-exchange exponents are collected to-
gether in Table I.

The random-field critical behavior observed in the b,n
experiments indicates a sharp phase transition with K=O,
and amplitude ratio A/A '=1, which are the values ex-
pected and observed in a pure d=2 Ising system. The
field dependence of T, (H) is given by Eq. (4), with
/=1.40+0.05 in agreement with the random-exchange
value of y, as expected. If the other exponents are also
characteristic of d=2, i.e., @=1.75, v=1.0, and g =0.25,
this fact should be readily observable in a neutron scatter-
ing experiment. Implicit in this concept is the related as-
sumption that a modified hyperscaling relation holds
amongst the random-field exponents; i.e., d v=2 —a. We
shall return to the matter of the effective dimensionality
and the current state of theoretical predictions of it in the
summary, Sec. VI.

growth axis is shown in Fig. 1. The laser beam was
oriented perpendicular to the scan direction, as indicated
in the lower inset to Fig. 1. Although the average gra-
dient, as determined from hn measurements, is only
0.65%/cm, it does produce a variation of the transition
temperature of approximately 0.35 K across the sample in
zero applied field.

Two separate experimental arrangements were used to
collect data. Initially, the crystal was mounted on an
aluminum holder with nearly the whole of it exposed to
the beam. The platinum thermometer and control heater
were situated about —,

' m from the sample, outside the su-
perconducting solenoid, to reduce the field effect on the
temperature reading. We denote this arrangement as con-
figuration A, for which data were obtained at H= 0, 1.4,
2.0, and 5.5 T. Having confirmed that critical scattering
was observable, the experimental arrangement was im-

III. EXPERIMENTAL DETAILS

Since concentration gradients in mixed crystals are the
single most important factor in establishing the sharpness
of the phase transition, even in the absence of random-
field effects (and more so in their presence), it was decided
to employ the very same crystal of Feo 6Zn04F2 used in
the An experiment, from which the best and most detailed
results on the magnetic specific-heat critical behavior
were obtained. Use of this crystal also allowed for a
direct comparison of the striking field dependence of the
transition temperature T, (H) as measured by two dif-
ferent techniques. This particular sample of Feo 6Zno 4F2
is approximately 4)& 5)&7 mm, with the largest dimension
parallel t'o the c axis. It is also the growth axis, which is
the direction along which the concentration gradient is the
largest. The gradient was measured by utilizing the
difference in the optical birefringence of FeF2 and ZnF2 at
ambient temperatures. The variation in hn along the

(/)1- IOOOO-
Z
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5000-

0
0 4

z DIRECTION (mm)

FIG. 1. Variation of the optical birefringence An at ambient
temperature along growth (z) axis. The total variation corre-
sponds to a variation in concentration 5x=0.45 mol%%uo. The en-
tire crystal was exposed to the neutron beam in configuration A,
while only about ~ was exposed in configuration B, as indicat-
ed.
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H=2.0 T

u) IO
2

C)o IO

I-0.IQ -0.05 0
q (r. f,u.)

0.05 0.IO

FKx. 5. The observed scattering S(q) vs q under the same
conditions as in Fig. 4 except for T —T,(II) being slightly
larger. Note that the relative size of the Lorentzian and
Lorentzian-squared contributions change as T —T, (II) varies as
can be seen from a comparison of the indicated best-fit solid
lines for the two terms in this figure with the corresponding
ones in Fig. 4.

with those at which the peak in dAn/dT vs T occurs,
within the accuracy of the present measurements. Thus
there is strong evidence from the neutron scattering exper-
iments of an approach to a sharp, second-order phase
transition, opening the possibility of determining the criti-
cal behavior associated with the RFIM fixed point. This
we next do below.

The scattering line shapes for H=O at T=47.4 K and
for H=2.0 T at T=46.3 K and T=47.0 K, when folded
with an appropriate instrumental resolution function and
fitted to the data, are shown in Figs. 3, 4, and 5, respec-
tively. The H=O data are well fit by a Lorentzian line
shape

S(q) =
q +K

(12)

~ + 2 22
B

q +i~ (q +i~ )

for all values of T and H~ 0 with 7 =1. We discuss the
choice of the fitting functions in Sec. V, where the inter-
pretation of the configuration B data at 1.40 and 2.0 T
and the configuration A data at 5.5 T is given.

(13)

V. INTERPRETATION

Since no theory exists for the exact form of the struc-
ture factor S(q) in the presence of random fields, some
assumptions have to be made in order to analyze the data.
The wave-vector-dependent susceptibility X(q) is assumed
to have the Ornstein-Zernike form

x(q) ~ 1

~+q (14)

which has the usual Lorentzian q dependence. Its ampli-
tude is required by scaling to be proportional to ~".

Second, in the presence of a random field S(q) is ex-
pected, on the most general grounds, to have, in addition

for reduced wave vectors 0.005&
~ q ~

&0.05. However,
the scattering in a field is clearly not Lorentzian but it
may be quite adequately represented by a Lorentzian plus
a Lorentzian-square line shape

to the Lorentzian contribution, a Lorentzian-squared term

S(q) = + B
s +q (i~ +q )2

(15)

where scaling requires that the coefficient 3 -~". At
present, no theory exists for the behavior of B in the criti-
cal region. However, the form of the Lorentzian-squared
term suggests that it might scale as X (q), apart from any
other dependence on H. We assume this to be the case. If
it did scale as simply as this, then one might expectB-~" along with an additional dependence on H. In
both the pure and random exchange d=3 cases, g is very
small and is usually ignored. However, for the d= 3 Ising
random-field case, g might be as large as 0.25, as was dis-
cussed in Sec. II, and its effect on 3 and B cannot be
overlooked. (It should be noted that in the analysis to be
made here everything that has been observed is related to
critical scattering and ~ ' is the true thermal correlation
length. On the other hand, the Lorentzian-squared term
that appears in the low-temperature analyses ' of the
field cooled indu-ced do-main structure is associated with
Bragg scattering from an inhomogeneous medium. The
meaning of a ' in that instance is some length charac-
teristic of the mean size of the domain structure. )

Although the assumed form of the structure factor
seems reasonable, based on pure system behavior and sim-
ple modification due to randomness, it is not exact, and it
should be recognized that all subsequent analysis hinges
on this fact and must be qualified accordingly.

As regards the H=O data, no analysis was made other
than to verify the Lorentzian form to S(q) vs q at all tem-
peratures, since this problem (i.e., random exchange) has
been previously studied. ' For II+0, S(q), as given by
Eq. (15), was used to fit all of the data at II= 1.4, 2.0, and
5.5 T to obtain ~, 3, and B as a function of field and tem-
perature. The range of q over which the data was
analyzed was 0.005&

~ q ~

&0.1 at 1.4 and 2.0 T and
0.005 &

~ q ~

& 0.03 at 5.5 T. The quality of the fits can be
judged from the fact that X =1 for nearly all of the scans.

Figure 6 shows plots of ~ vs T as obtained from the
analysis of the configuration-B data at H=1.4 and 2.0 T,
and the 5.5-T configuration-A data. It is immediately
evident that a is linear in temperature at 1.4 and 2.0 T,
just as is the HWHM (see Fig. 2). It appears that there is
a sharp phase transition and new critical behavior charac-
teristic of a new fixed point. In view of the previous evi-
dence for the supposed destruction of the phase transition
at d=3 because of the formation of a domain state in a
FC procedure, ' it might appear surprising to see evi-
dence for a sharp transition. However, at these lower
fields, the freezing into a rnetastable domain state at
T,~(M) during FC occurs so close to T, (H) that it is
within the temperature resolution of the data. The
domain size it would produce results in an effective ~ well
below the instrumental resolution limit. The rounding
that would be expected from the smearing 5T, (M) of
T, (H) in the B configuration would also lie within the
temperature resolution. Both of these features are illus-
trated in Fig. 6 for the H = 1.4 at 2.0 T data.

Although the ~ vs T plot at 5.5 T exhibits an extended
linear region, it is apparent that rounding does occur as
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T, (H) is approached. However, two points have to be
considered before one concludes anything from the ap-
parent rounding. The first is that the entire crystal was
exposed to the beam at this higher field which causes a
smearing of the transition temperature 5T, =0.35 K even
at H=O. The second is that additional rounding occurs
in a field because of the dependence of the random-field-
induced shift b, T, of T, (H) on the concentration x, at a
given H. From Eq. (4) one may show

FICx. 6. Temperature dependence of ~ as determined from
the best fits of S(q) to Eq. (15) at 1.4, 2.0, and 5.5 T. The
straight lines drawn through the data are discussed in the text.
The data at 5.5 T includes both field-cooled (FC) () and zero-
field-cooled (ZFC) (0 ) points. The rounding in the ZFC data at
5.5 T is attributed to the indicated variation 6T, in T,(H) aris-
ing from the concentration gradient, as discussed in the text.
The rounding in the FC data at 5.5 T is due to a combination of
5T, and freezing at T,„(H). Both of these effects are negligible
in the lower-field configuration-8 data.

3 x IO
IO

t-t
C

0 2 2x IO

eluded in the analysis of the data, it has no effect on the
analysis of v arising from the critical scattering.

Even if there were no smearing of T, (H), then in the
FC case below T,q(H) the scattering would consist of a
broadened contribution from the "elastic" part arising
from the frozen domain structure and possibly some in-
elastic one. As in the ZFC case, we have excluded the re-
gion ! q! &0.005 r.l.u. However, this is not sufficient to
eliminate all of the tails of the elastic scattering. (There is
no obvious q at which the two may be differentiated. )

Despite the fact that elastic scattering in the FC case is
broader than the Bragg peak when ZFC, it is still nar-
rower than the minimum ~'s derived in the ZFC case.
This explains the fact that the apparent FC a's are smaller
than the corresponding ZFC ones. The smearing of
T, (H) only acts to broaden the region over which the
freezing occurs.

In Fig. 6 we have arbitrarily drawn straight lines (i.e.,
v=1.0) through the Ir-vs-T data which intersect the T
axis at the values of T, (H) measured by the birefringence
experiments at H= 1.4 and 2.0 T and that determined by
extrapolation of Eq. (4) to H=5 5T. I.t is immediately
apparent that the assumption of v=1.0 results in a quite
adequate fit to the data, and that the field dependence of
T, (H) as measured by neutron scattering is consistent
with the b, n measurements. This is also the value of v for
the pure d=2 Ising system. However, we regard the data
as preliminary and not accurate enough to justify a deter-
mination of v via a least-squares analysis. Instead, we
have roughly estimated the limits of the possible variation
of v to be +0.15 and observe that the data are consistent
with v= 1.0+0.15.

The field dependence of 17O is predicted by the scaling
relation Eq. (11). Using the value of the random-
exchange exponent v =0.73+0.03 from Table I and

b, T, cc T~[x 3(1 x)H ]'i~— (16)

and that the variation in 6T, that occurs at 5.5 T
amounts to an additional smearing of 5T,=0.10 K. Thus
in total a rounding of the transition of 5T,=0.45 K is ex-
pected. This is indicated in Fig. 6 along with the position
of T,q(H) relative to T, (H) at 5.5 T.

What is the effect that the smearing of T, (H) has on
S(q) and the observed Ir vs T, in particular within the
critical region? If there were no smearing of T, (H) then,
in the ZFC case, the contribution to ~ from critical
scattering would vanish as T approaches T, (H) from
above or below. In the presence of a concentration gra-
dient, there is always a part of the crystal with Ir&0 in the
region around T, (H). The experimentally determined
Ir(T) therefore represents an average over the distribution
of ~'s in the region. This explains why K appears not to
vanish and has a minimum near T, (H). In addition,
when T & T, (H), for some part of the sample, a
resolution-limited Bragg peak appears as well. Since the
entire peak is contained in the range ! q ! & 0.005 r.l.u. ex-

A

K

IO—

O. I

T -Tc(H) (K)

I

I.O

FIG. 7. g„~A/K vs T —T, (H) at H=2.0 T. The critical
divergence of g„~ !

t t, !
~; the straight lin—e through the data

has a slope corresponding to y = 1.75. The reduced temperature
scale is shown above.
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choosing the values v=1.0+0.15 and /=1.40+0.05, we
find ao~H —+ . This is to be compared with the ap-
proximate H +— dependence of the slopes of the lines
through the data in Fig. 6. The agreement is satisfactory
considering the errors in the various exponents.

Since X„ is given by Eq. (15) with q=0, we may deter-
mine its temperature dependence from that of 3/a since
A/a ~Xst=X,, ~

r r,
~

—r. A log-log plot of A/a. vs

~

t t,
~

i—s shown in Fig. 7, for the H=2.0 T data, with
the value of T, chosen to be the same as the extrapolation
of v to zero in Fig. 6. The straight line corresponds to a
value of y=1.75. This is also the value of y for the pure
d=2 Ising system. Again, we have not attempted a
least-squares fitting but have estimated the errors to be
+0.20.

The temperature dependence of the amplitude of the
I.orentzian-squared component of the scattering profile
may be found from a log-log plot of 8/a. vs

~

t t, ~—, as
shown in Fig. 8, for the H=2.0 T data using the same
value of T, as above. We find a very reasonable fit is ob-
tained with a line which has a slope equal to 3.50. This is
just twice the value of y for the pure d=2 Ising system.
This result lends strong support to the identification of
the Lorentzian-squared term in Eq. (15) with X„. The es-
timated error for the slope is +0.30. The measured coeffi-
cients A and 8 of Eq. (15) are shown in Figs. 9 and 10.
%'e observe a definite temperature dependence in all the
data, but which is more obvious in the data for 8 than for
3, and is stronger at higher fields. The variation in the

5.5-T data for B is particularly strikingt This temperature
dependence implies that g is not negligible. Since scaling
requires A -a'" and having found 8/a ~

~

t t,—
~

and hence to 7„, scaling requires that B ~a. " and thus
the quantities A~ " and Ba " should be temperature in-
dependent.

It is possible to make this correction without refitting
the data. Since the errors in the data are too great to jus-
tify attempting a determination of g, we choose a value
that is consistent with d =2, as already deduced from the
measured K=O, 3/A '=1, v=1, and y= 4, i.e., g= 4.
The scaled quantities are plotted in Figs. 9 and
10 and show a noticeably reduced temperature depen-
dence, although at the expense of increased error bars, due
to the relative inaccuracy of a close to T, (H). Finally,
since we have determined a &x

~

t —t,
~

", we plot in Figs. 9
and 10 the quantities A(t t, ) "—=A(t t, ) —'~ and
8(t t, ) —""=8(t r, ) —' . This results in smaller er-
ror bars but with as good or better temperature indepen-
dence.

This lack of temperature dependence to the scaled A in-
dicates that indeed g must be close to 4. The fact that
the scaled B is also temperature independent supports the
contention that B/x ~X„. Note again that whatever the
effect of g is on A and 8 it does not change the Lorentzi-
an plus Lorentzian-squared dependence to S (q). The
rough constancy of A

~

t t,
~

' and —8
~

r t, ~—
with T is indicated by the dashed lines in Figs. 9 and 10
which we designate as Ao and Bo, respectively.

t-t c
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FIG. 8. The amplitude B of the Lorentzian-squared contri-
bution to S(q) divided by ~ vs T —T, (H). If B/~ were pro-
portional to g„, then one would expect its critical divergence to
be proportional to

~

t t,
~

+. The straight line thr—ough the
data has a slope of 3.50 which is just equal to 2y.

FIG. 9. The amplitude A, Aa '~, and A
~

t t,
~

'~ vs-
temperature for the scattering at H=1.4, 2.0, and 5.5 T. The
rescaling of A by either s. ' " or

~

t t,
~

' results in much—
less temperature dependence to A. The. data at 5.5 T includes
both field-cooled (~) and zero-field-cooled- ( O ) points. The
dashed line in the plot of A

~

t t,
~

'~ vs T for—each of the
three fields is a rough measure of the constancy of this quantity
with T, at a given H, and is designated by A o in Fig. 11.
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5.5 & 2.0 & l.4 T Using Eqs. (9) and (11) and knowing A ~X„~,one can
show that

B 0.3- A h " " ~~t t
~

—"~H ~t t— (17)

alt f
~OO

-
~ go
0

0 o

0.2 where we have used the values of the exponents from
Table I and have chosen g= 4. Likewise, assuming
B ~X„ir, it then follows that

B ~ hRF"
~

t t,
~

—'I ~H '"
~

t t,
~

' —' (18)

From Eqs. (17) and (18), it follows that

.gee+&~ 5
~ I QOI000
0

0

It6— lt

B(t-t,l ' ' ~~~I~ 1to to

C)

2-

It

0
45 45

0
46

I ~~ I I

47"46.5 47

FIG. 10. The amplitude B, Ba '~, and B
~

t t,
~

'~ v—s
temperature for the scattering at H=1.4, 2.0, and 5.5 T. The
rescaling of B by either Ir '~ or

~

t —t,
~

'~ results in much
less temperature dependence to B. The data at 5.5 T includes
both field-cooled {~ ) and zero-field-cooled (0) points. The
dashed line in the plot of B

~

t r,
~

'~ vs —T for each of the
three fields is a rough measure of the constancy of this quantity
with T, at a given H, and is designated by Bo in Fig. 11.

In principle the field dependence of A and B could be
checked against the scaling relations, as was accomplished
for ir. Because the data at different fields was taken with
different configurations, this was not possible to do.
However, the ratio B/A can be studied as a function of
H.

10 I 1 I I f I

O

~O
Kl

IO

10
H(r)

FIG. 11. The ratio Bo /Ao, as determined from Figs. 9 and
10, vs H. The solid line drawn through the data has a slope of
1.0+0.3. A discussion of this is given in the text.

(19)

In Fig. 11 we plot the quantity Bp/Ap vs H where Ao
and Bo are the best-fit values to the plots of A (t t, )—
and B (t —t, )

' vs T of Figs. 9 and 10, respectively, and
is shown by the dashed line in each case. The slope of
Bo/Ao vs H in Fig. 11 has the value 1.0+0.3 and corre-
sponds to an additional field dependence to B of H' —+

From a simple mean-field picture, one would expect this
dependence to be B ~H . However, without a theory for
the ratio B/3, perhaps one should not be alarmed by an
apparent disagreement with mean-field theory.

In making the interpretation that was given above, we
are painfully aware of both the preliminary nature of the
experimental results and the absence of a first-principles
theory of S (q) in the presence of a random field.
Nevertheless, we regard the results obtained as being so
strongly suggestive of d =2 as to encourage us to make a
more thorough and detailed neutron scattering study in
the near future.

VI. SUMMARY AND RELATION
TO OTHER STUDIES '

The primary results of this experiment are as follows.
(1) An approach to a sharp phase transition is observed in
critical scattering experiments in a d=3 RFIM system
with new exponents characteristic of the random-field
fixed point, corresponding to an effective dimensionality
d=2. (2) No experimental evidence for the rounding of
the phase transition is observed in the equilibrium region
T & T,q(H) above T, (H); hence, by implication, the lower
critical dimension of the RFIM d& &3. (3) The critical
scattering above T, (H) in a field is not Lorentzian but
may be quite adequately described by the sum of a
Lorentzian plus a Lorentzian-squared term. (4) Prelimi-
nary analysis of the critical scattering yields v= 1.0+0.15,
y=1.75+0.20, and requires q= —,

' for the random-field
thermal correlation length, staggered susceptibility and
correlation function critical exponents, respectively. K

scales with the random field hRF as Ir ~ haF" "'
~

t t,~"—
with P and v the crossover and random-exchange thermal
correlation length exponents, respectively.

The earlier birefringence studied on the same crystal'
showed that (1) a sharp phase transition in a field is ap-
parent in the magnetic specific heat; thus dt &3. (2) The
critical divergence of the specific heat C =A

~

t t,~—
for T ~ T, and C =A '~ t t,

~

for T &T, yielded—
A/A '=1 and a=0.00+0.03. From this came the first
suggestion"' that the new effective dimensionality of a
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d=3 Ising system subject to a random field was d=2.
(3) Crossover from random-exchange to random-field
behavior was observed in the reduced temperature region

~

t
~

&h~g as in Eq. (1) above. The shift in T, (H) with
H agrees with Eq. (4) with P=y, the random-exchange
susceptibility exponent, as predicted by FA.

The critical behavior observed in both experiments is
consistent with the Fishman-Aharony-Cardy mapping of
the site-diluted antiferromagnet in a uniform field on to
the ferromagnet in a random field. ' From the com-
bined results of the two experiments, it appears that all of
the measured exponents (a, y, v, and g) and the specific-
heat amplitude ratio 3/2 ' are consistent with an effec-
tive dimensionality d=2 and a modified hyperscaling re-
lation d v=2 —o..

The two experiments establish that d~ & 3 for the equili-
brium RFIM. Taken together with the complementary
birefringence experiment' on the d=2 randomly diluted
Ising antiferromagnet Rb2Coo 85Mgo ~5F4, in which a pro-
gressive rounding of the transition was observed with in-
creasing field beginning at a value of hRF very much
smaller than those generated in the present experiment,
one can establish the following bounds on d~.

2&dl (20)

Since the present experiments were completed and this
paper first submitted for publication, several related stud-
ies have been made on the same d=2 and d=3 RFIM
systems. ' ' ' They have had as their focus the deter-
mination of the relative stability of the FC and ZFC states
at both dimensions. At d=2 the metastability boundary
TF(H) is found to lie well below the region of the des-
troyed phase transition and the ZFC (metastable) state is
observed to decay logarithmically with time toward the
equilibrium domain state in the region around TF(H). ' '

Just the opposite is observ'ed at d=3. The ZFC state is
stable for all T and H below T, (H), whereas the FC
(metastable) state shows irreversible behavior with respect
to variations in T or H below T, (H) (Refs. 16 and 25)
and close to T,(H) decays logarithmically with time to-
wards the equilibrium antiferromagnetic ZFC state. '

Furthermore, as mentioned earlier, it has been demon-
strated that T,q(H) lies slightly above T, (H) in contrast
with what occurs for the d =d~=2 RFIM system. This
fact explains how the FC procedure always results in a
metastable domain state, even for d ~ d~. Indeed, T,q(H)
lying above T, (H) is a necessary condition for the freez-
ing of a metastable state above a sharp phase transition at
T, (H). Since the antiferr'omagnetic state is the ground
state, however, one can use the ZFC route and presumably
see sharp critical behavior below T, (H) as well.

Thus, with regard to which is the lower energy state,
the evidence appears to be overwhelming that at d =3 the
ordered antiferromagntic state lies lowest and all domain
states are metastable with respect to it below T, (H). It is
also clear now why the interpretation given to the earlier
neutron scattering studies on d=3 RFIM systems that
the existence of a domain state upon FC "demonstrates
unambiguously that d~) 3" is incorrect; namely, FC re-
sults in the creation of domain configurations that are
metastable.

Recent Monte Carlo studies have shown that domains
are formed in the RFIM when FC through T, (H), regard-
less of d, and that they are extremely long-lived. The sta-
bility of such quenched in domains has also been investi-
gated theoretically. It is found that domains larger
than a certain size are metastable, while smaller ones de-

cay with a characteristic logt behavior, such as has recent-
ly been observed. '

As to the current theoretical beliefs with respect to di,
there appears to be a consensus that d~ ——2; in fact, Im-
brie claims to have a rigorous proof of this at T=O K.

The situation with respect to d is less clear. As yet,
there is no formalism which directly yields d nor any of
the critical exponents for the d=3 RFIM. However, it
has recently been suggested ' if cT' & 0 that
d =(d+ I/v)/2, which agrees both with our results at
d = 3 and the prediction of di ——2. An attempt has been
made to calculate- the critical exponents of the d=3
RFIM using high-temperature series-expansion
methods. Clearly, much remains to be done from the
theoretical side in understanding d at accessible dimen-
sions.

From the experimental side, it would be desirable to
have more accurate critical behavior studies both below
and above T, (H). These would require having available
crystals with yet smaller concentration gradients than was
the case in the present study.
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