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Numerical study of phonon localization in disordered systems
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A new numerical method has been developed to find the frequencies and vibration patterns of
normal modes of harmonic systems. %'e have used this method to calculate the phonon density of
states, and the phonon localization length for a two-dimensional square lattice with mass disorder.

I. INTRODUCTION

A large amount of work has been devoted to the calcu-
lation of the phonon density of states in disordered sys-
tems. ' However, very little is known about the actual na-
ture of the phonon states. By analogy with the corre-
sponding problem of electrons in disordered systems, one
expects that for strong disorder, phonon states will be lo-
calized excitations in the Anderson sense. Phonon locali-
zation in one-dimensional solids has been considered by
Ishii and Jackie. Numerical studies have been made by
Nagel, Rahman, and Grest for Lennard-Jones glasses.
The glasses were prepared by means of molecular-
dynamics simulations of rapid cooling from the liquid
state. Once a glass was formed, the normal modes of vi-
bration were studied numerically. It was found that above
a certain frequency the modes were localized, as expected
from the general ideas of Anderson localization.

We have developed a new numerical method to calcu-
late phonon eigenstates for disordered systems. The pur-
pose of this paper is to describe this method, and as an ex-
ample to use the method to study phonon localization in
two-dimensional lattices with mass disorder.

II. NUMERICAL METHOD

Let us consider a set of N atoms which are coupled to-
gether by linear springs. For simplicity, we consider the
particles to move only in a single direction (e.g. , the z
direction), but our method can easily be extended to cover
general motions. The equation of motion of the masses is

Thus, to find the frequencies and displacement patterns of
the normal modes one has to find the eigenvalues and
eigenvectors of an N)&N matrix. Conventional methods
require a large amount of computer time as N becomes
large. Thus, one has to find another approach.

Ftcos(Qt ), (4)

where I I is independent of time. After a time, large com-
pared to the typical period of oscillation of the atoms, the
total energy of the system is

Ftet(A, ) sin I [(co&—0)/2]t j

&Mt
L

Thus, for large times the periodic force excites only those
modes whose frequency is close to Q. Now let us choose

Fi =FOQMicos(gi),

where Fo is a constant and Pt is a random quantity. If we
average over all possible values of Pi we find that the
average value of E is

E F&& sin I [(co~—II)/2]t j
(7)

4

A. Method for the density of states

One can find the density of states by the following
method. We start with each atom at rest and with zero
displacement. We then apply a force on each atom given
by

Marut(t) = —g Ptt ut (t) . (1) We have used the orthonormality of the mode patterns:

Mt and ut(t) are the mass and displacement of the lth
mass and Pii describes the strength of the spring couphng
atoms l and l'. The displacement can be decomposed into
a set of normal modes according to

get( A, )ei( A. ') =5),t, .
I

The modes which contribute to the sum in (7) are those
whose frequencies lie within about +(2~/t) of Q. Let us
choose t such that

et(A, )
ut(t) = g g&(t)

Mi
(2) At))1,

4~N/cu t ))1,
(9)

(10)
where Q~ is the amplitude of the normal mode A, and
et(A. ) is the displacement pattern or "polarization vector"
of the mode X. The j et(A, ) j and the frequencies Icoqj
satisfy the equations

gott (MtMt )
'~ e( (A, ) =cogeI(A, ) .

I'

where ~ is the maximum frequency of the system.
Equation (9) means that only modes in a narrow band of
frequency on the scale of Q contribute to the sum. Equa-
tion (10) ensures that the number of such modes is much
larger than unity. Thus, if these conditions are met we
have
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~tFo2 m tF~g(Q)E = 5(top —Q) =
8

where g(Q) is the phonon density of states. Thus, provid-
ed that a way can be found to carry out the time develop-
ment in the' presence of the periodic force, we can find
g(Q) from

(12)

For a sufficiently large system, one expects that it will not
be necessary to carry out explicitly the average over all
values of the {PlI, i.e., it will be sufficient to make one
random choice of the {PI I .

4m%/Qt (. 1, (13)

the resonance factor in Eq. (7) is so sharp that the width
b,co+ of the resonance is less than the spacing Ace~ be-
tween the frequencies of adjacent frequency normal
modes. Then most. of the energy of the system will be in
just a few of the normal modes. If the modes of frequen-
cy around 0 are localized, one should then find that the
energy distribution in the system will be very inhomogene-
ous. There will be regions of essentially negligible energy
density, and regions of high energy density where the
highly excited modes are localized. Since the number of
excited modes is small, they will have a very small proba-
bility of overlapping. Hence, any region of high density
can be assumed to be caused by a single mode. Conse-
quently, the displacements u~ of the atoms in such a re-
gion must be

ut ——CeI(A,o)/+Mt, (14)

where C is a coefficient independent of / and er(ko) is the
polarization vector of the particular mode A,o. Thus, by
looking at these displacements, u~, et(Ao) can be found.

In the case that the modes are extended this method
does not work. No matter how large t is one always has
significant excitation of a few modes, and when these
modes are extended their vibration patterns overlap.

We have devised the following scheme to isolate single
modes when the modes are only weakly localized, or even
extended. We first drive the system for a time t, at which
point the displacement of atom l is u~". We can write
this displacement as the sum of couplings to the normal
modes:

B. Mode patterns

If the system is driven for longer times there will even-
tually be only a very small number of modes whose exci-
tation level is important. When t is very large, i.e., such
thai

Fi ——uI M(2)= (2) (19)

and continue the iteration sequence. After p iterations ihe
displacement of atom l is

ut
' —— QFgh~(Q, a)g, t)et(A, ) .

+Mt
After a sufficient numer of iterations the displacement
pattern becomes dominated by the mode A,

&
for which

~

h(Q, co~, t)
~

(=
~

h&
~

) is the largest, regardless of the
values of I F~ I. Thus, for sufficiently large p,

ut'~'= Cer(A, ))/QMI, (21)

where C is independent of l. Hence, this provides a way
to determine the pattern for the mode k]. Consider now
the accuracy of this procedure. Let the mode which has
the next-largest value of

~

h
~

be A,2, and let the value of h
be h2 for this mode. The accuracy of the result for the
mode pattern depends critically on the ratio of

~
h&

~

to
~

h2 ~. From Eq. (20) we see that the error in the mode
pattern is proportional to

Now, if t is short (i.e., only a few times the period of a
typical mode), h(Q, co~, t) will be a slowly varying func-
tion of the mode frequency co~. Thus,

~
h2

~
/

~

h
~ ~

will be
only slightly less than 1 and a large value of p will be
needed to get good accuracy. It is more efficient to make
t sufficiently large so that only a few modes have large
values of

~

h
~

. Thus, one needs t of the order of [see Eq.
(13)]

(23)

Then
~

h2
~

will be significantly less than
~

h~ ~, (e.g.,
—,
'

~
h,

~
) and the procedure converges rapidly.

C. Numerical algorithm

The problem thus reduces to the solution of the equa-
tions of motion of the system in the presence of a periodic
force. These equations can be written as

2 sin[ —,
' (Q —coq)t ]sin[ —,

' (Q+coq)t ]
h(Q, roy, t) =

Q —cog

We then change the amplitude F~ of the force applied to
atom l to a new value,

F( ——uI MI,(&) (&)

and, again starting with all particles at rest and with zero
displacement, we drive the system for a time t. The re-
sulting displacements we call {ut 'I. We then reset the
forces using

u,"'= g F,h(Q, ~,, t)e, (X),
+Mt

where

(15) Ut(t) =M( ' —g Ptt ut (t)+Ftcos(Qt)
l'

ut(t) =Ut(t) . (25)

Ftet(A, )

QM(

The standard approach to the time development is to re-
place t by n~ where ~ is a small time step, and n an in-
teger. Then a time-development algorithm is
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vt(n +1)=vt(n)+Mt gott up(n)+I'tcos(Qnr)
I'

(26)

v(n) =v(0)cos(na)

+ v(0)—2u (0) a
tan —sin(na),

2

u&(n + 1)=u~(n) +vl(n }r . (27)
where

Normally one would choose ~ to be small compared to the
characteristic time scale of the system, i.e., the period ~
of the highest-frequency mode. If we set

a=2 sin
607

2
(41)

+m (28)

with z « 1, we see that the number n of time steps needed
to study localized mode patterns [Eq. (13)],has to satisfy

Thus, the solution is perfectly periodic in the sense that
the magnitudes of the oscillations of v or u do not change
as the iteration proceeds. The oscillator acts as though it
has a frequency,

4~%
n ))

+m
(29) A 2 .

&
Q)7

67 = = sin
2

(42)

U= —CO Q (30)

(31)

and so we could try as an algorithm

v (n + 1)=v (n) —co ru(n),

u(n+l)=u(n)+m(n) .

(32)

(33)

Unless ~ &&~ ' this algorithm does not work well. Let us
start with u (0)=uo and v (0)=0. Even though the oscil-
lator is not driven, we find that after one cycle the ampli-
tude has increased by a factor r, which for small ~~ is

r 1 +7T67% ~ (34)

One can understand this as follows. Regard the algorithm
as a sequence of transforms acting on a vector X„ in ( u, v }
space, i.e.,

If we take Q~ roughly equal to 2m then we need n much
larger than 2%/z. In a typical case one might use
z =0.01.

Since the computing time is proportional to n, we
would like to find a way to make z as large as possible.
Vr'e have discovered the following interesting method.
Consider a single harmonic oscillator of frequency co, and
ignore for the moment the driving force. Then

The relation between the apparent frequency g and the
real frequency co is shown in Fig. 1. Equations (39)—(42)
remain true provided that ~~ & 2. Above this value, a be-
comes complex and the solution is no longer periodic.
Thus, the simulation can be used provided

(43)

where ~o is the period of the oscillator. Thus, we must
have z &m.

Although the solutions (39) and (40) are periodic, the
energy calculated as

e= —,mv + —,men u
1 2 1 2 2 (44)

is not constant, but oscillates at frequency 2' about a
mean value F. For small z, the amplitude of the oscilla-
tions «F.

Consider now an oscillator driven by a force
Fov m cos(Qt). If we use the same algorithm to perform
the time development, we obtain some complicated ex-
pressions for u (n) and v (n). Near to resonance the result
for e for large n is approximately

X„=[u (n), (nv)] . (35)

For the algorithm to give solutions which are periodic, we
may guess that it is desirable for the Jacobian J of the
transform to be 1. For the transform of Eqs. (32) and (33)
we have

I= 1+co r
To get J= 1 we make a simple change:

v(n+1)=v(n) co u(nr—),
u (n + 1)=u (n)+rv(n + 1) .

For initial values v(0) and u (0) we find that

u (n) =u (0)cos(na)

(37)

(38)

+ . v (0)—tan —u (0) sin(na), (39)
sina 2

FICr. 1. Shift in frequency of an oscillator produced by the
algorithm. co is the apparent frequency, co is the real frequency,
and ~ is the time step.
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FOP sin [(n/2)(a —ao)]
2 cos (a/2) (a —ao)

(45) 2. Q~
g sint 2

8(E )cos(Qr/2)
n~.FON

' (47)

2. Qz
cog = sin

2
(46)

To find the density of states we drive the system for a
shorter time, so that many modes are still appreciably ex-
cited. Then, we have the result, analogous to (12), that

where ao ——Q~.
We can apply this algorithm to the system of X atoms

driven by the force (6). This system can be thought of as
N oscillators, and so the algorithm effectively time-
develops each of these oscillators with a shifted frequency
given by (42). The algorithm does not change the dis-
placement patterns associated with the modes. Thus, we
can determine these patterns by the method already
described, i.e., we drive the system for a long time so that
only a few modes are excited. The real frequencies n~ of
the resonant modes are now related to the driving fre-
quency Q by

The step size ~ in these calculations has to be sufficient-
ly small so that (43) is satisfied for all of the modes of the
system. Thus, we need

7 (2/co~ (48)

where co~ is the maximum frequency. In fact, this condi-
tion provides a convenient method to determine co . We
set the applied force equal to zero, and give the atoms
some random initial displacements and positions. Then
the algorithm is Used to time develop the system, and
after each step the total energy E is calculated. If r satis-
fies (48), E will undergo small fluctuations about a mean
value. We then increase ~ and repeat the procedure. As
soon as r exceeds the limit (48), we see that the energy be-
gins to increase as the iterations proceed. This is because
a for the highest frequency mode of the system has be-
come complex, and the energy of this mode grows ex-
ponentially. A measurement of the critical value of r can
thus be used to give co

III. RESULTS AND DISCUSSIONS

We have applied our numerical method to study localization in a simple two-dimensional model. The atoms form a
simple-cubic lattice in the x-y plane, and are allowed to move only in the z direction. The atoms interact only with
nearest neighbors via springs of strength k. If we label the atoms by coordinates l, lz, the equation of motion is

vI ) ——M( ( g [k(uii I, +ui, ), +u(, I, +u(, ), —4u) ) )+E( ) cos(Qt) j . (49)xy xy x+1'y x'y+1 x —1'y x'y —1 x'y x y
Iy

We take all the spring constants to be the same, and intro-
duce a disorder through the masses.

A. Density of states

We have calculated g(co) for lattices of 1600 atoms in a
40&(40 array. The spring constant k was 1, and the
masses were randomly distributed in the range

1 —q (M &1+q .

Periodic boundary conditions were used. g(co) was calcu-
lated at co intervals of 0.1. Results are shown in Fig. 2.
We have several checks we can apply to these results. For
the ordered lattice (all masses =1) we can compare with
the exact solution which can be written as

0.75M~1. 25

O. 5&M&1

co co (8 —co )

where K is the complete elliptic integral of the first kind.
This is shown by the dashed line in Fig. 2. The agreement
with the numerical results is exceHent. As a check of the
disordered lattices we can use the moments of the fre-
quency spectrum. It is straightforward to show that

go =—I g (ci) )dc' = 1 (52)
Q

i~ ~

FREQUENCY

O. 25~H&1. 75

gg= I g(co)co dco= 2k 1+qq'" 1-q
FIG. 2. Phonon density of states for two-dimensional square

lattices. The range of masses is as indicated. The dashed line
shows the exact result for the case of no mass disorder.
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TABLE I. Comparison between the moments of the frequency spectra calculated numerically (N
columns) and from the exact expressions Eqs. (52), (53), and (54) (E columns). q measures the amount
of disorder as described in the text.

go gz g4

0
0.25
0.5
0.75

1.005
1.016
0.988
0.988

3.962
4.133
4.232
5.051

4
4.087
4.394
5.189

19.65
21.52
24.69
41.48

20
21.24
26.16
43.30

r

g4= I g(cu)cu"dco=k
z

ln4 2 1 2 1+q 16

q 1 —q 1 —q'

(54)

In Table I we compare these exact results with the mo-
ments of the computed spectra. The agreement is very
good.

B. Localization length

From the calculated displacement pattern el I (A, ) we

can calculate how the energy of the mode k is spatially
distributed. Let the amplitude Q~ of the mode be l.
Then, we define the energy of atom l„l» as

+I I = 4 el I (I( )tuA, + s k

X g [el. l (I(,)/(Ml, l, )'~ —el 1(A,)/(MI Ml )'~ j

(55)

at each frequency is smaller than the error bars by a fac-
tor of V 4 to v 6.

In two dimensions it is believed' '" that all states are
localized, and so there is no true mobility edge separating
localized and extended states. However, it is expected
that there will be ranges of energy (for electrons) or fre-
quency (for phonons) where g will be very large, and
hence the states are only weakly localized. Our results
show that the range of frequency for which g is short
(strongly localized) extends rapidly as the disorder is in-
creased. The structure of the states with very short g (i.e.,-0.5) is very simple (Fig. 4). One atom (atom 0) has an
amplitude uo which is considerably larger than that of
any other atom. The four neighboring atoms have dis-
placements in the opposite direction. Thus, the structure
of the mode is qualitatively similar to the vibration pat-

0. 75~M~1. 25

where the sum is over those atoms l~l~ which are nearest
neighbors of l„l». Thus, El I (A, ) is the sum of the average

X P
kinetic energy of atom l l» plus half of the average poten-
tial energy of the bonds between this atom and its nearest
neighbors. We can then define the center of the mode A,

as LU 0. 5&M~1. 5

0(~)= g I„l EI„!(~)/g E! I (~) (56)

where the position vector of atom l l» is

II I —l ~ +IyJ

As a measure of this size of the mode, -we have used the
quantity

(58)

C3

C3 O. 25&M+1. 75

Results for the localization length in units of the inter-
atomic spacing are shown in Fig. 3. These calculations
are for q =0.25, 0.5, and 0.75. In each case the upper end
of the frequency range is simply determined by the max-
imum frequency of the system. The lowest frequency is
the point below which the mode becomes so large that the
effect of the finite size of the system becomes significant.
The error bars indicate the standard deviation in g, deter-
mined typically from 4 to 6 modes of essentially the same
frequency. Thus, the uncertainty in the average value of g

Q
0

FREQUENCY
FK:r. 3. Localization length g in units of the interatomic

spacing as a function of phonon frequency for three amounts of
disorder.
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lattice of mass M, the impurity-mode frequency is the
solution of the equation

M=(M —M )co f ~ dg
0 ~2 g2. (59)

FIG. 4. Displacement pattern of highly localized modes. In
this example the frequency is 4.0, the disorder parameter
q =0.75, and the mass of the center atom is 0.269.

tern of a single light impurity in an otherwise perfect
crystal. To develop this idea further we have made the
following analysis. For each localized mode we have
found the mass Mo of the atom with the largest average
energy. The average of Mo for all the modes studied with
a given co is shown in Fig. 5. (This figure includes only
those modes which have fairly short localization lengths.
When g is large, there are often several atoms which have
energy nearly as large as the energy of the highest-energy
atom. Thus, the determination of Mo becomes rather ar-
bitrary. ) For a single impurity of mass Mo in a perfect

The relation between Mo and co is shown as the solid
curve in Fig. 5. It is in reasonably good agreement with
the numerical results.

We have tried to use the same simple picture to explain
the localization length. For a single-impurity atom of
mass Mo in a lattice of atoms of mass M, it is straightfor-
ward to calculate the localization length gl of the mode
associated with the impurity. The result of this calcula-
tion is shown by the solid lines in Fig. 3. gl is significant-
ly smaller (typically by a factor of 2 or 3) than the g com-
puted numerically for the disordered system. Examina-
tion of the displacement patterns for the modes in the
disordered system reveals the following explanation.
There will nearly always be at least one of the nearest or
next-nearest neighbors of atom 0 which has a mass fairly
close to Mo. This atom (or atoms) has a natural resonant
frequency close to the mode frequency, and hence tends to
have an unusually large amplitude This, in turn, makes a
large contribution to g. For a single. isolated impurity in
an ordered lattice, this effect does not occur.

.75-

.50-

~ 25

.75-

.50-
(5)

a 25

0. 75&8&1.25

Q. 5&M&1. 5

C. Mode patterns

We have already described the way the modes look for
the highly localized states. For the modes with larger
values of g, the mode pattern depends not only on g, but
also on the amount of disorder q. Figure 6 shows two
modes which have the same frequency (3.0), almost the
same g [1.29 for (a), and 1.33 for (b)], but are in lattices
with q =0.25 for (a) and 0.75 for (b). The atom with the
largest energy is at the center of each plot (coordinates
0,0). Mode (a) has a frequency very close to the max-
imum frequency for disorder 0.25. This mode has a pat-
tern which is locally identical with the pattern for the
highest frequency mode in the ordered lattice, i.e., the
mode at the corner of the Brillouin zone. The magnitude

~
ei ~ ~

varies fairly smoothly from atom to atom. For
xy

Q. 25&M&1. 75
(b)

.50-

~ 25

+
+ +

+ —+-+
+ ~ +

+ + +

++~+~+~+
+ + ~ + + +

+ + + +
+ + + — +

+

+ +
+
- -+
+ +
+ — +

+ + +
+

+ + +

-+-
+

+ +
+

+ + +

+ +
+

+ +

+--+-+-++

FREQUENCY

FICs. 5. Mass Mo of the atom with the largest energy in a lo-
calized mode as a function of mode frequency co. The solid
curve is discussed in the text.

FIG. 6. Mode patterns. The atom with largest energy is at
the center of the pattern. Large + and —denote atoms whose
amplitudes have magnitudes greater than 0.1 of the amplitude
eo of the center atom. Small + and —denote atoms whose
amplitudes have magnitudes in the range 0.01 to 0.1 for eo. (a}
co =3.0, g = 1.29, q =0.25. (b) co =3.0, g = 1.33, q =0.75.
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mode (b) the displacements are much more irregular. The
atom with largest energy has mass 0.53. There is a second
group of atoms with large amplitude around atom
(1,—4). This atom has mass 0.41, and thus has a
resonant frequency close to the mode frequency.

n) Q. N (60)

If the modes overlap, it is necessary to use the more
elaborate scheme in which the applied forces are changed.
In this scheme there are now -X steps between each
time at which the force is changed. The accuracy of the
method increases exponentially with the number of times
p the force is changed, but for a given accuracy this num-
ber does not depend on X. Hence, we still have n& ~X,
but n j is larger than the n& needed when the modes do
not overlap by a factor which is independent of N. This
factor increases logarithmically as the required accuracy
increases. We have typically used p =10 to 30, which
gives modes patterns which have errors of less than
+10

Consider now the number of steps n2 required to calcu-
late the density of states g. In our method the number of
modes N which contribute to the energy transfer E [Eq.
(5)] is of order

D. Efficiency of the algorithm

Consider first the number n
&

of computational steps re-
quired to calculate a single-mode pattern. To make an
order-of-magnitude estimate of n &, it is sufficient to con-
sider how n

&
depends on the the total number N of atoms

in the system. Consider first what happens when the
modes are sufficiently localized that the overlap of modes
of nearly the same frequency is not significant. Thus, the
simple method of Sec. IIB can be used. The time t that
the system must be driven ~N, and so the number of
time steps also ~ X. Each time step involves a number of
computations ccrc, and so the total number of cornputa-
tional steps is

X-m~ /e AQ . (63)

This argument assumes, of course, that N is sufficiently
large that the density of states can be considered to be in-
dependent of %.

We now compare these results with other methods. Re-
views have been given by Dean' and by Be11.' Straight-
forward diagonalization of a general N)&N matrix re-
quires of the order of X steps, as we11 as storage of order

However, for any system in which the interatomic
forces are of short range the matrix to be diagonalized is
sparse. One can then use the negative eigenvalue
theorem' (NET) to find the number of eigenvalues less
than any chosen value. It is then possible to proceed to
find the normal mode frequencies, the density of states,
and the mode patterns. The number of steps required for
one application of the NET is of order Ns, where s is the
width of the band of nonzero elements along the diagonal
of the matrix. s is of order N' ' " (d =dimensionality)
and so the number of steps is of order

(65)

The number of steps n
&

needed to find an eigenfunction is
of this same order of magnitude. Consider now the num-
ber of steps n2 needed to find the density of states. By
two applications of the NET, one can find the number of
eigenvalues N in the range AA. It is clear that this num-
ber must have an error which is at least of order unity,
and so the fractional error in g is

e-N (66)

but N is of order NAB/co~, and so one must choose

Using our algorithm the time step is of order co '. It fol-
lows that the number of computational steps needed is of
order

'2

(64)

(67)

The coupling to each of these modes is random because of
the random phases {P~}. Thus, there will be random fluc-
tuations in the energy transferred which cause E to differ
from (E) by an amount which is of the order of
(E)N . Hence, the fractional error e in g is of order

—1/2

' 1/2
cu t

(61)
4m%

t —1/AQ, (62)

It appears from this result that the error is smallest for
small t. However, one has to recognize that the range of
frequency AQ of the excited modes is -4~/t. Thus, we
actually determine the aUerage of the density of states over
the range AQ, and this range increases as t decreases. Let
us suppose therefore that we want to determine g(Q)
within a given frequency range of AQ and with a fraction-
al uncertainty of e. To do this we must have t and X of
the order of

Hence, the number of steps needed to find g averaged over
a range b,Q with a fractional uncertainty e' is

3 —2/d

(68)

We can now compare n
&

and n2 for our method [Eqs.
(60) and (64)] with the corresponding n& and n2 for the
NET method. We see that in 2 dimensions the number of
steps is the same. In this case our method may have some
advantage, however, because it is known that for the NET
method, there are some stability problems associated with
finding the eigenfunctions. These difficulties do not
occur in our method. In three dimensions, our method is
clearly faster. For example, to find a mode pattern the
number of steps needed is smaller by a factor of %'

We currently apply this numerical method to study
phonon localization in three dimensions, and the effect of
different types of disorder, such as topological defects.
We will report these results in a 1ater paper.
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