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Phase boundaries and critical and tricritical properties of monolayer He adsorbed on graphite
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We report heat-capacity measurements on He films adsorbed on graphite for surface densities at
and smaller than that required to form a commensurate lt/3 X V'3)R30' monolayer in the tempera-

0

ture range 0.4 K& T &4.2 K. At densities below 0.039 A, a single transition is observed at
0

T &1.3 K. For densities larger than 0.039 A, two transitions are observed, the higher-T one

developing into the order-disorder transition previously studied by several authors. Our measure-

ments are consistent with a phase diagram showing a large region of existence of a single-phase
commensurate (with vacancies) film, and a two-phase region of coexisting commensurate and vapor
phases. For this phase diagram a tricritical point exists at Trcp —1.3 K and a density n Tcp —0.039
A . We observe strong evidence for Fisher renormalization of the constant-density specific heat
along the critical line. The effects of inhomogeneities on all transitions are discussed.

I. INTRODUCTION

He adsorbed on the basal plane of exfoliated graphite
provides an excellent system for the study of two-
dimensional (2D) phase transitions. At intermediate den-
sities, n =0.0637 A, helium registers in the
(M3 && V 3)R 30 structure. ' The order-disorder transi-
tion from registered to fluid, which was shown to be in
the same universality class as the three-state Potts model
and is marked by strongly divergent specific-heat peaks
near 3 K, was first measured by Bretz et al. ' for a
Grafoil substrate. Subsequent specific-heat measure-
ments by Bretz using a ZYX substrate yielded higher,
sharper peaks characterized by a critical exponent
u-=0. 36, close to the theoretical three-state Potts value of

3 Other specific-heat measurements on graphite
foam ' also yielded values of a close to 3 .

At low density, between 001 and 004 A, "He
behaves like an imperfect quantum gas above about 2 K.
Siddon and Schick" accounted for deviations from the
2D ideal-gas result of C/Nkz ——1 by calculating the quan-
tum second virial correction. Their calculation of the
specific heat showed a divergence near 1.5 K. This is
close to the temperature where there are rounded peaks in
the experimental heat capacity, which suggested that the
gas becomes unstable with respect to a condensed phase
and that the peak is the signature of a phase transition.
Further support for this idea was provided by Novaco, '

who estimated the ground-state energy of gas, liquid, and
registered phases and showed that the liquid has the
lowest energy in the low-density regime. Although the
registered structure was calculated to be energetically un-
favorable, an increase in the substrate corrugation would
favor the registered phases. Cole and co-workers'
showed that the helium-graphite interaction potential is
appreciably more corrugated than previous calculations'
had indicated. Although the nature of the condensed
phase was uncertain, the peaks in the constant-density
heat capacity .seemed to represent a transition from a
vapor-condensed phase coexistence region at low tempera-
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FIG. 1. Position of heat-capacity peaks from previous mea-
surements for He/graphite for densities'at and below the per-
fect commensurate one. Type of graphite used in parentheses.
Data of Bretz (Ref. 6) (ZFX) near n, not included since they
would be indistinguishable on the scale of drawing. )&, Bretz
and Dash (Ref. 1) (Grafoil); 0, Hickernell et al. (Ref. 1)
(Grafoil); +, Tejwani et al. (Ref. 9) (foam); , Ecke and Dash
(Ref. 28) (foam).

ture to a single-phase quantum gas at high temperatures.
In an ideal system, the specific-heat signature due to
crossing this boundary should be a discontinuity, but in
the presently realizable systems the rounding of the exper-
imental peaks can be explained as due to variations in sub-
strate binding energy. ' '

The location of heat-capacity peaks on low-density
He/graphite from previous measurements is shown in

Fig. 1. Several questions remained concerning the nature
of the condensed phase and the location of the phase
boundary of the registered phase. Several authors have
presented possible phase diagrams based on calculations
of the properties of lattice gas' and the three-state Potts
lattice-gas model. ' If the registered phase is preferred
over the liquid as the ground state, then there must be a
three-state Potts tricritical point where the critical region
joins the two-phase coexistence region. The properties of
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the tricritical region should be described by scaling
theory, ' ' hence the helium data might provide a com-
parison with the predictions of the theory.

We have studied the region of He adsorbed on graphite
foam between 0.0259 and 0.0662 A using adiabatic
calorimetry and have delineated the two-phase coexistence
region and the critical line. The condensed phase in the
coexistence region is interpreted to be the registered phase.
Although the exact location of the tricritical point has not
been resolved in this study, we estimate it to occur at
Tycp —1.3 K and p1 pep =0.039 A . The results are
consistent, with the predictions of scaling theory.

Several years ago Elgin and Goodstein ' did a com-
plete thermodynamic analysis of the data existing up to
that time for He adsorbed on graphite. Their method
was successfully used a few years later to calculate the
binding energy for a single helium atom on graphite, us-
ing only thermodynamic methods. " Qf particular irnpor-
tance to our work is the fact that in their original work
they measured and calculated the chemical potential at
many densities and temperatures. In addition they
showed how to calculate the chemical potential at low
temperatures given a set of initial values and an extensive
measurement of the heat capacity of the system. We have
used their method and some of their chemical-potential
values to do a semiquantitative study of the critical and
tricritical regions of the phase diagram. Along the critical
line the constant-density specific-heat peaks show the be-
ginning of crossover towards "Fisher-renormalized" ex-
ponents. Although the renormalization region is ob-
scured by finite size and heterogeneity effects, a recon-
struction of the constant-chemical-potential specific heat
produces a dramatic increase in peak height and sharpness
over the constant density peaks.

II. EXPERIMENT AND DATA

The specific-heat data were obtained using the adiabatic
technique described elsewhere. ' The heat-capacity cell
was an internally gold-plated thin-wal1 copper can enclos-
ing 4.13 g of graphite foam which had been baked under
vacuum at 900'C for 4 h. The cell was suspended from
the mixing chamber of a dilution refrigerator by a 2-in.
nylon tube (wall thickness: 0.002 in. ). The mixing
chamber temperature could be varied from about 10 mK
up to over 4 K by applying heat with an electrical heater.
In this study, the range was 0.4 to 4 K. The temperature
of the cell was measured with a Matsushita resistance
thermometer which has a 4.2-K resistance of about 180
Q. The carbon resistor was calibrated against a Cryo-Cal
model CR50 germanium resistance thermometer which
was factory calibrated above 1.5 K. The calibration was
extended between 0.1 and 1.5 K using a cerium magnesi-
um nitrate susceptibility thermometer and an S.H.E. Cor-
poration SQUID (Ref. 27) (superconducting quantum in-
terference device) detector The resi. stance of the carbon
thermometer was calibrated for each run.

The heat-capacity data are estimated to be 1% accurate
from 0.4 to 3.5 K but become increasingly more scattered
between 3.5 and 4 K, due to decreasing resistor sensitivity
and increasing thermal conductivity between the cell and
mixing chamber and less accurate due to uncertainties in

TABLE I. He coverages. V, gas volume adsorbed; X, num-
ber of atoms; n, surface density, n =0.115 A, monolayer
density.

V (STPcm )

9.79
13.01
13.94
16.03
18.53
21.65
22.42
22.75
23.26
23.66
24.04
25.00

& (X10")
2.628
3.493
3.742
4.303
4.977
5.813
6.022
6.108
6.247
6.352
6.457
6.713

ri(A )

0.025 91
0.034 44
0.036 90
0.042 43
0.049 07
0.057 32
0.059 37
0.060 23
0.061 60
0.062 63
0.063 67
0.066 19

n/n

0.225
0.299
0.321
0.369
0.427
0.498
0.516
0.524
0.536
0.545
0.554
0.576
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FIG. 2. Specific heat for He /graphite foam. Coverages in
A are {a)0.0259, (b) 0.0344, (c) 0.0369, and (d) 0.0424.

the resistance calibration.
Helium gas (nominal purity 99.99%) was introduced

into the cell in doses (accurate to 0.2%%uo) using a calibrated
volume and two MKS Instruments, Inc. 8aratron
capacitive-pressure manometers. The film was annealed
by heating the cell until the cell vapor pressure increased
to between 10 and 50 mTorr. This pressure was main-
tained for a minimum of 3 h after which the cell cooled
slowly back to 4 K. This procedure has been shown to
produce well-annealed films for He adsorbed on graphite
foam. No features were seen in our measurements
which could be attributed to incomplete annealing of the
film.

Specific-heat data were taken for twelve coverages,
Table I, and for a background run with no adsorbed gas.
Typical temperature increments for the heat-capacity data
are 1% to 2% of the absolute temperature. The back-
ground heat-capacity points were fitted to a third-order
polynomial and subtracted from the total heat capacity
for each coverage to yield the film specific heat. The
resultant signal to background ratio varied from 1/2 at
the lowest coverage and high T, where C/Nkz -—1 to
20/1 at the critical coverage, and close to T, where
C/%k~=8. The surface area of the sample was deter-
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FIG. 3. Specific heat for He/graphite foam. Coverages in
A are (a) 0.0491, (b) 0.0573, (c) 0.0594, and (d) 0.0616.

gg 6

4

0
2.4 2.6 2.8 3.0 3.2

temperature (K)

FIG. 5. Specific heat for He/graphite foam at and below the
critical density n, =0.0637 A

The specific-heat data divide into two regimes. Below
n =0.039 A a single peak in the specific heat occurs.
The peak shifts to higher temperature with increasing
coverage, Fig. 2. All of these peaks have temperature
widths similar to those found at comparable density in
He/Grafoil. At higher coverage, 0.039 A & n &0.063A, a rounded anomaly at T&1.3 K and a higher-

temperature peak appear, Fig. 3. The low-temperature
anomaly decreases in amplitude and shifts slowly to lower
temperature, Fig. 4, while the high-temperature peaks in-
crease rapidly in magnitude and temperature as the densi-
ty increases towards n„Fig. 5. The temperature width of
the anomalies shown in Fig. 4 remains constant at about
T (full width at half maximum) =0.4 K.
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mined by locating the critical coverage (n, =0.06367
A 2) using the standard method involving the specific-
heat peak maxima. ' The sample area is found to be
101.4 m with a specific area of 24.6 m. /g, somewhat
smaller than values reported for other graphite-foam sam-
ples 28, 29

III. RESULTS

IV. DISCUSSION
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The data presented in the previous section were used to
construct a tentative phase diagram based on identifying
the peaks with the crossing of phase-boundary lines, Fig.
6. The error bars, particularly in the low-temperature
boundary, represent the rounding of and the uncertainty
in determining the peak maxima. Two points are plotted
for n =0.0424 A [see Fig. 2(d)]. The flattening of the
peak top seems to be indicative of two superimposed
peaks. The interpretation of the phase diagram presented
in Fig. 6 is based on the belief that the phase transitions in
the He/graphite system are in the same universality class
of the 2D three-state Potts model.

Close to the critical coverage (n, ) the identification of
region II as the commensurate {~3X~3)830'phase is
supported by specific-heat data' ' and neutron scattering
data. ' The commensurate-fluid transition at n, is con-
tinuous. At lower density and low. enough temperatures,
it is expected that the long-range ordered commensurate
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FIG. 4. Specific heat for He/graphite foam at densities that
,show a low-temperature anomaly.
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FIG. 6. Location of heat-capacity peaks and broad
anomalies, and proposed phases and phase boundaries. ~

critical line; ———,two-phase line;, lines of constant
chemical potential p; values of p/kz are noted in the figure.
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phase will break up into two phases, a commensurate
phase and a low-density fluid (vapor) phase. The point in
the ( T,n) diagram where the continuum transition line
(critical line) meets the two-phase region boundary is a tri-
critical point (TCP). While it is impossible to locate accu-.
rately the TCP from our data, scaling places certain re-
strictions on the phase boundary at the TCP for the
three-state Potts model, namely, that the critical line
should approach the two-phase boundary tangentially and
that (dT/dn)„=0 at the TCP. We have sketched in
Fig. 7 the three possibilities consistent with this require-
ment.

In addition, the tricritical exponents of certain thermo-
dynamic functions are specified by the three-state Potts
model. The density difference between the two coexisting
phases for T & T~cp should vary like

CPzycp

(b) (c)

~gC+EQ

FIG. 7. Three possible T-n phase diagrams consistent with
the 2D three-state Potts model. C, commensurate; F, fluid; CP,
critical point; TCP, tricritical point.

bn —/t
f

where ~ = ( T TTcp ) /+T—cP ~ The three-state Pot ts
lattice-gas value for pr is —,'. The property which we
measure directly is the constant-density specific heat
which should scale like

(, (3n (2)

at n =nycp corresponding to a negative tricritical ex-
ponent, az. ————', . The constant-density specific heat
given by (2) does not diverge (it will go to a constant value
as r~0) and has a finite first derivative which indicates a
rounded rather than cusp-shaped peak. Thus, unless the
amplitude of the singular (temperature-dependent) part is
large, the specific-heat signature of the TCP will be very
hard to observe.

The observed signal in our measurement qualitatively
agrees with the expectations above. As the density ap-
proaches n=0.039 A from below, the specific-heat
peaks become wider and of smaller magnitude until at
that density one has the roundest and smallest peak. Thus
our measurements point toward the TCP being in the vi-
cinity of n =0.039 A and T= 1.3 K and the phase dia-
gram being like Fig. 7(c), rather than along the boundary
between regions II and III shown in Fig. 6. In fairness,
there are not enough different density runs to locate a pos-
sible inflection point along the II-III boundary [as in Fig.
7(b)], but the present specific-heat data substantially limit
the amplitude of the inflection. Note that the third possi-
bility that the TCP is located at n, and T, =3.95 K [as in
Fig. 7(a)], where (dT/dn )„=0is not realistic because of

the strong divergence of the specific heat at that density
which reflects critical rather than tricritical behavior.

A potential problem with our interpretation is whether
or not the low-temperature rounded anomalies for
n ~0.04 A actually represent the crossing of a phase
boundary. Butler et al. pointed out that in a two-phase
region, a rounded peak in the heat capacity can be due to
a rapidly changing phase-boundary slope. Subsequent ex-
perimental measurements by Migone et al. ' confirmed
this idea for N2 adsorbed on graphite. However, an im
portant restriction of the model of, Butler et al. is that the
resultant peak temperature must be greater than or equal
to the temperature where the phase-boundary slope
changes rapidly. Figure 4 shows that the peak tempera-
ture shifts to lower temperature as coverage is increased.
Therefore the peaks are not caused by the phase-boundary
mechanism and can be i.nterpreted as actual phase-
boundary anomalies rounded out by heterogeneities (see
discussion below).

If the TCP is in the vicinity of n -=0.039 A and
T-=1.3 K, a value of pr ——0.4+0.2, consistent with the .

theoretical predictions, can be obtained from the data.
The large uncertainty in pz comes from a reduced tem-
perature range of only 0.05 ~

~

t
~

& 0.25 and the large un-
certainties in the location of the TCP and the phase boun-

~ dary.
The other phenomenon probed in this experiment is the

behavior of the specific heat along the critical line (the
phase boundary between regions II and III of Fig. 6). At
the critical coverage n„specific-heat experiments of He
adsorbed on different exfoliated graphite substrates have
yielded values of a close to the exact value for the 2D
three-state Potts model of —,'. As the density decreases
from n„ the phase boundary moves to lower tempera-
tures, and the specific-heat peak associated with the
order-disorder transition decreases in magnitude. This
has been observed in all previous experiments along the
critical line and in the theoretical calculation of Ref. 15.
We believe that the behavior of the measured specific heat
is due to the fact that the measurements are being done at
constant density and not at constant chemica1 potential.
The registered phase exists over a range of densities be-
cause vacancies can exist without destroying the order of
the phase. Since vacancies are irrelevant with respect to
the critical behavior of the registered phase, the specific-
heat divergence should be characterized by the same value
of a along the critical line. ' However, for a constant-
density path the critical exponent u is renormalized to
a~ ———a/(I —a) [except where (dT/dn)„, the slope of
the critical line, is zero]. For the three-state Potts model
then az ————,'. This means that C„—

~

t [
=

~

t
~

'~

will have a finite cusp singularity rather than the
~

t
~

=
~

t
~

' divergence of C&. This effect (called
Fisher renormalization) was first proposed independently
on the basis of thermodynamic considerations by Fisher
and by Lipa and Buckingham. Numencal calculations
on three-dimensional (3D) Ising-type models have been
performed by Fisher and Scesney and by Riedel and
Wegner. " Results of the calculations show that for

~

r
~

values larger than a "crossover" temperature region Cz
and C„have similar temperature dependences, while for
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~
t

~

smaller than the crossover temperature region, C„
behaves like the renormalized specific heat. The crossover
reduced temperature ( t„) density dependence can be
crudely estimated to behave, for small x =(n —n, /n, ),
like t„-x' near n, . So the renormalized region goes to
0 as x goes to 0. For the 3D Ising models the fully renor-
malized region is not observed until very small values of

~

t
~

(=—10 ) are reached. ' The larger value of a for
the 20 three-state Potts system may lead to a larger range
of

~

t
~

where the fully renormalized behavior is observed.
In the following discussion we present experimental evi-
dence that the temperature dependence of the measured
C„ is consistent with the expectations from critical ex-
ponent renormalization.

In Fig. 8 the specific-heat peaks for densities close to n,
are plotted on a single scale of reduced temperature. We
use as T, for each density the temperature of the peak
determining the phase boundary. In Fig. 8 are traces of
the data shown as a succession of peaks in Fig. 5. The
most important observation in Fig. 8 is that for large
enough

~

t ~, all runs at n & n, fall exactly on top of each
other. %',hile the exact superposition is probably a coin-
cidence we can use this fact to establish that in the range
where C„=C„ the constant-density specific heat has the

C

same reduced temperature behavior as the critical specific
heat at the highest T, in the phase boundary. Since this
last one has been fitted by a:——, and should not be renor-
malized, we conclude that in the region of superposition
a(constant n)=a(constant p). This region of superposi-
tion is shown in Fig. 9 between the dashed and dotted
lines on each side of the phase boundary. The dotted line
represents a range of

~

t
~

=0.12 to each side of the criti-
cal line. This is the range fitted by cx=- —, in Bretz and
Tejwani et al. measurements at n, . For

~

t
~

smaller
than the region of superposition, the specific-heat magni-
tude is smaller the larger the deviation of n from n,
(larger x). This is the correct direction for going into re-
normalized behavior. Unfortunately the experimental sys-
tem is not "perfect" in that rounding of the specific heat
occurs even at n, for the largest specific-heat peak. This
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FIG. 9. The phase boundary near n, and T„showing the re-
gions where rounding, Fisher renormalization, and superposi-
tion (see text and Fig. 8) of the specific heat take place. The bar
at n, corresponds to the interval in

~
t

~
where a=—3 in Ref. 9.

Lines of constant p/k~ calculated as described in text are indi-
cated.

I I
l

I

p n = 0.0594A
p. = I39.6 K

rounding is due to heterogeneities (see below). The succes-
sive peaks along the critical line also show rounding at in-
creasing values of

~

t
~

as x increases. The inflection
point on the specific-heat peaks has been thken as indica-
tive of the rounding, and they delineate the heavy dashed
lines of Fig. 9. The region between the two dashed lines
on each side of the critical line should fall (at least) in the
crossover region and data taken there could serve for com-
parison to theoretical models of crossover phenomena. If
this is the case, an evaluation of C&.within that region
should give a diverging specific heat rather than the
rounded C„peaks observed. We have done a semiquanti-
tative calculation with results shown in Fig. 10. It is obvi-
ous that one recovers a specific-heat peak of approximate-
ly the same peak height as the one found at n„while the
peak of C„ is only —,

' the magnitude. The calculation was

Cl

4
C3

ttitlttitl
0.2-0.5 -0,2 -0.I 0 O. I

(T-T,)r T,

FICx. 8. The specific heat at and near n, plotted as a function
of reduced temperature. For each density, T, has been taken as
the temperature of the maximum specific heat. For clarity, ex-
perimental points are not plotted. Notice that the run taken
with n & n, does not fall on top of the runs with n & n, .

2
QO ~

2.5 3.0
temperature (K)

FIG. 10. Experimental C„and calculated C„ for constant-
density and constant-chemical-potential paths that cross the
critical line at T =2.80 K.
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FIG. 11. Entropy-density (constant-T) lines for He/graphite
in our calorimeter. The constant-density and constant-
chemical-potential paths shown are the ones along which the
measured and calculated specific heats of Fig. 9 were obtained.

done by using a thermodynamic procedure described by
Elgin and Goodstein and Elgin, as follows.

We calculated the chemical potential from our
specific-heat data by numerical integration of (dS/dX)z.

(dIJ—, /d T)~. First we constructed an entropy-
temperature-density table by integration of C„/T" from
T =0. Our C„data were extrapolated to T =0 K by us-
ing the same temperature dependence of C„ found by
Hickerriell et al. who, using a Grafoil cell, obtained data
at a few coverages to much lower temperature than that
of this study. The temperature dependence well below the
peaks was approximately T . This procedure gave slight
irregularities (maximum S%%uo) in the density dependence of
the entropy at 3.5 K, our top temperature of integration,
which we averaged by drawing a smooth curve through
the 3.5-K results. Using the smoother 3.5-K entropies as
reference we constructed entropy-density isotherms, por-
tions of which are shown in Fig. 11. Given the rather
spaced coverages we had measured and the entropy
averaging above, we did not draw isotherms any closer
than 0.04 K (or 0.014 for

~

t
~

). From a digitized version
of a graph such as Fig. 11 we numerically calculated p
from 3.5 K down. We used for p(3.5 K) values calculated
for He/Grafoil by Elgin in Ref. 23. These values are not
exactly the same as for our foam substrate since substrate
effects are included in p, but although the magnitude of p,

may vary slightly, its density dependence at 3.5 K should
be close to the one of Grafoil, particularly over the limited
range of densities used here.

From the calculated p-T(constant n) table, paths of

constant p were determined. Three of these paths are
shown in Fig. 9; the p/kz ———139.60 K line is also shown
in Fig. 11. It is along this path that the C„ofFig. 10 has
been calculated. One can see that the constant path ap-
proaches the critical line with a slope closer to the entropy
isotherm slopes than the constant-n path with about the
same critical temperature. This leads to a higher C„ than
C„, and in fact if the constant-p path came exactly paral-
lel (in an ideal system) to S(T, ), C„would diverge to in-
finity.

The following qualitative argument also accounts for
the change in peak amplitude (decrease) with increasing x.
In the crossover region, the heat-capacity behavior will

change from A ~t~ +B to D —6~t~ ". A, B, D,
and G are nonsingular functions of T, being approximate-
ly constant very near the critical temperature. D deter-
mines the maximum height of the renormalized heat
capacity. If we approximate that at crossover t =t„and
At,„' +B=D Gt,', —, since t„-x'~ =x for small x
and A and B are essentially independent of x as shown in
Fig. 8, we obtain D-1/x. This dependence is semiquan-
titatively followed by the peaks amplitude, except ex-
tremely close to n, (the peak at the perfect commensurate
density is finite, not infinite). It cannot be verified accu-
rately because of the approximations made in the theoreti-
cal estimate and the experimentally rounded (rather than
cusped) specific heat.

Given the approximations made on calculating Cz, we
have not attempted to calculate a for the C& of Fig. 10.
A more detailed and extensive set of data, including an
accurate reference chemical potential, is necessary for
such an analysis. We are now attempting to obtain such a
set of data.

We also produced an entropy-density course set of iso-
therms around the TCP. Constant-p paths were deter-
mined as described above, but in this case we used Elgin s
3.0-K chemical-potential table for the reference p. Elgin's
table at this temperature is considerably coarser than the
detailed 3.5-K data used for the critical-line study. In ad-
dition, p varies very weakly with temperature at these
densities, so tracking the constant-p, line is very difficult
and results are only qualitatively correct. Figure 12 shows
the result of this calculation as ( S/Nk)-versus-
n(constant T) plots. We included in Fig. 6.the two con-
stant p/k~ lines (—142.3 and —144.0 K) of Fig. 12. The
most interesting conclusion to be drawn from these lines
of constant p is that they will again lead to strongly
diverging constant-p, specific heats. This is particularly
revealing since at the TCP C~ does not diverge [see Eq.
(2)], but for the 2D three-state Potts system, C& should
diverge with n= —,', a very strong divergence. This ap-
pears to be the case for our system. Unfortunately no
quantitative calculations can be done without a very accu-
rate and fine grid set of heat-capacity and vapor-pressure
measurements to construct a good entropy-density-
temperature table and obtain p(T). In addition, hetero-
geneities may be much more important at the TCP judg-
ing by the width of the first-order peaks at the two-phase
boundary.

Heterogeneities plague all of the surface experiments
done on systems such as the one of this study. Although
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tain a temperature width of 0.3 K, in agreement -with
Novaco's calculation and with the experimental data. Al-
though the low-density peaks of the graphite-foam data
are 15% to 20% greater in magnitude than the Grafoil
peaks at comparable densities and the domain size is at
least several times larger for graphite foam, ' the tem-
perature rounding is virtually identical. This implies that
variations in substrate binding energy, as opposed to a
finite-size mechanism, dominate the rounding of the low-
temperature specific-heat peaks and that the energy varia-
tion for graphite foam and Grafoil are about the same.

Along the critical line, on the other hand, the tempera-
ture rounding, as measured by the inflection points of the
peak, decreases with increasing density. Estimates of the
rounding due to binding energy variations using Eq. (3)
and our own chemical-potential data, are at 1east a factor
of three smaller than the experimental widths in regions
of high slope in the phase boundary, and even smaller
closer to n, . Also the specific-heat peak maxima at n,
vary by 50% to 100% for different graphite substrates,
while the low-density peaks (and the high-density melting
peaks of Ref. 28 measured on a similar substrate) only
vary by 15% to 20%. This suggests that along the criti-
cal line finite size is the important mechanism for peak
rounding.

FIG. 12. Entropy-density (constant- T) lines for He/graphite
in our calorimeter. Diagram shows the critical line (——) and
two phase region boundaries ( ———}, as well as two qualita-
tive constant-chemical-potential paths. The one at p/k&= —144.0 K approximately corresponds to a line across the
TCP.

5T=- n Kz-5e,
8T

(3)

where dT/dn is the phase-boundary slope, Kz is the iso-
thermal compressibility of the condensed phase, and 6e is
the variation in substrate binding energy. We obtained
ECz- from Elgin and Goodstein's thermodynamic analysis
of He/Grafoil. The variation in substrate binding for
He/foam is taken to be 5e =0.1 K from Ref. 15. Redis-

tribution effects' ' will increase the rounding over the
estimate given by Eq. (3) by about a factor of 3. We ob-

estimates of the effect of substrate energy variations and
finite size have been included in several previous publica-
tions (Novaco, ' for example, calculated the effects of
variations in substrate binding energy for a simple ther-
modynamic model of He and found quantitative agree-
ment with Grafoil experimental data), a detailed study of
their effect on various phases and types of measurements
dates to recent efforts of Dash and Puff, and Ecke,
Dash, and Puff' who laid the foundation for a theoretical
understanding of the problem and proceeded to calculate a
model van der Waals system with certain types of hetero-
geneities. More recently, Ecke and Dash studied experi-
mentally the systems Xe/graphite and He/graphite using
a foam substrate like the one used in this experiment. On
the basis of this last study we have estimated the expected
temperature widths for the low-density peaks (n & nycp).
The temperature width is given approximately by

V. SUMMARY

We have found specific-heat peaks which delineate the
two-phase coexistence region and ihe lower boundary of
the registered-phase region of He adsorbed on graphite.
We tentatively locate the tricritical point at nycp =0.039
A and Tzcp -=1.3 K although the possibility of a nar-
row coexistence region with a tricritical point at some-
what higher temperature and density is also consistent
with the experimental data. In the vicinity of the critical
coverage, we observe specific-heat peaks which seem to
show evidence of Fisher renormalization. Specifically, a
reconstructed constant-chemical-potential specific-heat
peak at n =0.0593 A is very similar in height and
shape to the specific heat at the exactly commensurate
density. We identify regions where respectively critical,
renormalization, and finite-size behavior dominate the
specific heat.
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