
PHYSICAL REVIEW 8 VOLUME 31, NUMBER 7 1 APRIL 1985

Privman-Fisher hypothesis on finite systems:
Verification in the case of the spherical model of ferromagnetism
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The Privman-Fisher hypothesis on the singular part of the free-energy density of a finite system,
near the bulk critical point T=T„ is examined in the context of the spherical model of ferromagne-
tism. A d-dimensional hypercubical lattice (of size N~a )&N2a X )&N~a) is considered and, sub-
ject to periodic boundary conditions, explicit expressions are derived for the free energy, the specific
heat, and the magnetic susceptibility of the system at temperatures close to T, . The relevant scaling
functions governing the critical behavior of the system are obtained and, with the use of the asymp-
totic properties of these functions, various predictions of the Privman-Fisher hypothesis are verified.
By implication, the passage of the given system towards standard bulk behavior, as X~~ oo, is also
elucidated.

I. INTRODUCTION
In a recent paper Privman and Fisher' have argued that

the "singular" part of the free-energy density of a finite
hypercubical system (L XL X . . XL =L, d being less
than the upper critical dimension d & ), near the bulk criti-
cal point T = T„may be expressed in the form

~(s)f"(t h 'L): =L —Y(C tL ' " C hL ")
Vk TB

where t and h are the (reduced) temperature and field
variables,

x& (=C, tL' ") and xz (=C2hL ') are the appropriate
scaled variables, v and 6 being the familiar bulk indices,
while CI and C2 are certain non universal, system-
dependent scale factors. The function Y(x&,x2) is then a
universa/ function, common to all systems in the same
universality class as the given system. It seems important
to emphasize that in expression (1) no nonuniversal metric
factor, Co, appears in front of the function Y(x& x2);
moreover, the variable L here denotes the actual physical
dimension of the system (and not one scaled in terms of
any elementary length appropriate to the situation). As
indicated by Privman and Fisher, the above formulation is
valid for a cylindrical system (L" 'X Oo) as well; in our
investigation, it seems to hold equally well for a system
such as (L X ao ), where d'+d'=d. Of course, the
precise nature of the scaling function Y(x~,x2) varies sig-
nificantly as we move from one geometry to another; the
same is true if we alter the set of boundary conditions to
which the system is subjected.

Of pivotal importance in expression (1) are the scale
factors, C~ and C2, whose determination may seem to re-
quire an explicit evaluation of the function f"(t,h;L) for
the given finite system. In reality, such an evaluation is

necessary only if one is interested in determining the exact
form of the scaling function Y(x~,x2); insofar as the
scale factors are concerned, they can be determined from
a study of the corresponding bulk system instead. As
shown by Singh and Pathria in the context of an ideal
relativistic Bose gas, this determination can be made with
the help of any bulk function, or functions, containing
two independent bits of information on the singularity of
the problem.

In the present paper we propose to test the scaling hy-
pothesis (1) in the case of the spherical model of fer-
romagnetism in d dimensions. Using methods developed
in earlier papers, we derive explicit expressions for
various thermodynamic functions of the field-free system,
x 2

——0, of spins on a hypercubical lattice (of size
%~a X XN~a) under periodic boundary conditions.
While the scale factors C~ and C2, and certain asymptotic
forms of the scaling function Y(x~,x2) and its deriva-
tives, can be determined from the appropriate bulk re-
sults, ' our analysis of the finite system enables us to
derive the complete mathematical forms of these func-
tions valid for all values of x, . In view of the fact that
these functions are characteristic of the geometry of the
lattice, finite-size effects in the various thermodynamic
properties of the system are also geometry dependent. Al-
though most of the results derived here pertain to
2& d &4, special cases arising from the most relevant di-
mension d=3, viz. , a cube (d'=3), a cylinder (d =2),
and a film (d = 1), are given special consideration. In all
cases, the analytical results obtained here are found to be
in complete agreement with the ones following from the
Privman-Fisher hypothesis.

In Secs. II and III we carry out a detailed investigation
of hypothesis (1) and establish a set of results relevant to
the subject matter of this paper; this includes the deter-
mination of the scale factors C~ and C2 on the basis of
the bulk results for the spherical model already available
in the literature. ' Predictions for the finite system are
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thereby laid out. Next, these predictions are verified
against actual, analytical results derived in Sec. IV for a
d-dimensional system which is finite in d* dimensions
(d*=1,2, . . . ) and infinite in the remaining d' (=d —d")
dimensions; details of the process of verification are given
in Sec. V. Wherever possible, a comparison is made with
the previous analytical results, which are generally some
special cases of the ones reported here.

I 2 —0
2

2/(d —2)

( g )d/(d —2)

( g )d/(d —2)

2/(d —2)

(d —2) I"
2

(12)

II. FORMULATION OF THE PROBLEM

In accordance with (1), the "singular" part of the
specific heat per unit volume of the system will be given

by

c( )(t,h;L) -C iL-/-Y(1)(CItL 1/;C2hL a/. ), wit ll

—/1+x( (x) ~+ a) ), (13)

Here, IC, stands for the interaction parameter, J/ks T„of
the system, a denotes the lattice constant, while d is re-
stricted by the inequality 2 & d &4.

To reproduce (7a) from (3), the scaling function
Y(1)(xl ) must behave as

and that of the magnetic susceptibility by
2+ =E+ /C 1 (14)

X")(t h L)=C2Lr/"Y (C tL)/~, C2hLa/'), (4)

Similarly, to reproduce (ga) from (4), the scaling function
Y(2)(xl ) must behave as

where Y(&) and Y(2) are appropriate derivatives of the
original function Y(xl,x2), while use has been made of
the relationships

6+x (
r (x(~+ oo ),

with

G+ ——C+ Cr(/C2 .

(15)

dv=2 —a, 6=13+@, a+213+y=2 . (5) It follows that

It will be noted that Eqs. (3) and (4) are consistent with
the standard bulk behavior:

c'"(t,O; ) i
t i, X"(t,O; )

(,) E+t (t )0), —
c t;oo

0 (t &0),
(7a)

(7b)

In the sequel we shall confine ourselves to the field-free
situation (h=O); in view of this, the variable x2 may not
be displayed explicitly in the subsequent expressions.

For the determination of C~ and C2 for the spherical
model, we find it convenient to draw on the bulk behavior
of the specific heat and the magnetic susceptibility of the
system, namely,

)
1/(2 —a)

C =(C /G )' '(E /& )r "'
We thus obtain, see (9),

( /g )(d -2)/d~ g
—(d —2) (18)

( /g )1/d( /G )(/2~ —1/2 —(d ~2)/2

For simplicity, we may choose the normalization of the
universal function Y such that the coefficients 2+ and

G+ appearing in the asymptotic expressions (13) and (15)
are exactly equal to the universal numbers pd and qd,
respectively; note that, for d =3, pd ——128m, and

qd =1/(128~ ). With this choice, Cl and C2 assume the
simplified form

and
—(d —2) C ~—&/2 —(d+2)/2

1 ca 2 c (20)

C+t r (t ~0),
X t;oo)=

(t (0),

where

a=(d —4)/(d —2), y =2/(d —2),
~d/(d —2)

+ Jd c a

(ga)

(8b)

(10)

which is clearly system dependent.
Once C~ and C2 are known, no more nonuniversal am-

plitudes are needed to describe the critical behavior of the
system —regardless of whether it is finite or infinite in ex-
tent; all amplitudes appearing in the expressions for the
various physical properties of the system will be related to
C& and C2 through universal factors alone.

III. CONSEQUENCES OF THE
PRIVMAN-FISHER HYPOTHESIS

with

~ —d/(d —2) —dC+ 9'd~c
We start with the free-energy density f"(t;L), as given

by Eq. (1) with h=O, and write
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f"(t;L)=F+t (t )0, L~ oo ), (21)

where use has been made of the fact that iv=2 —a.
Comparing (21) with (7a), we find that

and g"(t;L), for a fixed value of x), are proportional to
L d, L~~", and Lr~', respectively; see Eqs. (1), (3), and
(4). It follows that the quantities

F+ =F+ /(2 —a)(1—a) . (22)

At the same time, we conclude that the scaling function
Y'(x) ) in (1) must behave as and

U =f"(0;L)L",
U„,=c"(O'L)L i C

(30)

(31)

Y+x) (x) ~+ oo),

with the universal coefficient

Y~ =F+/C)

(23)

(24)

cf. the corresponding Eq. (14) for the specific-heat func-
tion e '.

For I&0 and I ~ ac, there are two possibilities of in-
terest in this study:

(32)

evaluated at the erstwhile critical point (t =0), which
clearly lies in the core region, must be universal.

This completes the set of predictions, based on the
Privman-Fisher hypothesis, which we propose to test at
length in the following sections.

IV. THE SPHERICAL MODEL
ON A FINITE LATTICE

(i) Y(x))~Y ~x,
~

+d ' (x~—oo),

so that

f(s)(t.L) Y C&&—&)
)
t

~

v(d E)L —F. —

(25) We consider a system of N spins, s;, located at sites r;
(=n;a) of a hypercubical lattice [of size N)a XN2a
X . . XN~a ( =Na")] interacting through the Hamiltoni-
an"

the index e is as yet undetermined but is expected to be
geometry dependent.

N
A = —Jgs s —peffH g s;+A, g s;,

NN
(33)

(ii) Y(x, )—+ Y* (ln
~
x,

~

+const) (x)~—oo),

so that

f"(t;L)=Y* lnC)+ln
~

t
~
+—InL +const L

(25')

(26')

where the various symbols have their usual meanings, and
NN means nearest neighbors. The spherical field A, ,
which is conjugate to the quantity —g,. s;, is introduced
so as to satisfy the constraint

(34)

In each case, the coefficient Y or Y* is universal. The
repercussion of this on the specific heat of the system is
that, for e&d,

Under periodic boundary conditions, the free energy per
spin is given by

c"(t;L) ~t
~

' +"'L ' (t&O, L ). (27)
F(P,H, A, ) = g in[P(A, —pq)]-

2N 4 k —)Mo
(35)

The special case e~d corresponds to possibility (ii) above,
for which c"(t;L) is still given by (27), ie.

c"(t L)~ ~t
~

(27')

For e=d, the leading term in f"(t;L) would be indepen-
dent of t, with the result that no L term would appear
in the specific heat of the system. In passing, we note
that the extreme case e~ oo would entail a function that
vanishes exponentially fast with L.

As regards the susceptibility of the system, we may as-
sume that, for t&0 and L~oo, it diverges as L~. The
function Y~2)(x) ) must then behave as

2m'nj
)Mq =2J g cos

j=1 j [ni =0, 1,2,. . . . , (NJ —1)], (36)

clearly, pz (po ——2Jd. The magnetization per spin is then
given by

~(p, H) =p,ffH/2(A, po)—
and the susceptibility by

(37)

where p= I/k&T, q is a collective symbol for the set of
numbers I n), . . . , n~ I, while the eigenvalues pz are given
by

Y(2)(x))~G ~x)
~

~ r (x)~—oo),

with the result that

(28) X(P,H) =p,tt/2(A, po), —
while the constraint (34) takes the form

(38)

(29)

with G universal. Note that the extreme case gazoo
would now entail a function that diverges exponentially
fast with L, .

Finally, in the "core" region, where
~
x)

~

=O(1) and
hence

~

t
~

=O(L' "), the functions f"(t;L), c"(t;L),

1
2Np 1

M (p'H
A —P P'ff

(39)

Eqs. (37) and (39) together determine A, as a function of p
and H.

In zero field, Eqs. (35) and (39) reduce to
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1 2&Pl)
F(f3,$)= y ln. p A, —2J y cos ' (40)

2%)t3 („!
and

l

where K =PJ. Using the representations

f (e
—{1/2)x e —(1/2)zx)

0 X
(42)

=12K= —g ——2+ cos
N Inj J

2' Gl.
(41)

z —'= —' e —"~" dx2

Eqs. (40) and (41) can be written as

111K 1 ~ —(1/2) —() /2J) x cos(2nnj/)v ) dX
+

2P 2NP („!

and

1 QO xcos(2mn /N )

0

where

(46)
b

~(q)= f e '«"f(n)dn .

This leads to the remarkable identity, valid for aII Nj & 1,

Now, the summations over nl can be carried out with the
help of (a generalization of) the Poisson summation for
muia, viz.

N. —1J

g exp x cos
n =0
J

27771)
(47)=X~ g I~q(x), ,

g. = —Ool

g f«)= g ~(q)+ —,f(a)+ ,
' f(b), —(45) where I,(x) denotes a modified Bessel function. Equa-

tions (43) and (44) then become

F(p g) + g f e
—(1/2)x ~ g e

—()j./2J)x ~ I ( )
lnK 1 d

2p 2p o «J, O e N q x..

Ie,. I j=1 j=1
(4S)

OO d
2K= —,

' g f e ('/ '"+I (x)dx,
j=1

(49)

2K= Wg((t)+ —, g' f, e "/"~" g [e "I (x)]dx,
j=l

(53)

P = (A, /J) —2d,

we may write

F(P y) F (P y) y~ f e
—(1/2)gx

(50)

d

X g [ "I ...(x)]

(51)

where F~(13,$) denotes the bulk free energy per spin:

F (p y) + f t e
—(1/2)x

2P 2P

e
—(1/2)(()x[e —xI (x)]d)

(52)

The quantity (t) is determined by the constraint equation

here, use has been made of the fact that g. i)IJ=¹Itl
will be noted that terms with q=0 yield standard bulk re-
sults, while those with q&0 determine finite-size effects
in the system.

Introducing the variable {}),where

where

W'„({)))=—,
' f e " )~"[e "I (x)]"dx .

0
(54)

eXI (x)=
27TX

1 — +4v —1 (4v —1)(4v —9)
8x 2!(Sx)

(4v —1)(4v —9)(4v —25)
3!(Sx)

(55)

Note that the primed summations in Eqs. (51) and (53)
imply that terms with q=O are excluded.

Equations (51) and (53) are quite general in respect of
the actual values of the numbers Nj. From a practical
point of view, however, we may prefer to specify that the
system under consideration is finite in d* dimensions

(d =1,2, . . . ) and infinite in the remaining d' (=d —d*)
dimensions, i.e., only Nj with j=1,2, . . . , d are finite,
while the remaining Nj~~. For the latter dimensions,
one can readily verify that qj&0 would make a vanishing

contribution to the sums g', accordingly, those qj may be

set equal to zero, with the result that only q1, . . . , q„,
would make an explicit appearance in g'.

To evaluate the integral appearing in Eqs. (51) and (53),
we make use of the asymptotic expansion
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1+ 1 9—32v
2!(Sx)

which may be recast in the form

x —v /2x
I„(x)=

2 trx

W {y)=W (0)— Id d
(4 )d/2 2

+g (y(d —l)/2) (63)
225 —928v + 128v

3!(Sx)
(S6) which prompts one to conclude that the bulk critical

point, T =T„is marked by the relationship

and the integral'
v/2

e ~ ~ ~ ~~ !~I ~~
I

~ ~ tx 'e ' "dx =2 — K,(2~at ),0 t

2K, = Wd(0) .

Equation (53) now takes the form
id —2

(64)

X [1+O((t '"/y)], (SS)

where

where K„(z) denotes the other modified Bessel function.
Remembering that K,(z)=K (z), finite-size terms in
(53) yield the result

(2~) d/2 +& (yl/2/y)(d 2)/2K (y(/2y)
q(d+ )

1 ya
S~d/2

2 —dI

—2A
2

(65)
correct to the leading order in (a/L). In view of the role
it plays in the determination of the parameter y (p, L), Eq.
(6S) is of central importance in our analysis.

A similar operation on Eq. (51) gives

y[q(d')]=(Nlql+ . . +N +qd+)' )0. (59)

AssuD11ng~ foI slmpl1clty, that X) = =%dg =n, say,
and introducing the thermogeometric parameter, y, ap-
propriate to this system, viz. ,

&

nial/2

expression (58) takes the form
d —2

1 ya d —2 2

1+O y'
L

(60)

(61)

where L ( =na) denotes the length of the finite
dimension(s) of the lattice, while

K„(2yq)
A (n

~

d*;y)= g' (62)
(de) (yq)

The bulk function Wd(p) has been studied in considerable
detail; for 2 ~ d & 4, it can be expanded in the form

F(p, p) =Fe(p, O)+ —Wd(0) I.
d

1 ya
pH/'

g )fc

2
(66)

2

A (P,W) =F(P,P)— =F(P,P) 2Jd —4J-
L

2

(67)

Combining Eqs. (64)—(67), we get

again correct to the leading order in (a/L). Now, Eq.
(66) gives us free energy at constant k; the one at constant
W can be obtained from it through the Legendre transfor-
mation

A (P,W) =Fg(P, O) 2Jd+—1 1 2 —Gfr
2 d 2

d', y —A" —d*;y0 —2 g 6
2 '

- 2
(68)

The singular part of the reduced free energy per unit
volume is thus given by

f'"(t L)—= 3"(p W)a"

1~ 4—d

6 —2
2

It is now straightforward to show that, to leading order in
(a/L), the singular part of the reduced specific heat per
unit volume is given by

8 K,a
a BT ~

a" L

32&"K'
d

(70)

;y2 '

(69)
4—d d —4

2
+ y
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here, use has been made of the recurrence relation

[y'"M(n
~

d*;y)]= —2y~" 'A (n —1
~

d*;y) . (71)

In contrast, the reduced susceptibility of the system per
unit volume is given by the simple expression, see (38) and
(50),

among which y is supposed to be eliminated; note that no
nonuniversal metric factor, Co, appears in front of the
scaling function Y(x)) in Eq. (74). It is not surprising
that expressions (70) and (72) for the specific heat and the
magnetic susceptibility of the system are also in conformi-
ty with the corresponding formulas, (3) and (4), with

d/2 4—d

y(s)(r .L) T 1

2a "Jp 8a "K, ya

2
Y~))(y) =—

r " 2m " d*.+
(77)

V. TESTS OF THE PRIVMAN-FISHER HYPOTHESIS

Restricting ourselves to temperatures close to the bulk
critical point T„Eq. (65) reduces to

d —2I d-2
8 d/2 2

here, for simplicity, p,g has been set equal to unity.
We are now in a position to verify the set of predictions

made in Sec. III.
Y~, )(y) =1/(8y') .

We shall now examine the behavior of the scaling func-
tions Y, Y~)), and Y~z) in different regimes of t and L,
and for different geometries of the lattice.

(a) t)0, L~oo. In this regime, x)~+oo, with the
result that y diverges while the functions A (y) vanish ex-
ponentially. Equations (75) and (76) then give

cg 2
2

(73)

(~& ( «I).
I [(4—d/2)]

d

8~
~

I [(2—d)/2]
~

d/(d —2)
d/(d —2)X)

Recalling expression (20) for C), the left-hand side of (73)
assumes the form C&I." t and, since the index v for the
system under study is equal to 1/(d —2), it reduces to
simply x), where x) (=C)tL' ) is the scaled variable
appropriate to the present problem. Expression (69) is
thus manifestly in conformity with the hypothesis (1), for

which conforms to the requirement (23), with
a=(d —4)/(d —2), as given by Eq. (9), and with Y+ as
given by Eqs. (24), (22), (10), (20), and (12), i.e.,

f"'(t;L)=L "Y(x)),
where Y(x) ) is given by the parametric equations

(d 2) E+ (d —2—) p~Y d/(d —2)
1

(d —2)(8~)""'-"
2/(d —2)

2d r
2

Y(y) =

yd —2

x)(y)=
8m

G

2

r 2 —8
2

2 —2
2

—2% d*;y
2

(75)

(76)

At the same time we find that the functions Y~ ) ) (x ) ) and
Y~z)(x) ), as given by Eqs. (76)—(78), reproduce exactly the

bulk results (13) and (15), with appropriate values of a
and y, and with A+ and 6+ as determined by Eqs. (14)
and (16)—coupled with Eqs. (10)—(12).

(b) t &0, L~ oo. In this regime, x)~—oo with the re-
sult that y tends to zero while the functions A (y) diverge.
It is not difficult to show that, for y~0,

(79a)

~(n ld* y)~ ~"'y ~ [ln(1/y)+const] (n = —,d'),
—,'I (n) g' q "y " (n & —,'d') .

q(d+ }

(79b)

(79c)

Equation (76) then gives
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. ~ 1/(2 —d')
1 2 —d'

y(, )=. ~s.
const Xexp( —4'

~
x

& I
)

(d'(2) (80a)

(80b)

where d' ( =d —d" ) is the number of dimensions in
which the system is infinite. For d'&2, we encounter a
crossover to the new critical point, T =T, (L), a study of
which would require a somewhat closer examination of
the functions M(n

~

d';y) for n & —,
' d*; we hope to return

to this aspect of the problem in a subsequent investiga-
tion. For a related discussion for d&4, see Ref. 8.

Focusing our attention on the specific heat and the
magnetic susceptibility, we now find that, for d' & 2,

where

8 d'/2

I [(2—d'/2)]

' 2/(2 —d')

(88)

g =2( d —d') /(2 —d'), (89)

This leads to an expression for the susceptibility, X"(t;L),
consistent with the prediction (29), with

Y (x)

where

8 I [(2—d')/2]
(2—d') S~ '"

(81)

(82)

the same as e. It follows that, in this case too, passage to
the corresponding bulk behavior (sb) takes place through
a power law which reduces to the form L~~ t

~

~ for
d =3. Again, only for d'= 2 do we obtain an exponential
behavior. In the special case d = 1, d =3, we find that

8~[+, )Y(2)«i)= 2e (x)~—ao ), (90)

e=2( d —d') /(2 —d') . (83)

This leads to an expression for the specific heat, c"(t;L),
consistent with the prediction (27), with

with the result that X"' diverges as L exp(sn. C&L
~

t
~

)—
in agreement with the corresponding result obtained ear-
lier by Barber and Fisher.

(c) Finally, at the erstwhile critical point (t=0), Eq.
(76) reduces to

Passage to the bulk behavior (7b) thus takes place through
a power Iaw which reduces to the form L '

~

t
~

' ', where
e'=3 for a finite cube and 4 for an infinite cylinder of
finite cross section. Only for d'=2, an example of which
is provided by a film in three dimensions, do we expect an
exponential behavior. To see it more explicitly, we go
back to Eqs. (76) and (77) and set d=3, d' =1; we obtain
in a closed form

M( —,
'

~
1;y)= — ln(1 —e «),

A ( ——,
'

i
1;y)= e"—1

(84)

whence,

Y~ & ~(x &
) = —32~y tanhy, (85)

with

Y(z)(x $ ) G (87)

y(x~)=sinh '( —,'e ') .
—4m ~Xl )For x]~—oo, y= —,e with the result that

c'"(t;L) vanishes as L 'exp( —sn C~L
I
t

~

).
The limiting behavior of the scaling function, Y~2~(x ~ ),

for the susceptibility of the system in this regime turns
out to be, again for d' & 2,

(91)

which yields the universal number yo. Since yo ——0 (1), in
most cases it has to be obtained numerically. Once yp is
known, one readily obtains the universal numbers
U = Y(yo), U~, ~

——Y~, ~(yo), and Uz ——Y~z~(yo), as defined
in Eqs. (30)—(32). Again, in the special case d=3, d =1,
yo is known exactly, " i.e., yo ——ln[ —,(~5+ 1)]
=0.4812. . . . The values of yo for d=3 and d'=2, 3
have been obtained numerically by Pajkowski and
Pathria' in the context of Bose-Einstein condensation in
restricted geometries.

In conclusion we find that the various predictions of
the Privman-Fisher hypothesis on the hyperuniversality of
finite systems are fully borne out in the case of the spheri-
cal model of ferromagnetism. Qur analysis has enabled us
to derive the set of scaling functions that govern the
behavior of the system in the vicinity of the bulk critical
point T =T, . Making use of the asymptotic properties of
these functions in different regimes of t and L, we have
been able to study the size dependence of the various ther-
modynamic properties of the system both above and
below T, . This, in turn, has elucidated the manner in
which the system under study approaches its bulk
behavior as L~ ~.
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