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We develop the Hubbard-Stratanovich transform for uniformly frustrated XY models both on a
square lattice and on a triangular lattice, and construct the Landau-Ginzburg-Wilson Hamiltonians,
which reflect the formation of various superlattices according to values of the frustration f. Near
the critical point the system f=

~ on a triangular lattice is shown to belong to the same universality

class as the fully frustrated (f= T~) system on a square lattice. By decomposing two-mode systems

into two coupled XY models and by applying the Migdal-Kadanoff approximation, we show the
possibility of Ising-like or three-state Potts-like transitions in addition to the Kosterlitz-
Thouless —like ones.

I. INTRODUCTION

The two-dimensional (2D) XY model has been studied
quite extensively. At sufficiently low temperatures a corn-
bination of spin-wave theory and statistics of induced
vortex-antivortex pairs predicts a power-law decay of
correlation functions, while above a certain critical tem-
perature bound vortex-antivortex pairs dissociate, consti-
tuting the Kosterlitz-Thouless (KT) transition. ' Appli-
cation of this model to a number of physical systems in-

cluding superconducting" and superfluid films in general
gives results in agreement with the experiments. In the
case of homogeneous superconducting films an external
magnetic field produces mutually repulsive vortices,
which form a regular flux lattice at zero temperature. If
the superconducting medium has a certain periodicity,
however, new effects are expected to be observed because
the interaction between the natural periodicity of the flux
lattice and the periodicity of the superconductor produces
a kind of commensurate-incommensurate effect as the
external field is varied.

Indeed, recent experiments on 2D arrays of coupled
Josephson junctions have shown novel behavior, such as
the oscillatory behavior of the resistance with the magnet-
ic field, whose origin is believed to be the commensurate-
incommensurate effect. Since relevant parameters are
directly measurable or calculable, these Josephson junc-
tion arrays become useful in understanding and probing
2D physics, and especially can serve as a testing ground
for statistical mechanics. This observation has created
much interest in uniformly frustrated 2D XY models,
which can serve as a model for the Josephson junction ar-
rays, which have been studied using both the mean-field
analysis ' and numerical simulations. '

Understanding the statistical mechanics of such sys-
tems is a complex problem since at very low temperatures
it appears likely that the free energy will form a "devil' s
staircase" as a function of the frustration f.' For certain
simple values of f, low-lying excitations may be expressed
in terms of fractionally charged "vortices" following
Fradkin et al. "

In this paper we adopt an alternate approach which we
believe should be useful at higher temperatures. In this
approach we derive an effective Landau-Ginzburg-Wilson
(LGW) free-energy functional for specific simple values of
f through the use of a Hubbard-Stratanovich transform. '~

Although the resulting expansion (in powers of a coarse-
grained order parameter) does not contain a small param-
eter, it does provide a systematic prescription for generat-
ing internal symmetries which are broken at a mean-field
transition. Even at the level of mean-field theory, the bro-
ken symmetries of the system are a highly discontinuous
function of f. Thus the LGW Hamiltonians for systems
with different frustrations are expected to differ vastly
from each other and to display interesting behavior.

Since the system is two dimensional, the mean-field
transitions are suppressed by fluctuations. Our analysis
suggests that for simple values of f, these fluctuations
may be expressed in terms of coupled XY models. To ob-
tain some idea about the nature of the transitions, we con-
sider the application of the Migdal-Kadanoff approxima-
tion' to relatively simple cases, leaving more thorough
analysis to further studies.

This paper consists of five sections and an appendix.
Section II deals with the Hubbard-Stratanovich transform
for the uniformly frustrated XY models. Section III con-
stitutes the main part of this paper, and is devoted to the
construction of the LGW Hamiltonians for several frus-
trated systems, both on a square lattice and on a triangu-
lar lattice. A natural property which is manifested by this
approach is the formation of superlattices, which accounts
for the local minima of resistance observed when the flux
per cell is a half-integer or higher fraction of the flux
quantum. In Sec. IV the Migdal-Kadanoff approxima-
tion is discussed for systems described by two degenerate
modes to show the possibility of Ising-like or Potts-like
transitions as well as the KT-like ones. Finally, the main
results are summarized in Sec. V. The appendix provides
a derivation of the LGW Hamiltonian for two coupled
XY models, which is the basis for the Migdal-Kadanoff
approximation used in Sec. IV.
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II. THE HUBBARD-STRATANOVICH TRANSFORM

We consider a class of uniformly frustrated XY models
described by the Hamiltonian (K=PJ:Jl—kT)

PH—=K $ cos(P; P/——A,J),
(ij&

(2.1a)

where P; is the angle of the XY spin at site i, and A;& is a
bond angle such that the plaquette sum is constant over
the whole lattice:

variance, i.e., P,J&Pi; z i. Diagonalization of the Hamil-
tonian now can be performed by the similarity transform
of P with respect to the unitary matrix S whose columns
consist of the eigenvectors of P. The Hamiltonian reaches
its lowest value when v is one of the eigenvectors of P as-
sociated with the largest eigenvalue. This may not
represent a true ground state of the system since the eigen-
vectors with the largest eigenvalue may not satisfy the
constraint v;*v; =1 or

g Aii=2mf .
P

(2.1b) QUpUU q=5q p .
p

(2.6)

With the identification

(2.2)

f=BAp/C&p, (2.3)

where Ap is the area of a plaquette, and @p=hc/2e is the
flux quantum.

We write Eq. (2.1) in the compact form

the Hamiltonian given by Eq. (2.1) describes arrays of
Josephson junctions in the high capacitance limit. In Eq.
(2.2), A is the vector potential, which may be taken to be
that of a uniform transverse magnetic field B in the limit
of large penetration depth. The uniform frustration f is
then related to 8 by the relation

This constraint, however, is in general hypothesized to be
irrelevant to asymptotic criticality, and consequently the
modes associated with the lar'gest eigenvalue are expected
to become critical as the critical point is approached from
above. ' ' (There may exist two or more eigenvectors
that give the largest eigenvalue. This corresponds to the
fact that there exist two or more degenerate critical
modes, which is a characteristic of usual frustrated sys-
tems. )

To investigate fluctuations from the critical modes, we
now apply the Hubbard-Stratanovich transform to Eq.
(2.4), and get the partition function in terms of continuous
complex spin variables z;, omitting overall constants,

(1/2)v Pv

PH = —,v P—U —K~,1 (2.4a) —(1/2)z ~P z (2.7a)

where P is a Hermitian and positive definite matrix with
elements where Ip is the modified Bessel function expanded as

Ip(x)=exp[x l4 x l64+0(x—)] . (2.7b)

K for nearest neighbors,
0 otherwise,

(2.4b)

z P 'z=z P 'z= gg*(q)A, 'P(q),
q

(2 &)

Introduction of the Fourier transform defined in Eq. (2.5)
allows us to obtain the diagonalized form

K&= —, g, K;~ is a constant, and U is a column vector
with components

where Aq's are the eigenvalues of P, and P(q) is the com-
plex order parameter defined to be

—ip;v;=e (2.4c) Stz—
To diagonalize the Hamiltonian, it is convenient to work
with the Fourier transform

or (2.9)

q

P"=X '~ e ' 'Pij q, q'

q, q'

(2.5)

Z= D e-F(@), (2.10)

q'

The partition function given by Eq. (2.7) is now reduced
to the desired form

where x; =(x;,y;) is the position vector of the site i, and
the sums are over the Brillouin zone. Also note that be-
cause of A;J, P,J in general does not have translational in-

I

where DP= Q d%(q) is the functional integral, and
F(P) is the LGW Hamiltonian

X( W' (q)e(q)+ 64~ y yS S S - -S - -q*(p)q*(p')y(p")lj/(p'")5 ~ -+O(y ) .
q q's p's

(2.11)
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The condition that the Hamiltonian reaches the lowest
value now reduces to the condition that g(q) vanishes un-
less q is one of Q's, where A,& is the largest eigenvalue.
Small but nonzero P(q)'s for q's around Q's then
represent fluctuations.

iL
8 I

,
I

III. CONSTRUCTION OF THE LANDAU-
GINZBURG-WILSON HAMILTONIANS

A. Square lattices

On a square lattice it is straightforward to evaluate the
bond angle given by Eq. (2.2):

+2rrfx; for xj =x;+y
0 for xj =x;+x .

(3.1)

Figure 1 shows a square lattice and its Brillouin zone.
Equation (3.1) allows one to calculate the inverse
transform of (2.5):

In this section we apply the Hubbard-Stratanovich
transform to the cases f= —,', —,', and —,

' both on a square
lattice and on a triangular lattice, and construct explicitly
the LGW Hamiltonian for such systems. The asymmetric
gauge A=xBy will be used throughout this paper. The
lattice constant is also set equal to 1 (a = 1) for simplicity.

FICx. 2. Doubly degenerate ground states of the fu11y frus-
trated system (f=

2 ) on a square lattice. Straight bonds and

wavy bonds represent ferromagnetic and antiferromagnetic cou-
plings, respectively.

to the discrete symmetry in addition to the usual continu-
ous (XF) symmetry. The two degenerate ground states
are shown in Fig. 2.

The matrix R, given by Eq. (3.3), takes the reduced
form

2 cosq1 2 cosq2
R=

2 cosq2 —2 cosq1 (3 4)

where two modes (qt, q2) and (q~+m, q2) are coupled to
each other. This implies that the Brillouin zone is re-
duced to half of the original one (the unfrustrated case,
f=0), or, equivalently, a superlattice whose cell consists
of two original cells is formed [Fig. 3(a)]. The 2X2 ma-
trix R has the dominant eigenvalue

—1 ~ s(q.x' q x
qq'— JJ k, =(cos'q, +cos'q, )'~', (3.5)

with

=%6,R
qzqz

(3.2)
Qp

„7T

R, =2(cosqI )5, +e '6, +e '5
q&q& q&+2mf, q & q&

—2mf, q &

(3.3)

where only the off-diagonal elements of PJ are con-
sidered. ' Thus the infinite matrix P takes a block-
diagonal form, and we need to work with just one block
R(q2) which is also an infinite matrix. Furthermore,
when f is a rational number (f=m In with m and n rela-
tively prime), R can be reduced to an n && n matrix.

1. f=21

This is the fully frustrated case studied by Villain, '

Teitel and Jayaprakash, Domany, ' etc. These studies
have revealed the possibility of an Ising-like transition due

'~ ~

—7T/2 7T/2

, -7T

IP

7T/ $

- 7T/4 7T/4

FIG. 1. A unit cell and the Brillouin zone of a square lattice.

{c)
FIG. 3. Unit cells and Brillouin zones of superlattices formed

in the cases (a) f= z, (b) f= 3, and (c) f= ~ on square lattices.
Critical modes are denoted by crosses.
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@((q)=a5q q, +b5

@2(q)=a5& ~—b5
(3.6)

which reaches its largest value A~ ——2W2 at Q~ ——(0,0) and

Q2 ——(O, m. ). The corresponding normalized eigenvectors
@]and @z are given by the components

where a=(4—2V2) '~ and b =(V 2—1)(4—2~2)
are constants. Since there exist two degenerate modes Q&
and Q2 associated with the lowest energy, 0 we need two
(complex) order parameters g~ and g2 to describe fluctua-
tions from these two modes, respectively.

With Eqs. (3.5) and (3.6), it is now straightforward to
get the LGW Hamiltonian given by Eq. (2.11) in the ex-
plicit form

F(A, fz) = —g (r+eq') [Pi (q)4i(q)+42(q W2(q)]

+ 4~ g I +[01(qual(q Wl(q )ttl(q"')+(('2(q)|(2('q W'2(q )(t2(q"')]+ a' Pi(qW2(q')|I i(q"W2(q'")
q's

+&'[t)li(qW i(q'4'z(q" W2(q'")+42(q Wz(q'W i(q" W i(q"') l]5,+, , +, (3.7a)

where the coefficients are given by

r =( k/2W2J)(T To) (k—TO ——~2J),
e=kT/8v 2J,

(3.7b)

The mean-field transition temperature To is in agreement with that obtained by Shih and Stroud using a self-consistent
calculation. In coordinate space the LGW Hamiltonian assumes the form

F(@i 4)= I dxdX 2(I @i I'+ I%I')+
2

aq,
'

5y,
'

a1(,
'

W,
'

Bp 8 Bp

I

+
4

(
I @i I

'+
I
@21')+a'

I fi I

'
I @2 I

'+
2 I 4i I

'
I @2 I

'cos[2(~x —~2) ] (3 8)

where 0;(x) is the phase of P;(x). ' The last term in Eq. (3.8) represents the coupling between fiuctuations from the two
degenerate modes, and is crucial in determining the nature of transition.

2. f= 1

In this case the matrix R given by Eq. (3.3) reduces to the 3 && 3 form

2 eosq]
i/2e

—i/2 2'e ' 2cos q&+
3

i/2
e (3.9)

it)2e e
4m2cos qi+ 3

which implies that the Brillouin zone is reduced to —, , and the superlattice cell consists of three cells [Fig. 3(b)]. The
dominant eigenvalue is

A,q
——2V 2 cos —cos

1

3
1

2 2
(cos3q& +cos3qz) (3.10)

leading to the largest value A~ ——v 3+ 1 at Q~
——(0,0), Q2 ——(0,2m/3), and Qs ——(0, —2m/3). Therefore three complex or-

der parameters P~, g2, and gs are deduced, and the LGW Hamiltonian in the coordinate space obtains the form
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R f1 02 43) I dx d~f(Wi 42 4)
T

aq,
'

ay,
'

Bx By
+ +

4 I
Pil'

I

+u
I lt~ I 1&31 +

2 I @i I I pz I I
&31cos(28, —8z —83)+w(A, A (3.11)

where u represents terms of the same form for its arguments from now on, with the mean-field transition temperature
kTO ——[(~3+1)/2]J again in agreement with Ref. 8.

We have the matrix R in the reduced 4 &4 form

2 cosg i
Ega

e
—

lpgae

—Egae

0

2cos g&+

—lqpe

lpgae

2 cos( q ~ +vr )
Eigp

e
(3.12)

Ega
e e

3m2cos g)+ 2

Aq= {4+[12+2(cos4q~+cos4qq)]' (3.13)

which leads to the largest value A~ ——2~2 at Q~ ——(0, —m. /2), Qq ——(0,0), Q3
——(O, vr/2), and Q4 ——(O, vr). Thus we obtain

four complex order parameters g~, Pq, P3, and g&, and get the LCrW Hamiltonian in the form
2 2

ay, ay,
f(4i 6 6 A)=

2 lfi I'+
2 ~

+
Bx i'

I

+
2

( Al'IAI'+ lfzl' 441'+ I@31'I@4f')

and get the Brillouin zone reduced to a quarter and the superlattice cell consisting of four cells [Fig. 3(c)]. The dominant
eigenvalue is

+ 4 I @i I'+~'
I Wi

'
I 6 I I

@41cos(28' 8~ 84)+~—(P~,—P3 f4)

+20 I I fl I I
4/3

I
cos[2(8g —83)]+

I @& I I P4 I
cos[2(8p —84)] I

+8"
I @i I I @z I I 4 I I @41[cos(8)+8~—83 84)+cos(8/+83 84 8])] (3.14)

with r =(k/2W2J)(T —To) and e=kT/16~2J. The mean-field transition temperature is given by kTO ~2J, and
again agrees with Ref. 8.

B. Triangular lattices Pqq ——EC6, R
&z&z

(3.16)

Each site on a triangular lattice has six nearest neigh-
bors, and the bond angle has the value

where R again has the off-diagonal elements coupling two
or more modes:

+(4x;+1)fm for x~ =x;+—x+

+ (4x —1)fm for xj ——x; ——x+

0 for x~=x;+x .

v3-

v3-
2

(3.15)

27r
v3

27'
'v 3

A triangular lattice and its Brillouin zone are shown in
Fig. 4. The inverse transform of (2.5) now becomes

FICx. 4. A unit cell and the Brillouin zone of a triangular lat-
tice.
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i( ~3/2)q2 q 1 —i(~3/2)q2R, =2(cosq~)5, +2e 'cos fm+ 5 &, +2e 'cos fn
qlq ~

q&+4f~, q &

5
ql —4', q l

(3.17)

The procedure is thus entirely similar to that for square lattices.

1. f=21

This fully frustrated case also has been studied recently in the context of the antiferromagnetic XY' model on a tri-
angular lattice. ' Though interesting and rich critical behavior has been indicated, the nature of transition is still in-
conclusive.

The matrix R given by Eq. (3.17) then takes the reduced form
r

2 cosq1

~3
4i sin sin q22 2

qi .—4i sin sin q22 2

2 Cosq1

(3.18)

Thus two modes (q~, q2) and (q~+2rr, q2) are coupled implying a rectangular Brillouin zone and a superlattice whose cell
consists of two original unit cells [Fig. 5(a)]. The dominant eigenvalue is

v'3
Arq 2 cosq 1 +4 s1.n ssn q 22 2

(3.19)

f(4i 4z)=
2 I fi I'+

2

and reaches its largest value A~ ——3 at Q~ ——(m. /3, n/~3) and Qq
——( —tr/3, ~/v 3). These two modes satisfy the con-

straint (2.6), and consequently, describe the doubly degenerate ground states (Fig. 6).
With the two complex order parameters g& and $2, the LGW Hamiltonian is constructed,

2 2'
t)'(('1 t)el u 4 ~6 6 3, 4+

~ +4 Pil +
6 1@ii +2~6 Ital I%I +~(@2)

Bx Bg

+~'
I @i I'

I 4 '+
I @i I

' 6 I

'cos[3(~i —~2)]
3

(3.20)

with r=k(T To)/3J an—d e=kT/12J, where the first coupling term occurs in the sixth order of g. Within the
Migdal-Kadanoff approximation this term proves to be relevant, and is therefore expected to be crucial in determining
the nature of transition. The mean-field transition temperature has the value kTo ———,J in agreement with Ref. 8.

2. f=TI

We have the matrix R in the reduced 3X 3 form

cosq1
i(~3/2)q2 ~ q1

e COS +
3 2

—i(~3/2)q2 ~ q1
e COS

3 2

—i( ~3/2)q& ~ q 1R =2 e 'cos —+
3 2

2"
COS —q13

i(~3/2)q2 q1
e COS 7T+

2
(3.21)

i(~3/2)q, m q1
e COS

3 2

—i(~3/2)q2 q1
e q2COS 7T—

2

2&
COS +q1

Q2

vr
q

27T
3

27T

-4'/3~3

0 ~

—7r/2 m/2
q

(b) (C}

FKJ. 5. Unit cells and Brillouin zones of superlattices formed in the cases (a) f= 2, (h) f=7~, and (c) f= 4 on triangular lattices.
Crosses denote critical modes.
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FIG. 6. Doubly degenerate ground states of the fully frus-
trated system (f=

z ) on a triangular lattice corresponding to
modes ( m /3, —m. lv 3) and (rr/3, m/V 3), re.spectively.

FIG. 7. Infinitely degenerate ground states of the system
with f=—„ona triangular lattice in which every other row can

have two configurations +(~/4, 4 w, m/4, ~ w, . . . ).

which indicates a hexagonal Brillouin zone and a hexagonal superlattice with v 3X v 3 symmetry [Fig. 5(b)]. We obtain
the eigenvalue

1 t 1 3 3v3
Aq=2t 3cos —cos ' —3 +cos3q, —2 cos —q~cos qz

3 ' 3 3 2 2
(3.22)

and three degenerate modes Qt ——(0,2m-V3), Qz —(0,2~/3v 3), and Q3=(0, —2~/3V 3), associated with the largest
eigenvalue A,~——3. The LGW Hamiltonian now has the form

+ +—
I @i I

'+~'
I @z I

'
I 6 I

'
Bx By

+ I fi I

'+ —u6(
I Pz I I @3 I

+
I O~ I I 4 I

")+»6
I ft I

1C 6+ I 02 I A I
'cos3(6)2 ~3)+~ (42~43)

3
(3.23)

with the mean-field transition temperature kT& ——(3/2) J. Again the first coupling term occurs in the sixth order.

The matrix 8 has the form

cos(q ~
n.)—i (~3/2)q~ 9 1

e COS 0
—i (~3/2)qp q 1

e COS
2

3'
4

—& (~3/2)qz 9 1
e COS Cosq 1

i(+3/2)q2
e COS

2 4
+— 0

—i (~3/2)qz $1
e COS +

2 4
cos(q, +~) i (~3/2)q& g 1 3~

e 'cos +
2 4

i (~&/2)qp 9 1 5'
e COS +

—i(+3/2)q~ g 1 3~
e 'cos +

2 4
cos(qt + 27/ )

(3.24)

and indicates a rectangular Brillouin zone [Fig. 5(c)]. The eigenvalue has the expression

Aq=2(1+cos q~+ I
cosqtcosv 3qq

I

)' (3.25)

and reaches the largest value A~ ——2v 3 at Qt ——(0,0) and Qq ——(O, n/t 3). These two modes do not satisfy Eq. (2.6) and
hence do not describe the true ground state of the system. In fact, in the ground state, every other row can have two con-
figurations, and therefore an infinite ground-state degeneracy (in addition to the continuous degeneracy) exists (see Fig.
7). The LGW Hamiltonian has the expression

f(@t @z)= 2
(

I @i I

'+ I.A I
')+

2
Wz Wz

Bx By Bx By
+ + +
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I

+ 4(l@~ I'+ I%I')+&'l@i I' 1@2''+ fy) f' fq, /'cos[2(0, —0,)] (3.26)

with the coefficients r =k I2v'3 J(T To )—, e =k TISv 3J
and the mean-field transition temperature kTo ~3J
Remarkably, the LGW Hamiltonian (3.26) has just the
same form as that for the case f= —, on a square lattice,
Eq. (3.8), which leads to the conclusion that the two sys-
tems belong to the same universality class near the critical
point.

Recent study of this system by Monte Carlo simula-
tions and mean-field calculations reveals two consecutive
phase transitions, similar in behavior to that predicted
for a stacked antiferromagnetic triangular Ising system, '

which has also an infinite ground-state degeneracy but
two degenerate critical modes. ' Though the Monte Carlo
data. are not conclusive, the apparent difference between
the result for this case and that for the case f= —,

' on a
square lattice suggests that there may exist several dif-
ferent types of transitions outside the region of validity of
the Hamiltonian (3.26). It should be noted also that the
ground state is infinitely degenerate and analogous to the
states at the multiphase point in the anisotropic next-
nearest-neighbor Ising (ANNNI) model which take on
all periodic and nonperiodic configurations.

IV. THE MIGDAL-KADANOFF APPROXIMATION

The remaining task is now to study the statistical
mechanics of the LGW Hamiltonians obtained in the
preceding section. In this section we consider the applica-
tion of the Midgal-Kadanoff approximation to relatively
simple systems characterized by doubly degenerate modes
in order to get some insight into the nature of possible
phase transitions in such systems.

Guided by the ferromagnetic case, ' we consider only
phase fluctuations and take the amplitudes of order pa-
rameters to be equal and constant. This phase-only ap-
proximation, which is expected to be accurate at tempera-
tures well below the mean-field transition temperature, al-
lows a generalization of the LGW Hamiltonians (3.8),
(3.20), and (3.26) to lattice Hamiltonians of the form

PH = K g [co—s(0,'"—0'")+cos(0,' ' —0'. ')]
(~j&

+h g cos[p(0,'"—0,' ')], (4.1)

where p=2 for the Hamiltonians (3.8) and (3.26), and

p =3 for (3.20). The effective interaction IC and coupling
h are to be given by the comparison of those LGW Ham-
iltonians with that derived from the lattice Hamiltonian
(4.1) (see the Appendix). Thus we obtain two coupled XY'

models, which have been analyzed for p =2 in the context
of helical XF models, to predict two phase transitions, of
KT and Ising character, respectively. ' This, however,
is not conclusive because in those studies the two types of
excitations, KT-like and Ising-like, have been assumed to
be independent of each other, which is not true in gen-
eral. '

The application of the MK approximation to the Ham-

iltonian (4.1) is entirely similar to that described by Jose
et al. and is expected to give qualitatively correct results
for p &3. To obtain the recursion law for the coupling
h we approximate the interaction K cos(0; —0~ ) by
——,K,rf(0; —0J), and carry out a one-dimensional de-

cimation with a bond-moving technique. The result is

2y2K
h '=h(1+e '"), (4.2)

which shows that h is always a relevant variable. This
characteristic is also true for the two-dimensional cases,
and it is expected that after many iterations the Hamil-
tonian (4.1) will approach one in which the angle between
the two XF spins at each site can assume only p discrete
values

(4.3)

PH =2K„Q—cos(0; —8~)cos—(n; —n )

=K„gcos(0; —0J )( 35„„—45„,5„,
(Ij&

+25„(+25„)—1), (4.5)

which contains a three-state Potts interaction with one-
site and two-site symmetry-breaking fields. Thus the
possibility for a three-state Potts-like transition in addi-
tion to the KT-like one is suggested. To obtain a con-
clusive answer, however, a more thorough analysis is
necessary since there could exist alternative possibilities
for types of phase transition which this discussion has not
revealed.

V. CONCLUDING REMARKS

To investigate the nature of phase transitions at finite
temperatures in arrays of coupled Josephson junctions, we
have considered uniformly frustrated two-dimensional XY

For the case p =2 (f= —,
' on a square lattice and f= —,

on a triangular lattice), Eq. (4.3) allows us to define the
"Ising-spin" variable s;=2n; —1, and to get the Hamil-
tonian (4.1) in the form'

13H =E„—g cos(0; —0J )(1+s;sj), (4.4)
(~j&

where E must be interpreted as the effective interaction
approached after many iterations. This suggests the pos-
sibility for an Ising-like transition as well as the KT-like
one. As noted at the end of Sec. III, this Hamiltonian is
expected to display several different types of transitions.

For p=3, which is the case for f= —,
' on a triangular

lattice, we define a new XY spin variable 0; to be the aver-
age of the two original spin variables 0,' ' and 0,' ', i.e.,
20;=0; '+0; ', and obtain the Hamiltonian (4.1) in the
form
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models. We have developed the Hubbard-Stratanovich
transform for those systems, and constructed the
Landau-Ginzburg-Wilson Hamiltonians for cases f= —,,
—,, and —, both on a square lattice and on a triangular lat-
tice. The resulting LGW Hamiltonians naturally reflect
the discontinuous variation of the nature of transitions
and the formation of superlattices as f is varied. In par-
ticular, it is shown that the critical behavior of the system
with f= —, on a square lattice belongs to the same univer-

sality class as that with f= —„' on a triangular lattice,
though there exists the possibility for different types of
transitions outside the region of validity of our approach.
Also obtained are the mean-field transition temperatures
in complete agreement with previous self-consistent calcu-
lations by Shih and Stroud. The LGW Hamiltonians for
three relatively simple cases (f= —,

' on a square lattice,

f= —, and —, on a triangular lattice) have been generalized
to the lattice Hamiltonian describing two coupled XY
models, and the application of the Migdal-Kadanoff ap-
proximation has been considered for these systems. In ad-
dition to the Kosterlitz- Thouless —like transition, an
Ising-like one is shown to be possible in the case f= —, on

a square lattice, while the possibility for a three-state
Potts-like transition is suggested in the case f= —, on a
triangular lattice.

Our considerations are, however, far from conclusive,
and more thorough analysis of the obtained LGW Hamil-
tonians or their generalization to the lattice Hamiltonians
is necessary. Nevertheless our approach is already suffi-
cient to demonstrate the richness of the behavior of frus-
trated XY models in connection with artificial structures
such as Josephson-junction arrays.
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APPENDIX: LGW HAMILTONIANS FOR COUPLED XFMODELS

We consider two coupled XYmodels described by the Hamiltonian

iBH=K—g [cos(P'; ' —PJ")+cos(PI ' —PJ ')]+A g cos[p(P';"—P'; ')],
(ij) E

where PI" and PI
' represent two XF spins at site i, respectively, and p is an integer. The Hamiltonian (Al) can be writ-

ten in a compact form

PH= —,'(u Pu+—U PU)+ —Re+(u;*u& P,
2

(A2)

i
(1) (2)

where u and U are column vectors with components e ' and e ', respectively, and P is a symmetric matrix with
elements P;J =K,J +5,J g& K;~.

We now consider the integral on a complex plane

NI= gdw;dz;exp ——,' (w P 'w+z —P 'z) —Re+ g—P~ 'Pk ~w~*zk
all .i=1 i j,k

(A3)

which can be shown to yield a nondivergent constant. We shift the variables via the relations

w =g&+Pu, z=g2+PU,

and write the integral (A3) in terms of g& and g2..

I= f,~ dg, ; dg ;2exp[ —2(g', P 'g&+gzP 'P2) —Re(g', u+fzu) —,'(u Pu+U—PU)]

(A4)

Xexp. ——Re+ (u,*u;) + gpjp, kPJ; 'P;„' +C(p, ,g„u,U)
i j,k

where C represents terms that couple g~, g2 and u, u. Thus we obtain the expression for the partition function
r

Z—=T« ' - f «~«2exp —-(4tP '4~+0'P-'02) ——Re& ge»02. PJ;'Pk-
i j,k

(A6)

where
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gfijfzkI'J 'I';k ' =&' g II [I'q„'Pi(q.)I' 'A(q')]~g y
l,J q's n =I

which, with the expression

2X(cosq~+ cosqz) =4K(1—q /4), square lattice (sq)
T

Pq ——~

] v32' cosq ~ +2 cos —,q icos qq -6K(1—q /4), triangular lattice (tri)

e
' —= Trexp —Re(TP]u+ypu) ——Re/ C(l/J), qz, u, u)

Q, U 2

depends only on the amplitudes of lt ~; and fq;, and is irrelevant to the phase-only approximation.
The Fourier transform then gives the relations

Pl~ 41+42+ 02 g ~q [(t'1(q)lt'l(q)+02(q)A(q)l

(A7)

(AS)

allows the desired form

Z ~ I dP~dgqe

F(g&, ltjz)= J dx dy +
2 I 4i I'

I Wz I'cosh (~i —~»]+f( I @i I I 4 I
)

(A9a)

In Eq. (AS), f( I g& I, I gz I
) represents the part that de-

pends only on the amplitudes, and the coefficients are
given by

I

(3.20), and (3.26) to the lattice Hamiltonians of the form
(A. l) is completed in the phase-only approximation with
the relations

u =2(4') ~h, sq
16K

(A9b)
IC/~2 for f= —,', sq (p=2),

u =2(6K) ~h, tri .
24K

Thus generalization of the LG& Hamiltonians (3.6),

E= .K/2 for f= —,', tri (p =3 ),

&/~3 for f= „',tri (@=2). —
(A 10)
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