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Dipolar spin-wave modes of a ferromagnetic multilayer with alternating directions
of magnetization

K. Mika and F. Grunberg
Institut fiir Festkorperforschung, Kernforschungsanlage Julich GmbH, D 5170-Julich, West Germany

(Received 22 October 1984)

The spin-wave spectrum of a ferromagnetic multilayer with alternating directions of magnetiza-
tion is derived in the dipolar magnetostatic limit. The external magnetic field is set equal to zero
and the magnetization is assumed to be in-plane but reversed in adjacent films. We find interesting
qualitative differences for an even and an odd number X of single layers which constitute the mul-

tilayer. The solutions can be classified as bulklike or surfacelike with respect to the whole 'mul-

tilayer. As N ~ oo the bulklike solutions form bands. We also discuss some symmetry aspects of
these solutions.

I. INTRODUCTION

Mode spectra of ferromagnetic multilayers have recent-
ly become of increased interest both in basic research'
and also for application in microwave devices. 5 It appears
that the spectrum of coupled multilayer modes is the only
true collective magnetic phenomenon of multilayers. All
other features which have been found up to now can be
explained in terms of modified single-film properties.
From the application point of view, having a multilayer
instead of a single film obviously offers more degrees of
freedom for tailoring special properties. Another way to
do this, for example, is combining the magnetic layer in
some way with a nonmagnetic metallic layer which has a
strong effect on the electric fields associated with these
modes. On the other hand, when using a multilayer, vari-
ation of the number of layers or their thickness does not
yet exhaust the number of possibilities. One could consid-
er, for example, choosing different magnetizations for dif-
ferent films composing a multilayer or in particular hav-
ing the direction of the magnetization reversed in adjacent
films. With this possibility in mind we have found it
worthwhile to extend previous work on ferromagnetic
multilayers with parallel magnetization to the case of
antiparallel alignment between neighboring films. We call
this in the following an "antiparallel multilayer" (APML)
(see Fig. 1).

Another motivation for us to look into this problem
was given by some aspects of spatial symmetry which
should have an effect on the kind of solutions one obtains.
As will be seen, these aspects are of more interest in the
case of the antiparallel multilayer as compared to the
parallel one. In particular there is an important difference
whether the multilayer contains an even or an odd number
of single layers. These symmetries exist only in zero
external magnetic field Bo. If one would like to investi-
gate such a system experimentally, Bo equal to zero or at
least small Bo would also be necessary because otherwise
the films would align all parallel to the external field.
The antiparallel alignment could for example be achieved
by fabrication of a multilayer with films of alternating
coercive forces. This is possible by choosing the proper

evaporation conditions. The situation would be particu-
larly clear if we had rectangular hysteresis curves on all
films. Suppose now the multilayer consists of one set of
films with a large coercive force interpenetrated by anoth-
er set with a smaller one. If we saturate all films in due
direction with a large enough field and then scan the field
through zero up to the smaller coercive field in the oppo-
site direction, the corresponding set of films would reverse
its magnetization whereas the other set would stay in the
initial state. The result would be an AFML. If the hys-
teresis curves are rectangular, this situation will not
change by now reducing the external field to zero. This is
the situation for which we want to derive in the following
the mode spectrum. As in Ref. 2 we restrict ourselves to
transverse propagation of the modes, along the y axis in
Fig. 1.

Another way of getting an APML of course would be
by having a negative exchange interaction of the fer-
romagnetic films across the interlayers. For positive ex-

N magnetic layers

FIG. 1. Antiparallel multilayer. There are 1V {here N =7)
magnetic layers of thickness d separated by a distance do. We
assume infinite extent in the y, +z directions. External field is
zero. Direction of the magnetization J is alternating.
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change this has recently been investigated experimentally,
although the origin of the effect is still somewhat unclear.
Neither positive nor negative interlayer exchange has so
far been discussed theoretically and we will not discuss
this either. Here as mentioned the APMI. is thought to
exist due to particular hysteresis effects. We will discuss
the inclusion of a negative interlayer exchange and the re-
lation between an APML and an antiferromagnet (AF)
briefly in the final section.

II. MODE FREQUENCIES

Apart from now having the antiparallel alignment, the
procedure of setting up the equations for the mathemati-
cal treatment of our problem is exactly the same as in
Ref. 2 for the parallel multilayer. Since we want to use
the same abbreviations it is not necessary to repeat them
here.

From the equations (2.2)—(2.5) of Ref. 2, which were
derived for the parallel case, we obtain those for the anti-
parallel case in the following way. First, since the ex-
ternal field is now supposed to be zero, the quantity ~ by
definition is also zero. Second, in the prefactors of the
coefficients gI, hI we have to replace v by —v when gI, hI
belongs to a film with reversed magnetization.

The system of 2N —2 Eqs. (2.2) of Ref. 2 can then be
put into the following form:

m 1g2l —1 +m 2 h 21 —1 +m 3g 2l +m 4h 21 0,
m sg21 —) +m 6h 21 —) +m 7g 21 +m ()h 21

(2.1)
m 1g2l+ m2h2l+ m 3g2l+1+ m4h 2l+1

m 5g2l+ m 6h 2l+. m 7g2l+1+ m 8h 2l+1 ——0,
for 1=1, . . . , L. This system ends with the first two
equations if N =2L, and with the second pair of equa-
tions if N =2L + 1, and N is defined in Fig. 1. Here

m (
——(1+)(,)e"", m2 ——1,

[1—( —1) A, ]e"g)v+h)v ——0, (2.3b)

M1X =XM2X, (2.4)

where M),M2 are independent of A, . This is therefore a
generalized eigenvalue problem and the A,„are the eigen-
values of M2 'M).

For later purposes it is more convenient to modify the
system (2.1) slightly by multiplying the second and fourth
equation by exp( —kdo). We then have m s

——m4,
m6 —m3 m7 —m2 m8 ——m (, and (2.1) becomes

A v2l 1+Bv2l ——0,
Cv 2l+Dv 2l+1

——0,
with

(1+I(, )e "d

k(d —do)
e

1

(1—A, )e

(1-A,)
-kdo k(d-do)

1 (1+)(,)e"

(1—A. )e" 1

k(d —do)
( ~

—kd()

( 1 ~) kdo k(d d())

1 (1—A, )e""

(2.5)

(2.6)

and UI equals the transpose of (gI, hI ).
We want to solve the system (2.5) recursively. We in-

troduce the matrix

E=D 'CB 'A (2.7)

and obtain

which correspond to Eq. (2.4) of Ref. 2.
Equations (2.1) and (2.3) form a homogeneous system

Mx =0 with nontrivial solutions x, if the determinant of
M vanishes, which then determines It.. Since A, enters
linearly into the elements mII of M, we can also write

kdo k (d do)
m3 ——(1—A, )e ', m4 ——e

(2.2) or
U2l+1 =EU21 1 (2.8)

kdm5 ——e m6 ——1 —k,
kdo k(d +do)

m7 ——e, m() ——(I+A)e
I. 1U2l+1=E U1 .

The corresponding expression for v2l+2 is

(2.9)

g(+(1—A, )e h (
——0, (2.3a)

and m;(A, ) =mI( —A, ), i = 1, . . . , 8, where we have set
A, =2/v.

We complete this set of equations for the 2N coeffi-
cients gl, hl by adding the two equations

U2l+2 ———B AE v
—1 l (2.10)

It is therefore obvious that the eigenvalues of E will be
important for the characterization of the modes )(,„,espe-
cially for large N.

The elements of E are

e» ——e ' +2k, [1—e —e ""+cosh(2kdo)]+A, [e +2(1—e " )+e ' —2cosh(2kdo)),
2k (do+ d) —2 2k (do+ d) 2kd 4 2k {do+d) 2kd —2k (do d)

(2.11a)

e)2 ——2A, 'I sinh[k(2do+d)]+sinh(kd) I
—2A, Isinh[k (2do+d)]+3 sinh(kd) J

—21(, (A, —1)[sinh[k(2do+d)] —2sinh(kd) —sinh[k(2do —d)] I,
e2)(A, ) = —e)2( —A, ),
e22(k) =e)) ( —k),

(2.11b)

(2.11c)

(2.11d)
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and the eigenvalues of E are

~+(~2 1)1/2

with

cx=pp+2A, pl+2K, po,

(2.12)

(2.13)

15-

po ——[cosh(2kd) —1][cosh(2kd0 ) —1],
@1=1 —cosh(2kd ) +cosh(2kdo )

—cosh[2k (do+ d)],
F2=cosh[2k ( do +d )]

(2.14)

1.0-

0.5

0

As in Ref. 2, we d1stinguish between the two cases where

pl and pq are complex or real.

A. Case 1

p1 and p2 are complex. This occurs for (real) values of
A, if

I
a

I
&1. From (2.12) follows that p1p2

——1. With

p2 p1 we c——an therefore write p1
——exp(ip), p2 ——exp( —ip),

where P is a function of iL. The values of iL are deter-
mined by Eq. (2.3b) which contains g11 and h~. Now

g&, b'av depend on p1 2 [see, e.g., Eq. (2.20) below]. Due to
the oscillatory behavior of p1 2, the solutions A,„ form
bands which become dense for N~ oo.

The band edges follow from the condition Ia I
=1,

which according to (2.13) leads to

& (, r)= I
—p1+ [F1—2PO(1u2+o)]

Pp+0

1.0
kgo

'I.5 2.0 2.5

FIG. 2. Modes A,„vs kdo for %=41 at kd=0. 5. Shown are
the two positive bands (dotted lines) and the band edges (full
lines). The mode between the bands is the surface mode.

case k~O, d~op always depends on the value of the
product k d. Physically this makes sense because neither
case k~0 nor d —+m can strictly be reached in reality.
Similarly for a multilayer %—+ oo cannot strictly be
reached and we would have to decide from the formulas
derived in this section what the actual frequencies would
be for some combination of a large N and a small d. The
interesting aspect here is that a large X is not necessarily
linked to a thick sample but can also be obtained by mak-
ing the single layers thin enough.

0~1 =+1 (2.15) B. Case 2

A,(+1,+1)=2 tanh(kd)+O(do),

A( —1, +1)=2—(kdo)coth(kd)+O(do),

(2.16c)

We thus obtain four bands with lower and upper band
edges A( —1,—1),A(+1, —1) for the lower positive band,
and A,(+1,+1),A,( —1,+1) for the upper positive band,
respectively.

For small do, the positive roots of (2.15) are

A( —1,—1)=kdo —(kdo) coth(kd)+O(d11), (2.16a)

A(+1, —1)=kdo —(kdo) coth(kd)+O(do), (2.16b)

pl and pz are real. Similarly as in Ref. 2, we represent
Eas

E=SRS (2.18)

Inserting (2.18) into (2.9) we obtain

where S=(e1,e2), e;, i =1,2, are the eigenvectors of E
and equal the transpose of (g;, ri; ), and

pl 0

0 (2.19)0 pp

and for do~oo we have

(o,r) =1—,e (2.17) with

1 I
U21+1 (12P1e1 —P2e2)

192 2 il
(2.20)

for all band edges. Figure 2 shows the positive eigen-
values A.„ together with the band edges as a function of do
for %=41. We observe a very narrow lower band, which
is a consequence of (2.16a), (2.16b), and (2.17).

The result (2.16d) for the upper band edge of the upper
positive band is quite remarkable because as it is now, it
means that there is a finite frequency for k =0 and
Bo——0. However, this is only true in the limit of X~ oo.
For finite N (and finite d) all frequencies would drop to
zero as k~O. This effect is similar to that which we
have for a surface mode on a single slab of thickness d as
given by Eq. (2.17). Here the frequency in the limiting

a =(ri2g, g2h, ), —

b =(ri1g1 —kh1)
(2.21)

apL,
V2L +1

41n2 —kn1
(2.22)

Since p& and pz are real and p~pz
——1, we always have

Ip1I &1, 0& Ip2I &1, where we choose the signs in
(2.12) such that Ip1I &

I p2I
If N=2L +1 is large such that (p2/p1) —=0, Eq. (2.20)

becomes
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This inserted into (2.3b) yields

[(&+A,)e~g, +g, ]a =0, (2.23)

which is fulfilled if either the quantity inside the brackets,
in the following denoted by [ ], equals 0 or a =0. In the

l

following we assume g;, rl; as in Ref. 2, i.e., g;= —e&2,
-p;, =12

(i) a =0. Using (2.3a) for g&, h~, (2.11) for e,J, and
(2.12) for p2 we obtain, after elimination of the square
root in p2, the cubic polynomial

[f(do+2d) f(—do)]k + [g (do+ 2d) —g (do)]k —[f(do+2d) 2f (d—o)+f (do —2d)]A

—[g (do +2d) —2g (do )+g (do —2d )]'=0 (2.24)

with f(z)=cosh(kz), g(z)=sinh(kz). Two of the three
real roots of (2.24) satisfy a =0 (the third satisfies b =0),
but only one is also contained in the spectrum of the A,„.
This is the mode which lies between the two positive
bands (see Fig. 2). For do ——0 it has the value

A, = —,
' coth(kd) I [1+8tanh (kd)]' —l I, (2.25)

which becomes zero for kd =0.
(ii) [ ]=0. We now obtain (2.24) with A, replaced by

—A, . This yields the mode which lies between the two
negative bands (see Sec. III B).

To complete case 2, we briefly discuss the modifications
for N =21.. According to (2.10) we multiply (2.22) with
B 'A. This yields new expressions for g& and h~, which
must be inserted into (2.3b). Again we end up with a con-
dition [algebraic expression]. a =0, but now both factors
lead to the same polynomial (2.24), in agreement with the
fact that the positive mode between the bands is twofold
degenerate for X even and large, only for smaller X,
where (p2/p&) is not negligible, the degeneracy is re-

I

moved (see Sec. III A).
A single layer is characterized by two surfaces and

hence two Damon-Eshbach (DE) surface modes. In an
X-fold layer this leads to a total number of 2% modes, in-
dependent of how strong they are coupled. Under the re-
strictions we have imposed here, we can therefore be sure
that we have found the comp1ete mode spectrum. Nega-
tive values of A, and hence of the mode frequency co are
associated with a reversal in the propagation direction.
This is due to the fact that in the exp[i(cot —ky)] term,
describing plane-wave propagation along the y axis, k is
always kept positive. Then a change in the sign of co just
means a reversal of the propagation direction. Here k is
always positive because otherwise the solutions in the
form in which they have been used to derive the set of
equations (2.1) (see Ref. 2) would diverge at infinity.
Hence keeping k positive, which yields +A, , is equivalent
to making A, always positive and choosing +k, where k
now has the same sign as A, previously. In the following
we use both versions as is appropriate.

III. SYMMETRIES IN N-LAYER SYSTEMS WITH EVEN AND ODD N

In this section we show that characteristic differences exist in systems with an even or odd number of layers. These
differences follow from certain symmetries inherent in the matrix M which describes the system.

A. Systems with an even number of layers

As an example we consider the case N =4. First we arrange Eqs. (2.3) and (2.5) such that (2.3a) is the first, and (2.3b)
the last equation. The resulting matrix M then has the form

1

(I+X)e~
k(d —dQ)

e

(1—A, )e""

(1—A, )e

0
0

(1—A, )e

1

(1—g)e k"
k(d —dQ)

e

0
0
0

0
k(d —d0)

e

(1+A, )e""

1

(1+A, )e

0
0
0

0

0
(1+A, )e

1

(1+A,)e"
k(d —dQ)

e

0
k(d —dQ)

e

g)e kd

1

(1—A, )e

0

0

0
(1—A, )e

1

(1—A, )e"

0

0
'("—dQ)

e

(1+A, )e""
1

Thus the symmetry relation
1

~ij m2% —i +1,2% —j+1 (3.1)

holds, and this relation is generally valid, if N is even.
Let us for simplicity consider the case iV =2. The sym-

metry relation (3.1) then leads to a matrix

m11 m12 nl13 m14

~21 ~22 ~23 ~24

~24 m23 m22 ~21I 14 Pl ]3 Pl 12 f7111

(3 2)
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and the system Mx=O remains unchanged, if the first
and the last equation, and the second and the last but one,
are added to or subtracted from each other. We obtain

(m11+m14)(x1+x4)+(m)2+m)3)(x2+x3) =0,

(m21 —m24)(X1 —X4)+(m22 ™23)(X2—X3)
(3.3)

(i)
~

M
~
&0. From x—:0 we find x1 ——x4 and

x2 —x 3, The condition
~
M+

~

=0 determines X eigen-
Blues ~n

(ii)
~
M+

~
&0. From x+ =0 we find x) ———x4 and

x2 ———x3. The condition
~

M
~

=0 determines the
remaining X eigenvalues.

These results are readily generalized to arbitrary X =2L,
and the coefficients g(, h( satisfy

gl ~~ 2L —l + 1

hl ——og2L, l+), o.=+1, I =1, . . . , 2L . (3.4)

The two representations a=+1 and o= —1 correspond
to antisymmetric and symmetric mode patterns, respec-
tively (see below).

Figure 3(a) shows schematically the distribution of the

The system Mx =0 thus decomposes into two systems
M+x+ ——0 of size X, where M+x+ ——0 results from (3.3)
if the upper sign is taken, and M x =0 follows for the
lower sign.

The determinants of M+ and M will in general not
be zero simultaneously. We therefore distinguish two
cases.

1 8 (pg)

1 c) (n)
my —— Im

(3.6)

[See Eq. (1) of Ref. 7 with )r=O and v=2/A, .] In Fig. 4
we present some mode patterns according to (3.6) for
%=10.

Figures 4(a) and 4(b) show the mode patterns for the
largest eigenvalue of the upper and lower positive band,
respectively. We observe that the upper band patterns
form vortices of neighboring layers, whereas in the lower
band pairs of layers exhibit an "antivortex" structure.
Both patterns are antisymmetric with respect to the center
plane Figu. res 4(c) and (4d) show the mode patterns of
the surface modes, the antisymmetric one belonging to the
larger eigenvalue.

eigenvalues with respect to the different bands, if X is
even. This scheme even holds for L =1, i.e., the double
layer, which has been treated in Ref. 7, where also mode
patterns were shown. For this purpose the potential in-
side a magnetic layer is needed. The potential in the lth
layer for mode A,„ is given by

q(n) (
(n) + +I

h (n) + +1
)

ik—y (3.5)

where x and y are the coordinates introduced in Fig. 1,
and xl is the center of the Ith layer. The m-field patterns
follow from

//// / / ////////// / /2 ~/////////// / / / //2
rt

'(( )l
(F

/C

... a ., b

L

t

Ft

I} 1l

I

&jl

//(

. d---

Ptr v r/i /vr srgizigr/r r r r a r a i as r //

riser�/r

-2

(2} N =2L b} N =2L+1
.e. .

FIG. 3. Schematical distribution of the A,„, n =1, . . . , 2N, vs
do with respect to, and between, the bands. (a) N =2L; (b)
N =21.+ 1, for 1.=5.

FIG. 4. Mode patterns for N=10. Shown is the I field at
kd =0.5, kdo=1. 0 for the largest eigenvalue of the upper (a)
and the lower (b) positive band. Mode patterns of the surface
modes are shown in c /d, and for X = 1 1 in e /f.
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B. Systems with an odd number of layers

Here the simplest nontrivial case is N =3. Again we arrange Eqs. (2.3a) and (2.3b) as before and obtain the matrix

1

(1+k,)e
k(d —do)

0
0
0

(1—g)e k"

1

(1—A, )e

0

0
0

0

(1—A, )e

1

(1—g)e k~

k(d —do)e

0

0
k(d —do)

e

(1+A,)e
1

(1+A, )e
—kdo

0

0

0
(1+A, )e

1

(1+A, )e""

0

0
k(d —do)

(1—A, )e""
1

Now the symmetry relation

m 2N —' + 1, 2N —j+ I ( (3.7)

holds for all iV =21.+1.
The characteristic polynomial of this generalized eigen-

value problem is

P2N, (A, )=det[M(k)j . (3 8)

The determinant can be expanded into its cofactors by
starting either in the upper left or, in strictly reverse or-
der, in the lower right corner such that if

P2N(A, ) =f(m )((A, ), . . . , m;J(A, ), . . . ), (3.9)

then also

P2N(~) =f(mNN(~). , m2N

(3.10)

where the two explicitly written arguments assume the
same positions in the function f ( m», . . . , mNN ). Using
(3.7) we find that

P2N(A, ) =P2N( —A, ), (3.11)

i.e., if A,„ is an eigenvalue, then —A,„ is also an eigenvalue.
Figure 3(b) shows again the schematical distribution of
the modes, now for N =2L+1.

Figures 4(e) and 4(f) show the mode patterns of the two
surface modes for X = 11, where Fig. 4(e) corresponds to
the positive eigenvalue.

The results obtained in this section reveal an interesting
duality between systems with even and odd numbers of
layers: The symmetry properties of M are reflected in the
eigenvectors if N is even, and in the eigenvalues if N is
odd.

We can attribute this to the different symmetries asso-
ciated with the two kinds of multilayers. To demonstrate
this we take again the simplest nontrivial cases as shown
in Fig. 5. For two layers (and all other even numbers) ob-
viously a rotation C2 by ~ around a horizontal axis, as in-
dicated, brings the system back into itself. For three
layers (representing all other odd numbers) the rotation
has to be around a vertical axis (C2) in order to achieve
this. The important difference now is that for the modes
under consideration C2 does not change the direction of
propagation, whereas C2 does. Hence for the even num-
ber of layers a state described by a certain wave vector, k
has to transform according to the irreducible representa-
tions of the C2 group which yields the properties
described above. For the odd number of layers the sym-
metry Cz transforms k into —k, which, as stated at the
end of Sec. II, is equivalent to a transformation of A, into

Hence the result that if A, is an eigenvalue, —A, is
also, again is explained by symmetry.

The latter relation is also true for the "parallel" multi-
layer which has been treated previously. Hence indepen-
dent of whether N is even or odd here we always have the
+A, symmetry.

However, to give a counter example one should mention
that double layers consisting of films with the same mag-
netization but different thicknesses obviously do not have
the C2 symmetry and yet the eigenvalues come in pairs of
+A, .

C. Cxeneral symmetry considerations

As mentioned at the end of the preceding section, we
find the following general symmetry properties of the
antiparallel multilayer. For an even number of layers %
the mode patterns turn out to be symmetric or antisym-
metric with respect to a center plane (Fig. 4), but there is
no apparent symmetry for the frequencies. In contrast to
this, for odd N the mode patterns do not show any ap-
parent symmetry but now the eigenvalues appear always
in pairs of +I,.

FIG. 5. Symmetry of an even- and an odd- X type of
multilayer represented by (a) N =2 and (b) N =3. The symme-
try is rotation about m around a horizontal axis in (a) and a ver-
tical axis in (b).
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IV. CONCLUDING REMARKS

As we have seerr for large N the volume modes of an
APML form two bands for each sign of A, , i.e., each prop-
agation direction. In addition for each surface there is a
surface mode. We want to compare this with the result
previously obtained for an antiferromagnet (AF) because
an APML consisting of very thin layers has a structure
similar to an AF. To underline this we consider MnO
which is one of the model AF's. The Mn ions which car-
ry the moments form an fcc lattice with the moments re-
versed for each pair of nearest neighbors. It turns out
that the Mn ions sitting on (111) planes have their mo-
ments all parallel but they are antiparallel for neighboring
planes. Here this can be regarded as an APML on an
atomic scale.

Spin waves in AF's have been discussed for a long time
but only recently has a surface mode comparable to the
DE mode on ferromagnets been predicted. Qualitatively,
the result of Ref. 8 resembles the one obtained here:
There are two volume mode bands and a surface mode
branch in between. From elemeritary considerations the
number of 2 for the volume modes of a simple antifer-.
romagnet comes from the number of 2 for the magnetic
moments per unit cell. Note in this context that the num-
ber of the degrees of freedom for a spin precession is only
1, in contrast to the oscillation of a single atom where it is
3. The antiferromagnetic lattice can be generated from
the two moments in the unit cell by translations which

correspond to the different possible k vectors. Likewise,
for N~op the antiparallel multilayer can be generated
fmm two antiparallel layers forming a "unit cell" by
translations. Hence indeed from symmetry we expect the
same number of bands. Surface modes in all cases come
from the existence of surfaces and the associated boun-
dary conditions.

As far as the interactions are concerned, our treatment
of the APML and the one given in Ref. 8 for the AF are
rather different. For example, we do not consider nega-
tive exchange between the layers which would correspond
to the interlattice exchange interaction described in Ref. 8
in terms of molecular fields. Also we have not considered
here the uniaxial anisotropy included in the theory of Ref.
8. On the other hand, the molecular field approach of
Ref. 8 microscopically is only justified by isotropic
nearest-neighbor exchange. Hence this approach would
also have to be modified in going from an atomic layered
structure like MnO to a more general one as considered
here. It might be worthwhile to look into this transition
in the future if further progress in preparation techniques
like molecular-beam epitaxy makes the production of the
related layered materials possible.
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