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Dynamic correlations in the three-dimensional Ising model
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We have used Monte Carlo simulation to measure the equilibrium correlation times for finite-
sized Ising lattices at the bulk critical temperature. The measured value of the dynamic critical ex-

ponent z is 1.99+0.02.

We have measured the equilibrium correlation times for
the magnetization, energy, and magnetization squared in a
Monte Carlo simulation of the three-dimensional Ising
model. Our interest in these measurements is to explore
the dynamics of this model, and in particular to measure
the dynamical exponent z which describes the dependence
of correlation time on correlation length.

To control the correlation length we use the idea of
finite-size scaling!? in its crudest form. The idea is that
in a finite-size system the correlation length is limited by
the size of the system, and if we simulate finite-sized lat-
tices at the critical temperature of the bulk system we will
see behavior corresponding to a correlation length propor-
tional to the lattice size. The extension of this idea to
dynamic critical phenomena was made by Suzuki,” and
basically states that the time scale for a finite lattice is the
time scale for a bulk system with correlation length pro-
portional to L.

The dynamics in this model is defined by our Monte
Carlo updating method. To be specific, we are doing a
“heat-bath” Monte Carlo updating of the Ising spins,
moving sequentially along the rows of the lattices. Actu-
ally, we have sixteen “updating machines” spread out
through the lattice, each moving along rows. Our lattices
have skewed boundary conditions, so when an updating
machine goes off the end of one row in the x direction it
begins immediately on the row displaced by one in the y
direction. This particular choice of updating algorithm is
dictated by the hardwired logic in the special purpose pro-
cessor used for the simulations.* The measured correla-
tion times will depend on the updating algorithm and
hence cannot be directly compared to other Monte Carlo
measurements using different updating algorithms.>’
However, we expect the dynamical exponent to be univer-
sal and hence independent of the updating algorithm.
Henceforth, when we speak of time we mean the number
of Monte Carlo sweeps using this particular algorithm.

To measure the dynamical exponent we make measure-
ments of the correlation times on different size lattices at
the bulk critical temperature. We use the critical tem-
perature obtained in our earlier study of the static proper-
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_ ties of the Ising model,

K.=1/T,=0.221650+0.000 005

(Ref. 8). We do expect the correlation times to be sensi-
tive to errors in our estimate of K,. For this reason we
have not used the largest lattices possible in our machine,
instead reserving them for determining K.. To check on
the sensitivity of our results to errors in the determination
of K, we made some measurements on a 64° lattice at
K=0.221660. (We expect the dependence on K to in-
crease rapidly with size, so it suffices to check only the
largest lattice used.) In Ref. 7 we found that corrections
to finite-size scaling behavior are small for lattices larger
than 243, so we have used 24 40 and 64° lattices in this
work.
The quantity we study is the autocorrelation function

_ (0(0)0(1)) —(Q(0))?
Co="0%0)) —(0(0))? M

where Q is some measurable quantity and ¢ is the time
separating two measurements. In our measurements we
measured Cy(#) by taking blocks of 10000 measurements.
Each of these measurements was separated by 250 sweeps
in the cases of the 40° and 643 lattices, and by 100 sweeps
in the case of the 24° lattices. Thus each block contained
2500000 or 1000000 sweeps, depending on lattice size.
Before each block of measurements we made 100000
warmup sweeps to bring the lattice to equilibrium. The
experimental data consisted of 143 such blocks of 64°
data, 87 blocks of 40° data, and 246 blocks of 24> data. In
addition there were 43 blocks of 64 data taken at
K=0.22166. Within each block we then approximated
C(t) by

Cj=——1——— “I—.NE—jQiQi+j
D\D, |N—j /=
1 N—j N
W2 0 iz%l Q; )
where
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In this expression t is 250X or 100X j depending on the
lattice size. This somewhat forbidding expression has a
simple interpretation: Let the vector 7; be the first N-j
elements of the N consecutive measurements and let 7, be
the last N-j measurements. Subtract the average of the
elements of 7, from each element of 7, and similarly for
D,. Then normalize each vector, and take the dot prod—
uct, or the cosine of the angle between them. Thus C; is
kinematically restricted to lie between —1 and 1.

Although the data blocks are many correlation times
long, there is a small but systematic error introduced be-
cause the (Q(0)) subtracted in Eq. (1) should be the true
expectation value, rather than the average of our sample
of data. In the case of the magnetization correlations this
is not a problem because we know the expectation value of
the magnetization exactly—it is zero on a finite lattice.
(We, of course, check that the sample average is consistent
with zero.) If we had used the sample mean for each
block rather than zero for the expectation value of the
magnetization, we would have measured a magnetization
correlation time 1% too small for the 64° lattice. Since
the energy and magnetization squared correlation times
are about 0.15 times the magnetization correlation time
while the runs contain the same number of sweeps, the
systematic error will be much smaller for these measure-
ments.

We measured the autocorrelation functions for the total
magnetization of the finite-sized lattice, the total energy
of the lattice, and the square of the total magnetization.
The magnetization autocorrelation function C(z) for the
643 lattice is shown in Fig. 1, and the energy and magneti-
zation squared autocorrelation functions are displayed in
Fig. 2. The error bars represent estimates of the error on
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FIG. 1. Magnetization autocorrelation function on a 643 lat-

tice at the bulk critical temperature. The y axis is logarithmic.
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FIG. 2. Energy autocorrelation function (crosses) and the
magnetization squared autocorrelation function (octagons) on
the 64> lattice. The magnetization autocorrelation function is
also shown (squares) to emphasize its different decay rate.

each single point. The different points are not statistically
independent; in fact, their correlation is almost unity.
Therefore the points lie on a much smoother curve than
would be expected from the size of the statistical errors.

We expect that for asymptotically large times these
correlation functions will fall off as

C(t)=de™ T, » @

where the correlation time 7 is 1/IT". It can be seen from
Figs. 1 and 2 that this is a good approximation. To ex-
tract the rate I' we measure the logarithmic derivative of
the correlation functions; that is, if we look at two times
t; and ¢,,

_ In[C(t,)]—In[C ()]

(5)
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FIG. 3. Decay rate for the 64° autocorrelation function, com-
puted as described in the text using Az =250.
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FIG. 4. Same decay rate, using At =500 (crosses), At =1000
(octagons), and At =2000 (squares). Note the near independence
of the sizes of the error bars on At.

In Fig. 3 we show the T extracted from the magnetization
autocorrelation function on a 64° lattice. In this case we
used the difference between successive measurements, or
t{—1t,=250 sweeps. The decay time measured in this
way clearly has large corrections for small time, then lev-
els off, then becomes lost in statistical errors for very
large time. We must therefore estimate I' from the por-
tion of the figure where the measurements appear to have
leveled off but the errors are not yet large.

The error bars in Fig. 3 were obtained by the following
procedure. Take the 143 measurements of the correlation
(recall that each of these measurements covered 2 500000
sweeps) and average them in groups of 10 or 11 blocks,
thus producing 14 partial averages. Then extract I' from
each partial average, and use the standard deviation of the
mean of this set as the error estimate. The values of T it-
self were obtained by averaging all the correlation mea-
surements for each time and then extracting I from this
grand average.

It might be expected that the statistical fluctuations in
the measurements of I' are large because I' involves a
small difference between C(¢;) and C(z,), and that the
statistical error could be reduced by taking #, —#; larger.
Empirically this proves not to be true. If the fluctuations
in the decay rate were uncorrelated from one 250 sweep
time step to the next, doubling the size of Az would cut
the statistical error on I' by a factor of 2. In fact the sta-

Lattice size

FIG. 5. Magnetization decay rates for the 24°, 40%, and 64°
lattices, together with the least-squares fit. The error bars are
visible inside the octagons marking each point. '

tistical error obtained by using A¢=500, 1000, or 2000 are
almost the same as the errors obtained by using Ar=250,
as can be seen in Fig. 4. This tells us that the evolution of
the magnetization in one 250 sweep interval is correlated
with the evolution in the next 250 sweep interval in the
sense that if the magnetization changes rapidly in one in-
terval it is likely to change rapidly in the next, while if it
is almost steady in one interval it is likely to be steady in
the next. In other words we suppose that the time history
of an individual lattice is characterized by periods when
the magnetization is almost constant separated by periods
when the magnetization evolves relatively rapidly. The
above periods would have to be long compared to 250
sweeps. We do not have any direct evidence for this pic-
ture, only the unexpected behavior of the statistics of our
correlation measurements. Unfortunately, this results in
measurements of the correlation time that are not nearly
as accurate as we had hoped.

To estimate ' from Fig. 3 we observe that the rate ap-
pears to have leveled off around ¢=3000. We therefore
choose the value for ' using #;=2000 and #,=5000,
which is T, =1.476X107%49.6 X 10~7. The error esti-
mate here comes from the previously described procedure
of making several estimates of the decay rate from subsets
of the sample and taking the standard deviation of the
mean of these estimates. Similar estimates were made for
the energy and squared magnetization, and for the other
lattice sizes. These estimates are tabulated in Table I.

TABLE 1. Autocorrelation decay rates.

Size Ciag Fenergy Fmag2
24 0.001039 +0.000017 0.007 13 +0.00020 0.007 15 £0.00011
40 0.000 374 1+0.000007 6 0.002 590+0.000 044 0.002436+0.000015
64 0.000 147 6+0.000001 0 0.000921+0.000 030 0.000 920+0.000 020
64 0.000 144 7+0.000001 2 (at K=0.221166)
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The two ‘“‘even operators,” energy and squared magnetiza-
tion, have the same correlation times, which are about
0.15 times the correlation time for the “odd” magnetiza-
tion.

The dynamic critical exponent z is defined by r=C¢&?,
where £ is the correlation length. At the critical tempera-
ture we expect that the effective & which controls the
physics should be proportional to the lattice size. There-
fore z can be estimated by the slope in a fit of
In(T")=const—z In(L). If we make a least-squares fit of
this form to the magnetization decay rates for the three
lattice sizes, we find z=1.99+0.02, and since the other
decay rates are proportional to the magnetization decay
rate the same exponent applies. This critical exponent is
lower than the Monte Carlo estimates in Ref. 5, z=2.08,
and Ref. 6, z=2.11£0.03, but is closer to.an earlier esti-
mate from € expansions,” z=2.02. The three data points
for the magnetization decay rate, together with the fitted
form, are shown in Fig. 5. It can be seen that the fit is
very good, with a X2 of 0.05 for one degree of freedom.
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The sensitivity of this exponent to the value of K, can be
estimated by recomputing the fit using the decay rate
measured at K=0.221660 on the 64° lattice. This gives
an overestimate of the effect, since the 24° and 40° decay
rates would also decrease, although to a lesser extent. If
we were to use this value for the 64° decay rate, the fit for
z would be 2.01£0.02. Recall that our earlier measure-
ment of K, was 0.221 650+0.000005. A recent estimate
from  high-temperature series is K, =0.221655
+0.000005,!° while another Monte Carlo study gave
K, =0.221654+0.000006.!!
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