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We study the analytic continuation of the renormalized (P~) field theory in the presence of a
magnetic field H as a function of n, the number of components of the field P, to all real n & 0. We
focus our attention at low temperatures ( T & T, ) for dimensionality d in the range 2&d &4. W' e
show that while for n ) 1 one can reach the limit H —+0 below T, without encountering any singu-
larity in the analytic continuation due to n —1 transverse modes, these modes become catastrophic
when n is less than unity for all nonzero H lying below some curve AC defined by H=H, {T)&0
for T & T, in the H-T plane: The theory cannot be analytically continued below AC for n &1. The
catastrophe is caused by n as soon as it becomes less than unity. We calculate the form of AC to
first order near T, . For n =0, the paramagnetic phase of the theory describes the dilute regime of
the polymer solution as expected. However, we argue that the phase below AC must describe a new

phase for polymers, and that there must be a transition across AC from a dilute system to the new
phase.

I. INTRODUCTION

The n-component Euclidean (P ) field theory has been
of considerable interest in statistical mechanics because of
its close connection with the classical n-vector model with
an 0 (n)-symmetric interaction. The Hamiltonian densi-
ty A o of the above field theory, also known as the linear
cr model, ' is given by the following form, defined in a
d-dimensional Euclidean space:

A o
———,(Bpc) + —,'mego+ —Ao(P )

Here, Po represents an n-component classical real field
Po

——I go
'

~

tz = 1,2, . . . , n J, and

The theory is mathematically well defined when the pa-
rameters n and d are positive integers. However, it is a
standard practice in renormalization-group studies to treat
d and n as continuous real variables. ' Therefore, one
must consider, at least in a formal sense, the above theory
for all positive real values of n and d. In the following we
will restrict ourselves to 2 & d &4. Moreover, we will also
restrict n to positive real values (n & 0) even though its ex-
tension to negative values is also of some physical signifi-
cance. '

In order to define the theory for all n & 0, we must in-
voke an analytic continuation of the theory. The motiva-
tion for the analytic continuation is provided by an analo-

gy between self-avoiding walks and the n —+0 limit of the
(P ) field theory. ' ' This analogy provides a certain
"reality" to the theory when n is continued to zero. This
analytic continuation raises an important question: Does

there exist a sensible theory corresponding to (1) as n ~0,
or for that matter, any real value of n not necessarily an
integer'? This question must be faced whenever one tries
to perform an analytic continuation of a theory which is
mathematically well defined only for certain integer
values of a certain parameter (for example, n or d in the
present theory), to all real values of that parameter. It is
primarily this question that we will attempt to answer
here. Eventually, this will enable us to draw conclusions
about the appearance of a "new" phase for n ~ 1 at low
temperatures. Throughout this paper we will consider the
analytic continuation of (1) in n only, treating d as given
and fixed at some real value. Thus we assume that we
know how to continue the theory to arbitrary d and there
are no peculiarities involved with this analytic continua-
tion in d.

The low-temperature phase associated with T & T, and
H~O, where T, denotes the critical temperature and H
is the external magnetic field, is physically relevant since,
as n ~0, this phase is supposed to describe the scaling
limit of the semidilute regime of polymers, i.e., self-
avoiding random walks. In contrast, the high-
temperature phase ( T & T, ) is supposed to describe the di-
lute solution of polymers. In the dilute solutions of poly-
mers, the polymer chains are practically nonoverlapping,
while they overlap strongly in the semidilute regime. It
should be emphasized at this point that the analogy be-
tween the polymer system and the n —+0 limit can be es-
tablished ' ' only in the high-temperature phase ( T & T, ),
where all the n components of the field are treated identi-
cally. Thus, each loop, which can be formed from any of
the n equivalent field components, contributes a factor of
n after a summation over the field components. The anal-,
ogy is established by noting that as n ~0, all loops disap-
pear from the Feynman diagrams. On the other hand, at
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FICx. 1. Phase diagram for the O(n) model. (a) n ) 1. One
can bypass the singularity at H =0, T=T, by following a path
P&P2. (b) n & 1. A new phase (hatched area) appears below AC.
One cannot cross AC while continuing the theory along P

&
P2.

low temperatures, there is a distinction between the longi-
tudinal and the n —1 transverse modes. Thus, the analo-

gy cannot be explicitly established here by comparing the
Feynman diagrams of the field theory as n ~0 with those
of the polymer system. One usually assumes implicitly
that the analogy works even below T„just at it works
above T, . However, we wish to emphasize that it is not
an obvious assumption. The rationale for this assumption
is the hope that as one continues the theory along the path
P,P2 (see Fig. 1) from T) T, to T & T„one does not en-
counter any singularity, except possibly at H=0 for any
n &0. Indeed, we will establish here that such analytic
continuation cannot be carried through to H =0 below T,
for n &1. We do this explicitly by establishing the ap-
pearance of various pathologies as the theory is analytical-
ly continued below AC in Fig. 1(b), the form ofpathology
depending on the scheme adopted for renormalization
This indicates that the phase below AC cannot be ob-
tained analytically from the phase above it. The appear-
ance of the new phase below AC can be demonstrated only
in the thermodynamic limit V~ oo. The thermodynamic
limit must be performed before the analytic continuation
in n is performed and n is taken to be less than 1. The or-
der of limit is uery important.

The strength of our arguments lies in the following two
observations:

(i) The need for the analytic continuation in n is evident
since the theory is not defined physically for n =0, which
is the case of prime interest here. As is common practice,
the analytic continuation is defined perturbatively. (This
is the only way known to the author that can clearly dis-
tinguish between the longitudinal and transverse modes. )

It is natural to demand that the proposed analytic con-
tinuation satisfies certain positiuity conditions for all real
n ) 1. (This is not necessary, but is sufficient to ensure

the fulfillment of the positivity conditions for integer n ).
Now it can be shown that under some mild assumptions'
(which are usually assumed either implicitly or explicitly
in most analytic continuations in physics) this analytic
continuation is unique. What we discover in this work is
that this unique analytic continuation becomes meaning-
less below AC, for n ~ 1. We argue that the phase below
AC must be distinct from the phase above AC. This is a
very important observation since this implies that the cor-
responding polymer system (n =0) must also develop a
new phase below AC. This is a new and surprising result.

(ii) The catastrophe developed below AC is not due to
the singularities induced by the Nambu-Goldstone modes
in the theory, as it might appear at first sight. To appre-
ciate this point, one should note that the catastrophe ap-
pears at finite magnetic field (but only for n & 1), where
the Nambu-Goldstone modes are not critical. This catas-
trophe is genuinely induced by n when it is less than unity .

and is, in fact, quite independent from the singularities
due to the Nambu-Goldstone modes. Thus, there is no
need to be careful about the effects of the Nambu-
Goldstone singularities. As a matter of fact, we point out
that the catastrophe persists for n &1, even when one
carefully takes into account the Nambu-Goldstone singu-
larities. "' However, an independent and stronger argu-
ment in support of this claim comes from the observation
that the polymer system that is identical (above AC) to
the n =0 limit of the O(n) model with continuous sym-
metry described here is also identical to the n =0 limit of
another n-vector model but with discrete symmetry. '

Since the polymer system has a transition along AC [or,
since the O(n) model has a transition along AC for
n =0], the discrete model must also have a transition
along AC (n =0). However, this transition in the discrete
model cannot be produced by any Nambu-Goldstone
modes since they are absent when the symmetry is
discrete. This justifies our claim.

We now summarize our results:
(i) We study the renormalizibility of the theory in the

presence of an external magnetic field at low temperatures
(T & T, ). The infrared behavior of the theory is regulated
by applying an external magnetic field H. We must make
a distinction between the longitudinal and the n —1 trans-
verse modes:. These two modes have different masses as
H~O. This is accomplished by carrying out an asym-
metric renormalization which is distinct from the sym-
metric renormalization of the theory in the symmetric
phase ( T)T, ), where the two modes have the same mass
as H~O. This is in contrast with the result due to Lee
which states that the renormalization of the theory is
identical in both phases. We also explain why we expect
our result to be different from that due to Lee.

Using our asymmetric renormalization scheme, we find
the following two pathologies depending on what is kept
fixed in our scheme:

(a) Keeping the renormalized coupling A, fixed and posi-
tiue, we establish by explicit calculation, to the two-loop
level, that the theory exists for all real n ) 1 as H —+0.
This means that the theory can be analytically continued
through T, along the path P&P2 all the way to M~O [see
Fig. 1(a)]. For n &1 the analytic continuation of the
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theory does not exist for H lying in the region below the
curve AC in Fig. 1(b). This anomalous behavior means
that one cannot analytically continue the theory from the
phase above AC into the phase below AC for n & 1. The
new phase below AC must be quite distinct from the
phase above it. However, it is not clear (i) what is the na-
ture of the transition across AC, and (ii) what is the na-
ture of the new phase below AC.

(b) If, instead, we keep the bare couplings fixed and pos-
itiue, the anomaly appears in a different way. One of the
renormalized couplings develops a pol'e on AC, indicating
the failure of the perturbation expansion for n & 1.
Again, the theory cannot be continued analytically below
AC.

(ii) In order to show that the existence of an anomaly is
not due to our choice of an asymmetric renormalization,
we consider the equation of state that is obtained in a
symmetric renormalization scheme. "' We find that the
anomaly now appears in the form of a complex solution
of the equation of state below AC, as soon as n & 1, turn-
ing the polymer analogy into nonsense. For n)1 the
equation is physical all the way up to H =0.

(iii) We calculate the form of AC near T =T, . On AC
the magnetic field H0 is related to r = ( T —T, ) /T, by
HD-sr+~. This means that for d &4 any path on which
one can define the semidilute limit of the polymer solu-
tion must necessarily cross the boundary AC [see curves 1

and 2 in Fig. 1(b)]. Any curve approaching the critical
point such that it lies above AC must necessarily describe
the dilute limit of the polymer solution [see curve 3 in
Fig. 1(b)]. Thus, our study casts doubts on the identifica-
tion of the semidilute regime of the polymer solution as
proposed by des Cloizeaux.

All of our conclusions are based on the fact that there is
a nonzero spontaneous magnetization in the ordered, i.e.,
nonsymmetric, phase ( T & T, ). For n & 1 the analytic
continuation of the theory becomes meaningless below
AC. No such catastrophe is seen for any real n & 1. Our
conclusion about the present catastrophe for n &1 does
not apply to the symmetric phase that does not have a
nonzero spontaneous magnetization: There is no anomaly
in. the high-temperature phase (T & T, ) for all n &0 (see
Fig. 1). Since the existence of the spontaneous magnetiza-
tion for arbitrary n is possible only in the infinite-volume
limit (V~ao) for d &2, the present observation of the
anomaly for n & 1 at T & T, is distinct from observations
made previously' ' about the violations of convexity that
occur even for systems of finite size such as, for example,
a single spin. A negative susceptibility does not imply the
breakdown of the analytic continuation, as is evident from
the single-spin case in a magnetic field. '"

We should emphasize that the pathologies noted here
are really due to the fact that n is less than unity, and not
due to any infinities appearing in any Feynman diagrams.
Throughout our analysis in the asymmetric renormaliza-
tion scheme, the ultraviolet cutoff A=(lattice spacing)
is kept fixed and finite. Therefore, there are no ultraviolet
divergences in the theory. Moreover, since the catas-
trophes appear at a nonzero value of the magnetic field,
there are no infrared divergences in the theory either.

We do not intend to study here all the implications of

the present catastrophe (n =0) for the corresponding
polymer problem. However, we will quote the results of a
preliminary study which suggests that polymers below the
curve AC are in a "collapsed" phase (v=1/d), and are
markedly different from polymers above AC that are in a
"swollen" phase (v& 1/2). The nonexistence of the ana-
lytic continuation of the O(n) model for n =0 below AC
is probably an indication of such a collapse transition.
What is remarkable is that such a collapse occurs in a sys-
tem that only has repulsiue interactions. A more detailed
analysis is currently under may and will be reported else-
where.

The layout of the paper is as follows. We consider
briefly, in Sec. II, the notion of the Nambu-Goldstone
modes of the symmetry and their implications for the re-
normalizability of the theory. In Sec. III we develop our
asymmetric renormalization scheme and express bare cou-
plings in terms of renormalized parameters. The analysis
is simplified by the fact that the perturbation series we ob-
tain are well behaved. We show that a catastrophe ap-
pears in the analytic continuation of the theory for n & 1

when H becomes sufficiently small [the phase below AC
in Fig. 1(b)]. In Sec. IV we consider the problem of ex-
pressing the renormalized quantities in terms of bare
quantities in our asymmetric renormalization scheme.
The analysis here becomes very complicated as the pertur-
bation series we obtain are not well behaved. However, we
propose a method of expressing the above relations in a
manner which remains sensible and consistent for n ) 1.
For n & 1 these relations encounter poles on AC, again in-
dicating the appearance of an anomaly below AC. In Sec.
V we discuss the equation of state that is obtained in a
symmetric renormalization scheme and show that the
anomaly is present, albeit in a different form. This equa-
tion becomes meaningless below AC for n & 1 and T & T, .
In Sec. VI we describe the analogy between the semidilute
regime of the polymer solution and the n ~0 limit as pro-
posed by des Cloizeaux and show that this requires cross-
ing the line AC for d &4 to describe the scaling limit of
the semidilute regime. In the final section we discuss
various implications of our results.

II. NAMBU-GOLDSTONE MODES AND ASYMMETRIC
RENORMALIZATION

We now proceed with the description of the Nambu-
Goldstone modes of O(n) symmetry at low temperatures
and the renormalizability of the theory. However, before
considering the spontaneously-broken-symmetry phase
and the Nambu-Goldstone modes, let us briefly consider
what is known about the renormalizability of the theory
described by (1) at high temperatures. One must renor-
malize the theory to make it insensitive to variations in
lattice spacing a =1/A. Let us introduce the renormal-
ized quantities P, m, and A, . We rewrite (1) as follows:

where

(4)
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and A „represents all the counterterms required to make
the theory finite as the ultraviolet cutoff A tends to infini-
ty. ' It is well known' that to an arbitrary high order in
k only counterterms which match the original Hamiltoni-
an in form are needed to render the theory finite.

The low-temperature phase ( T & T, ) is conveniently
studied by applying an external magnetic field Hp along
the a=1 direction. ' The external field also acts as an
infrared regulator in the theory by providing a mass to the
n —1 transverse modes as we will see below. In the pres-
ence of the magnetic field, the new Hamiltonian is given
by

A 0 ——A p
—Ho/0(&)

The presence of Hp induces a nonzero magnetization
Mp = (Pp

' ) along the a = 1 direction. Here, ( A ) denotes
the thermodynamic average of some quantity A [Pp]:

pA pexp —A p(w)=
pexp —A p

Following Gell-Mann and Levy, we subtract Mp from
$0" and define

4'L0=4'0 —Mo .(1)

Evidently, ( $~0 ) =0. We denote the n —1 transverse
comPonents $0 ', Pp, . . . , $0 collectively by /TO.

4To=tko 'i@=2,3,

In terms of (t Lp and /TO, we can rewrite A 0 as follows:

~;= —,[(ay„)'+(ay„)'+ '„~'„+
1 2+

31
(~10(t'Lo+ ~20(t'LOTTO)

0

+
41

[~L04'Lo+ ~LTOPLOPTO+~TO(11t'Tp) ]

(Ho™TP 0 ) PLO ~

where

causes infrared singularities in the theory. For example,
we will see in Sec. IV [see (25)] that the renormalized
longitudinal susceptibility XL ——1/m L is given by

=1 ln—1XL= 2 XLO 1+ XLOA,20I(mT), (7)
m L 18

where +LO ——I/mLO, and I(mT) is given in (10) below.
(Here, we have replaced mTO by mT in I to this order. )

The function I(mT) diverges as mT vanishes, i.e., as H
vanishes. For d =4, I(mT) diverges' as ln(1/H), and
for d =4—e, e ~ 0, it diverges' ' as H '~ as H~0.
The important observation is to note that as H~O, mz
vanishes much faster than mL. Therefore, the singulari-
ties caused by vanishing m z are much stronger than those
due to vanishing mL. This distinction between the rates
at which mL and m~ tend to zero forces us to renormal-
ize our theory in the nonsymmetric phase in a different
way than that in the symmetric phase, as will be seen
below. This contradicts the result due to the Lee which
says that the renormalizibility of the theory is identical in
both phases. The reason is easily understood. In field
theory we are interested in the behavior of the theory in
the large-momentum region A~(x) and, therefore, the
distinction between mL and m&, which are much smaller
than A, is not important: We can treat the two fields as
degenerate. Thus, one can use the counterterms of sym-
metric theory in the ordered phase. Since our interest is
in studying the effect of the Nambu-Goldstone modes, we
must treat the two masses on different footings. Thus,
the renormalizability of the theory in the nonsymmetric
phase turns out to be very different from that in the sym-
metric phase. We wish to emphasize that the new renor-
malization prescription is indeed the correct one if, for ex-
ample, we wish to predict the divergence in gL for n =2
below T„which is consistent with the rigorous results
due to Lebowitz and Penrose. ' They have shown on
rigorous grounds that the divergence of XL below T, for
n =2 is at least as strong as ln(l/H) in d =4 and as
strong as H ' in d =3.

2 1 2 2 2 1 2
mL0 mo+ 2 ~OM0& m To m0+ 6 ~OM0 III. FIXED RENORMALIZED PARAMETERS:

ASYMMETRIC RENORMALIZATION

A 10=A,20=A,OMO ~ A,Lp = A LTp =A,TO = A,p

and where we have neglected constant terms that are not
important for our discussion. To the lowest order, we
find that

2Hp mTOMO . ——
For Hp =0 and Mp & 0 m yp =0. This is possible if
m p ~0. This case is the Xambu-Goldstone modes of the
symmetry, with the /TO field playing the role of the
Nambu-Goldstone modes. The longitudinal mass
m Lp ———2m p & 0. Thus, the two fields are nondegenerate.2 — 2

Let us now introduce the renormalized quantities to be
denoted by symbols without the subscript 0. We identify
mL and mz as the inverse of the longitudinal and the
transverse susceptibilities, respectively. It is easily
shown' that mz ——H/M. Thus, as H —+0, m&~0 and

We now consider the situation when the renormalized
parameters m and A, ~O are held fixed as the magnetic
field H is varied. We will find that the analysis in this
situation is simplified because the perturbation series we
obtain here are well behaved. This simplification allows
us to draw various conclusions about the nature of the an-
alytic continuation and the renormalizability of the
theory, even though it is the bare quantities we must keep
fixed to draw any conclusions relevant for statistical
mechanics. However, once we understand the nature of
the analytic continuation and the renormalizability for
fixed renormalized quantities m and A, , we can use this
information to study the situation in the next section,
when the bare parameters m p and A,p are kept fixed.

We impose an external magnetic field H to control the
infrared behavior of the theory at low temperatures
( T & T, ). The corresponding Hamiltonian A ' in terms of



31 ANALYTIC CONTINUATION AND APPEARANCE OF A NE% 4379

the renormalized quantities is obtained from (5) by delet-
ing the subscript 0. This Hamiltonian is characterized by
two nondegenerate masses mL and m T,

' two cubic ver-2 2.

tices, A, 1$L/3! and A,2$LQT/3!; and three quartic vertices,
ALPL/4!, 2ALTPLPT/4!, and AT(PT) /4!. The new parame-
ters are related to m and A, in the following manner:

XLT0=XLT+ 2 XLXLTI(nL)+ 3 LTI(trtL~rrtT)
1 2 2

n+1+ ALTATI(m T)

ATO ——A,T+ —A,LTI(mL)+ QTI(rrt T),1 n +7
6

where

(12)

mL=m +—kM mT ——I + —M

A, 1
——A,2

——AM, A.L——A, LT
——A,T

——A,

~LO ~L+ 2 ~LI(IL)+ ~LTI(mT)2 n —1

6
(9)

Here,

I(a)=S f d"q/(q +a )

with

S=(l/2m) [2m"r /I'(d/2)] .

[cf. (6)]. The mass m T is related to H and M by
mT H/M——. Moreover, since A, &0 and since M is also
expected to be non-negative for n )0, we note that
mL&mT. As H —+0, mT vanishes but mL takes a non-
negative finite value, AM /3'. As H vanishes, the vanish-
ing mass of the transverse modes will cause infrared
singularities in our theory. This will make diagrams with
the maximum number of the transverse propagators the
most dominant ones at any given order in perturbation.

Let us now calculate various gare coupling constants in
terms of the renormalized ones. First, let us consider the
bare parameter A.Lo. In the one-loop calculation, the dia-
grams required are shown in Figs. 2(a)—2(b). Since our
interest is in studying the implications of the difference
between the two masses, we will keep the ultraviolet cut-
off A fixed throughout the paper. It is easily seen that

3 n —1
~10 ~1+ ~l~LI( L)+ ~2~LTI(rrtT)

6

~20 ~2+ 2 ~1~LTI(mL)+ 3 ~2~LTI(r12L~tttT)

+ A,2ATI(mT) .
n+1

(13)

(14)

Indeed, we find that the graphs required for 110 (or &20)
can be obtained from the graphs for A,L0 (or A, LTO) by iden-
tifying one of the external longitudinal legs as a net mag-
netization M. Therefore if we set A, 1

——A,LM and
A,2 ——A, LTM, then (9) and (11) are identical with (13) and
(14), respectively. Thus, one must consider only the three
quartic coupling constants kL, A,LT, and kT in describing
the low-temperature phase (T & T, ). This should be con-
trasted with only one coupling constant A, at high tem-
peratures (T & T, ). The parameter space corresponding to
the low-temperature phase is larger than the parameter
space corresponding to the high-temperature phase.

We are now in a position to study the influence of the
Nambu-Goldstone —mode singularities as the magnetic
field H vanishes. For a sufficiently small magnetic field,
we have

I(a,b)=S f d"q/[(q +a )(q +b )] .

Now it is evident from Eqs. (9), (11), and (12) that the
three quartic coupling constants renormalize differently,
because the two masses are different. This observation
does not appear to have been appreciated before in the
literature. For the two cubic vertices, we find, to the one-
loop level, that

I(m T) ))I(mTmL) &)I(mL) . (15)

Before expressing A,LTO and AT0 in terms of the renormal-
ized coupling constants, we note that the diagram shown
in Fig. 2(c) contributes only to A,LT0, but is absent for both

and XTo. This is the first indication that the threeLO TO
~ . 19

quartic coupling constants renormalize differently.
Indeed, it is easily seen that

In this limit, nothing peculiar happens to ALTO and ATO for
any n)0. The situation is not the same for A.L0, (9),
which includes a term proportional to n —1 that becomes
negative for n & 1. Because of the above inequality, (15),
we observe that XL0 can become negatiue for n & 1 when
H becomes sufficiently small: For fixed but small values
of A,L and ALT, so that the perturbation expansion is valid,
there exists a critical value H, (n, AL, ALT, A) of H such
that, if n & 1, we have

(0) (c)

(i) A,L0&0 for H)H, ,

(ii) A,La=0 for H =H, ,

(iii) A,La&0 for H &H, .

(16)

(e)

FICx. 2. . Solid line represents the longitudinal mode and
dashed line represents one of the n —1 transverse modes.

The integral over QT0 is well behaved everywhere. There-
fore, this integral causes no problem in the partition func-
tion. However, when XLo becomes negative, the integral
over QL0 will make the partition function meaningless.
The free energy becomes unbounded. Therefore, to this
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order in the perturbation, we find that the analytic con-
tinuation of the theory does not exist for H &H, when
n & 1. This is exhibited in Fig. 1(b) by the area below AC
where AC is defined by H =H, . This pathology is caused
by the diagram of Fig. 2(b), which involves two transverse
components in the loop. This loop becomes dominant for
small H and, for n &1 and H &H„drives A,Lo negative.
We wish to emphasize that the pathology occurs for
A & op and H &0, and is really due to n being less than
unity.

Let us now estimate the value of -H, to this order in the
perturbation. Setting A, L

——A,L~ ——A, in (9), we find that H,
is determined by the solution of A, Lp ——0, i.e.,

1+—,
'

A,I(mL)+ AI(mr) =0 .
6

(17)

For n & 1, (17) possesses a nonzero real solution H=H,
determining the curve AC in Fig. 1(b). As T~T, , H,
tends to zero since the two modes become degenerate at
T, : mL and m~ become identical as H~O. The same is
true for T ~ T, . Here again one cannot make a distinc-
tion between the two masses as H —+0. All three integrals
appearing in (9), (11), and (12) become identical in this
limit and the one-loop contributions become proportional
to n+8, as we expect. This means that the three cou-
pling constants renormalize identically, i.e., there is only
one coupling constant, ko, in the theory. Thus, the new
catastrophe alluded to above for n & 1 is present only in
the low-temperature phase below AC. Et does not affect
the high-temperature phase. This also means that the
critical behavior of the theory is also not affected by this
catastrophe for n &0, if one approaches the critical point
along a path [see curve 3 in Fig. 1(b)j that lies above AC,
or from the high-temperature side. However, it is con-
ceivable that the critical behavior along a path approach-
ing T, but which lies below AC is quite different from
that along the path [curve 3 in Fig. 1(b)] that lies above it.

Let us now turn our attention to the relation between
the bare and the renormalized longitudinal mass. To the
one-loop level, the required relation is as follows:

n —1
mLp —mi + )(2I(m2 ),

18

where we have shown only the dominant contribution for
sufficiently small H; (Since A is kept fixed, we have also
neglected the self-energy diagrams. ) We again observe
that, for n & 1, m ip can become negative when H is very
small. However, it should be emphasized that the new ca-
tastrophe for n & 1 arises not because m Lo & 0 but because
A,Lp &0. If A, Lp were positive, the negativity of mt p would
not cause any problem for the existence of the theory.

The new catastrophe discussed above does not disap-
pear at higher orders. %e can easi1y extend the calcula-
tion of A,LO to the two-loop level. The dominant contribu-
tions come from those diagrams that involve two trans-
verse propagators in each loop, such as Fig. 2(d) at the
two-loop level. All other diagrams can be neglected at
small H due to the inequalities (15). It is easily verified
that the dominant contributions to A, LO are given by

n —1
&Lp—)(,L+ A,LgI(mr )

(19)

We again observe that due to the presence of n —1 in (19),
A,Lp can become negative for sufficiently small H when
n & 1. However, A,ggo and A,go remain positive to this or-
der for all H & 0 and all n & 0. We have done the calcula-
tion to the three-loop level and have found that the prob-
lem persists. We believe that the problem persists to any
given order in the perturbation: There is a genuine catas-
trophe in the analytic continuation below AC for n & 1,
and the phase below AC must be a new phase.

It should be remarked at this stage that the asymmetric
renormalization below T, was already noted by Nelson'
some time ago, while calculating the equation of state for
the 0 (n) model. However, he did not pursue the implica-
tions of it any further. Amit and Goldschmidt have
provided a much stronger argument in support of an
asymmetric scheme in cases where there are more than
one length scale in the problem, as we have here. We now
present a reformulation of the arguments due to Amit and
Cjroldschmidt in support of an asymmetric renormaliza-
tion as we approach the coexistence curve. Let us, for the
sake of convenience, focus our attention on some renor-
malized vertex function and consider its infrared behavior
as we approach the coexistence curve (H =0). This re-
quires rescaling of various momenta by a factor of p. It is
evident from dimensional analysis that mL, m~, and H
scale as mi/p, mr/p, and Hlp ' . To study the in-
frared behavior of the vertex function, we need to consider
the limit p —+0. In order for the perturbation theory to be
valid as we approach the coexistence curve, we need to
choose a path along which H/p '/ is finite and con-
stant. Thus, H -p . This implies that

( / )2 I —E/2 0 ( / )2 (e/2)(3 —e/2) —2

(20)

as p —+0 (@&2, i.e., d &2). Since the two masses behave
so differently under rescaling, the arguments due to Amit
and Cxoldschmidt indicate that the symmetric renormali-
zation is not correct. One must consider an asymmetric
renormalization. ' This conclusion should not be surpris-
ing. What we have discovered is that as H is lowered, we
begin to freeze out the longitudinal mode, whereas the
transverse modes become critical, giving rise to an
O(n —1) theory, and this forms the basis for the calcula-
tion of Nelson. '

The present catastrophe does not disappear even if we
include higher-order terms such as A,6p(P ), A, 8p(4') ), etc. ,
as is evident from the consideration of diagrams such as
the one shown in Fig. 2(e): All corresponding coupling
constants A,6o, A,so, etc. are driven to negative values for
n &1 below T, as H becomes sufficiently small. Thus,
we are forced to conclude that the analytic continuation
of the O(n) theory does not exist below AC for n &1.
There appears to be an essential singularity for T & T, on
AC in that the theory becomes meaningless when A,Io be-
comes negative, no matter how small. We cannot follow
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IV. FIXED BARE PARAMETERS:
ASYMMETRIC RENORMALIZATION

In the preceding section we considered in detail the sit-
uation where the renormalized parameters m and A, were
kept fixed as H was varied. As mentioned previously, this
analysis was simplified considerably due to the fact that,
in the limit of small H, each term in the series for A, Lp,
(19), was non-negative for n) 1. The series was well
behaved and therefore the positivity of A, Lp for any A, & 0
was easily inferred by considering only a truncated series
such as the one in (19). If it were an oscillating series, no
such conclusion could be inferred from the knowledge of
the truncated series. Let us express the relation between
XLp and kL as follows:

Ar p=ZL(n)AL (21)

where Zz(n) is the multiplicative renormalization con-
stant which is, in general, a function of n, A, H, and the
three renormalized couplings. For a sufficiently small
magnetic field H, where (15) is valid, ZL(n) can be in-
ferred from (19). It is easily seen that

the path P~P2 [see Fig. 1(b)] all the way to H =0 without
crossing this singularity on AC. Thus, the new phase ly-
ing below AC cannot be an analytic continuation of the
phase above it. This new phase must be of a very dif-
ferent nature than the phase above it, which is identical in
nature to the phase at high temperatures ( T & T, ). The
new phase is present only for n & 1 and disappears com-
pletely for any n ) 1.

The presence of the new phase below AC for the O(n)
model for n & 1, and, in particular, n =0, also means that
there must be a new phase below AC for the correspond-
ing polymer problem. Since the same polymer problem is
also identical to the n =0 limit of the discrete n-vector
model, ' which does not have any Nambu-Goldstone
modes, we can safely conclude that the appearance of the
new phase is not due to any Nambu-Goldstone modes, but
rather due to the fact that n is less than unity. Therefore,
we do not have to worry about the infrared singularities
caused by these modes in our O(n) model considered
here. The new phase (n &1) must persist even if we care-
fully account for the singularities of the Nambu-
Goldstone modes as the coexistence curve is approached.
This point is discussed in detail in Sec. V.

n —1
~LTO (~T )

(n —1)(n + 1) ~p ~ ~2( )
62

A L~A, LO—

(23)

We immediately observe that the series for A,z is an oscil-
latory one. Thus, even for n & 1 an integer, where we ex-
pect A,j to be positive for A,o& 0, we must know the entire
series to infer that A,r is indeed positive. We cannot use
the truncated series (23) to infer that A, L is positive for all

show below that the new catastrophe now appears as the
breakdown of the perturbation expansion, which is what
is used to define the analytic continuation of the theory '

as a function of n.
The situation now is much more complicated. For ex-

ample, consider (9). Here, A, Lp is a function of two vari-
ables, A.L and A,Lr. This equation defines a two-
dimensional surface. Let us consider a cross section of
this surface along the plane A, =A,r

——A,tr. The resulting
curves are shown in Fig. 3 for n )0. For n & 1 the curve
is a monotonic function and we can express X, as a func-
tion of A,p. For any given value of A.Lo

——A,p, there is a
unique value of A, =A(Ap). The situation is different for
n & 1. The curve is no longer monotonic. For 0 & Ao & A,o,
there are two different values of X satisfying (9). The re-
lation between A, and Xo is no longer unique. For A,o——A,o
the two values of A, become identical. However, for
A,p&X,p the only solutions for X, satisfying (9) are, in gen-
eral, complex: The theory has become unphysical for
Ap& Ap. As H~O, Ap~O. Therefore, if we fix Ap&0, the
A, becomes complex for n & 1, which is certainly not ac-
ceptable.

However, this problem of nonuniqueness may not be of
any physical relevance. For example, from what has been
said in Sec. III, we expect the renormalized couplings A,L,
A,zr, and A,~ to be very different, even though all the bare
couplings are identical: A, Lo ——ALrp=k~p=Ap. This indi-
cates that the physics does not lie on the above special
surface of equal A,L and A,L~. Moreover, it is also of in-
terest for its own sake to know what can be said about the
relationships between the renormalized and the bare quan-
tities obtained perturbatively. For this purpose, let us
consider (19). Using (9), (11), and (12), we find that

)1 for n&1,
Z n

& 1 for n & 1 .
Lo

The most important observation is that ZL(n) can even
become negative for n &1. The value of H for which
ZL(n) =0 determines the curve AC in Fig. 1(b).

We now wish to understand how does this new anomaly
appear in the analytic continuation of the theory for n & 1

when we keep the bare quantities mp and A.p fixed as H is
varied. We choose A,p to be positive. With this choice of
A.o, we ensure thai the theory exists everywhere. There-
fore, it is evident that the new catastrophe cannot appear
in the form of the nonexistence of the theory for n &1.
However, it must appear in some other form. We mill FIG. 3. k«as a function of X.=~=A, „~.
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H &0. A similar problem arises when we express mL in
terms of bare parameters. We find from (18), or directly,
that

n —1
m t =m Lp

— A2pI(mr )
18

(24)

As H decreases, i.e., as I(mr) increases, we observe that
mL can become negative even for n &1. However, for
n & 1 we certainly expect the longitudinal susceptibility
XL——1/mL to be non-negative, implying that one must
consider the entire series for m L to ensure the positivity
of XL. We now show that there is a way of rewriting (18)
in a form which amounts to resumming the "entire" series
for mt, . Rewriting (18) as

breakdown of the perturbation expansion. This result is
consistent with the existence of a zero of ZL(n) on AC for
n & 1 in (21). For nonzero and fixed A,L&0, (21) implies
that A,LO is zero on AC for n & 1. If we keeP A,LO ——A,p&0
and fixed, we find that A.L must possess a plot on AC. Let
us now determine the equation describing curve Ac. This
curve is given by the solution of the following equations,
at which zL possesses a zero:

(28)

where we have set A,z p ——A,z ~p ——A,p. Let us consider
d =4—e, e ~ 0. For small e, we observe that

I (a)=a 'ln(A/a),
1 12= 2

mL mLp

n —1 ~2
2

1+ z I(mr)
18 mL

and neglecting 1 compared to other terms in (28), we have,
for n &1,

and rePlacing A,2, mL, and mz by X2O, mLO, and mzp,
respectively, to this order, we have

2
1 n —1 ~2oXL- 2 + ~ I( mgp), (25)

Pl Lp 1~ mLp

(1—n) mr 'ln(A/mr)=9m L 'ln(A/mL) . (29)

For e&0 we can neglect the logarithmic singularities.
Thus, we find that

2 2my mL

or, equivalently,

2
n —1 ~2o

mL —mLp 1+ p I(mrp)
18 mLO

(26)

HO-MO, (30)

Let us now solve this near the critical point (T =T„
Hp ——0). We know that, here, Mp r, -mr=Hp/Mp,
and mL =1/XL=Hp, where r=(T, —T)/T, . Thus,

1 Lp 2
~L'j ~JTp 1+ I(mL)+ 3 ~LTpI(mL mT)

2 ALfo

+ AzpI(mr )
n+1

(27)

1 LTO n +7——Agp 1+— I(mt )+ AgpI(mr)
6 Agp

where we have set all renormalized couplings equal to
their bare values inside the large parentheses, and where
we must finally set A,Lo ——A,L~O ——A,~p ——Xp. For n & 1 we see
the appearance of a pole in A,L which is a reflection of the
catastrophe discussed in Sec. III. By keeping A,p&0 and
fixed, we find that the renormalized coupling A,L starts to
grow indefinitely for n & 1 as H is lowered, indicating a

Expression (25) for XL is indeed what we obtain if we
evaluate it directly. Moreover, the first two terms in the
expansion of (26) are shown in (24). It is clear from (25)
and (26) that they are consistent with the positivity of Xt
for n &1. Now these can be analytically continued to
n & 1 for all H. We immediately notice that for n & 1, XL
can become negative for small H because of the presence
of n —1.

This simple exercise has paved the way for us to express
the renormalized couplings in terms of the bare couplings
in a way that ensures the positivity constraints for n & 1

without knowing the entire series. We rewrite (9), (ll),
and (12) as follows:

2

AL
' ——Azp' 1+—', AtpI(mt )+ I(mr)

Lp

or

(31)

where we have used the relations b =5P=y+P, describes
curve Acnear T, .

V. SYMMETRIC RENORMALIZATEON SCHEME

In the preceding two sections we considered an asym-
metric renormalization of the (P ) theory and have
shown explicitly that the analytic continuous of the theory
breaks down below AC for n & 1. Because of the asym-
metry due to different masses of the longitudinal and the
transverse modes, either A,LO becomes negative or
develops a pole as soon as n & 1. Thus, one might be in-
clined to think the pathologies appear only because we
have chosen an asymmetric renormalization scheme.

%'e now wish to show that the appearance of a new
phase below AC is not due to our choice of the asym-
metric renorrnalization. We will exhibit below that such a
phase also appears if one carefully analyzes the results ob-
tained from a symmetric renormalization scheme. This
should again strengthen our claim that the catastrophe is
really due to n being less than unity, and not due to the
scheme of renormalizations, the approximate nature of
our calculation, etc. Schafer and Horner" and Lawrie, '

among others, have calculated the equation of state for
the O(n) model, by properly taking into account the
singular nature of the Nambu-Goldstone modes. In the
following we would only consider the form of the equa-
tion of state given by Lawrie, ' even though our con-
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elusion also holds true for that given by Schafer and
Horner. In terms of the scaling variables x =rIM'~~ and

y =H/M, r=(T —T, )IT„the equation of state reads:

(3+x)'~ 1+x 3+x n +8
~'

n —1 3+x
9 y

e/2

(n +g), (32)

(2/y*)'~'=9/(1 n) . —
Thus, y* =const, at which x = —1. Now, in terms of H
and r, this implies H-r, which is nothing but the equa-
tion describing the curve AC in our previous analysis.

It is easily seen that the same problem affects the equa-
tion of state proposed by Schafer and Horner, " when n
becomes less than unity. Thus, one cannot take their
equation of state and set n =0 to describe the low-
temperature phase of the polymer problem, despite the
claim made recently by Schafer. He argues that any cri-
ticism of the n =0 limit lacks any foundation because the
negative susceptibility of the magnetic system (n =0)
poses no problem for the polymer system. ' ' As we

and is certainly satisfied at the coexistence curve for all n,
where x = —1 and y =0. Thus, it would appear at first
that (32) is valid for all n & 0 all the way up to the coex-
istence curve (H =0, v&0). Unfortunately, this is not
the case when one looks at (32) carefully as H is reduced
toward its zero value.

Let us first remark that the left-hand side (lhs) of (32) is
always non-negative for all n, and H )0. Since the criti-
cal behavior disappears as soon as H )0, the magnetiza-
tion curve must be a smooth function of T. For n )0 it
can be argued that the magnetization is never negative.
This is easily seen for n =0 where Pz, the density of poly-
mer chain, is equal to MH/2. Since Pz & 0 and H & 0, we
find that M must be non-negative. Thus, at least near T„
the magnetization in nonzero field (H & 0) must be larger
than the spontaneous magnetization. There may be tern-
peratures away from T, where M(H&0)&Mo (when
n & 1), but just near T, there is always a region where
M(H &0) &Mo. This is consistent with the requirement
of a smooth and non-negative M (H) near T, . Thus,
x =r/M' ~& —1 (~&0). Thus, the lhs is never negative.
On the other hand, the right-hand side (rhs) of (32) is
non-negative only when n &1. Thus, for n &1, (32) is
perfectly sensible and one can take the limit H ~0
without encountering any problem. This is consistent-
with our analysis.

The situation changes dramatically for n & 1. As H is
reduced we find that the rhs of (32) starts from a value
which is positive, goes through zero, and eventually be-
cornes negative when H is very small. Let us evaluate the
value of H when the rhs is zero. There are two such
values. The first value is evidently H =0, i.e., y =0.
However, the second value is a nonzero value given by the
zero of the expression within large square brackets on the
rhs. Since x )—1, we find that the lhs becomes zero only
when x = —1. Thus, the second zero of the rhs is given
by

remarked in the Introduction, the pathologies we allude to
are not due to negative susceptibility: They are more seri-
ous. The negative susceptibility is not the cause of the
breakdown of analytic continuation. Therefore, the argu-
ments of Refs. 14 and 23 are not relevant for our problem.

VI. POLYMERS AND THE n —+0 LIMIT

Let P~ and Pz denote the equilibrium concentrations of
monomers and of polymer chains, respectively. Accord-
ing to the analogy between the polymer solution and the
field theory, we have

Br(M )
0p= 2MoHo

O'7
(33)

where r = ( T, —T) /T, . The polymerization index N is
given by

N=km/0p .

Assuming that 8'(Ho) scales the same way as the free en-
ergy of the O(n) model for n & 1 an integer, ' we expect
that

'f~(x), Pq
r" fp(x), x=r——/Ho, - (34)

where f and f~ are some homogeneous functions of the
variable x. In the following we will focus our attention
on r&0, i.e., T&T, . (The variables x and v defined
above should not be confused with those in Sec. V.) We
will see below that the semidilute regime of the polymer
solution corresponds to x~ oo, while the dilute limit cor-
responds to x~0. As x~oo we expect f~(x) to ap-
proach a finite constant, so that P~ can take a finite
nonzero value for ~)0. In the same limit, Pz must have a
linear dependence on Ho, so that

fp(x)-x ~ as x~gp .

Therefore, the polymerization index X in this limit is
given by

Nr= f~(x) If~(x) -x as x ~ ao .

It is a well-known fact ' by now that there is a very
close connection between the n-+0 limit of the O(n)
theory and self-avoiding walks, which are thought of as
an idealized representation of linear polymer chains.
However, this formal correspondence is established only
at high temperatures (T & T, ), where there is no distinc-
tion between the longitudinal and the n —1 transverse
modes as the magnetic field vanishes. It has been impli-
citly assumed that the formal correspondence also works
at low temperatures (T & T, ) for all H)0, as was dis-
cussed in detail in the Introduction. We now briefly
describe this connection. " The osmotic pressure II of the
polymer solution is equal to the negative of the free ener-
gy W(Ho) of the O(n) theory as n~0:

II = W=M, H, r(M—,),
where Mo is the magnetization of the system and I (Mo)
is the Legendre transform of W(Ho):

88'(Ho) BI (Mo)
aH,

H'=
aM,
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Introducing the overlap concentration @by

1/~vd —1

which is the monomer concentration of a chain with X
monomers confined in a volume X' (I)I is also the length
of the polymer chain in a suitable unit of length), we have

The semidilute limit is characterized by the limit
))) ~ &~/*, i.e., g~ —+ oo. This can be achieved if Xr~ oo,
i.e., x —+ oo. Qn the contrary, the dilute limit corresponds
to P~ &&@, i.e., x~O. Consider curve 1 in Fig. 1(b).
Evidently, x —+oo on this curve as we approach H =0.
Thus, this curve should describe the scaling limit of the
semidilute regime as we approach H=O. It can be
shown that the osmotic pressure H in this limit is a func-
tion only of P and not of P~:

yvd/(vd —1)

thus showing that, below T„ the free energy W(HD) of
the 0 (0) theory, which is equal to —II, tends to a

nonzero value as Hp~Q. However, for any finite system,
the free energy is identically zero at Ha ——0. This is easily
seen by considering a finite system of n-component
spins S=(S),S2, . . . , S„) of length V n in a magnetic
field H0 and calculating the partition function Z(H0) as
n —+0. It is found that Z(0) =1 for any finite system, in-
dicating that the corresponding free energy at Hp=0
must be identically zero. Parisi and Sourlas claim that
it remains zero even for an infinite system (X or V—

& go).
This means that, for n =0, .the thermodynamic limit
V~ co and the limit Hp —+0 cannot be interchanged, a
result which is certainly very different from that for posi-
tive integer n:

lim lim W(H0)~ lim lim W(HD) .
H0 —+0 V~ op V~oc H0 —+0

(35)

However, we now show that there is no basis for the va-
lidity of (35) and, in particular, the right-hand side is not
identically zero.

Let us consider a one-dimensional discrete n-vector
model' and first look at the right-hand side of (35). The
transfer matrix at HD ——0 for the model corresponding to
the polymer problem is T(K)=e /2n, where S and S'
are n-component axis spins, each with the following 2n
possibilities:

(+vn, 0,0, . . . , 0), (0, +~n, 0,0, . . . , 0), . . . , (0,0, .

It is easily seen that the two dominant eigenvalues of T
are the following:

A,
&

——[X+I /X+2(n —I))/2n

and

A,2
——(X —1/X) /2n,

where X=exp(Kn). For n =0 and %~op it is easily
seen that K, =l is the critical point and that W(K)=0
for K&K, and W(k)=lnK for K&K, . Thus, W(K)&0
for H0 ——0 as X~oo. Moreover, it can also be seen easily
that, if one calculates W(K,H0) in this case as X~oo
and then lets Ha~0, one recovers the above values of
W(K) obtained for H0 ——0.

Thus, we have argued above that the claim of Parisi
and Sourlas that polymer problem gives rise to a zeroth-
order phase transition because of (35) is incorrect.

However, the pathologies that appear in the O(n)
model for n & 1 mean that curve 1 in Fig. 1(b) must neces-
sarily cross curve AC, below which we enter a new phase.
Thus, one cannot take the limit Ha~0 on the lhs of (35)
without encountering the new phase where the behavior of
W'(HD) may be quite different from what has been pro-
posed in Ref. 8. For the same reason, one cannot use
curve 1 of Fig. 1(b) to describe the scaling limit of the
semidilute regime. Qne may argue that one can describe
this regime along some other curve which never crosses
curve AC. We now show that it is impossible to do this
for any d & 4 and, in particular, for d =3. From the defi-
nition of x, we find that x~oo, provided that Hp-~~,
with I) ~b, and r~0, i.e., T~T, . Since A=y+p,

I

where y and P are the susceptibility and the magnetiza-
tion exponents, respectively, we find that any curve de-
fined by Hp-~~, on which x~ co as ~—+0, must neces-
sarily lie below curve AC, on which HD-sr+~ [see (31),
valid for ot &4j. This is exhibited in Fig. 1(b) by curve 2,
on which x —+co. From what has been said above, this
curve must cross AC. Qn the other hand, on curve 3,
which lies above AC, x~0 as ~—+0 and can be used to
describe the dilute limit of the polymer solution.

The form of AC calculated in (31) is valid only to two-
loop order in the perturbation, and we believe this form to
remain valid to any finite order in the perturbation. Thus
we expect that the problem with the description of the
semidilute regime will persist to any finite order in the
perturbation.

VII. DISCUSSIONS AND CONCLUSIONS

In the present work we have carefully looked at the
question of analytic continuation, in n, n & 0, and real, of
(P ) field theory, where P is a classical n-component real
field. The theory is mathematically well defined only for
integer n = 1,2, 3, . . .. The present study was prompted
by the observation, made originally by de Gennes, that
the n =0 limit of the above theory is intimately related
with the problem of polymers, and by the hope that such
a study would eventually shed some light on the nature of
analytic continuation in other physical models, viz. , the
replica system, the Potts model, etc. To study the n =0
limit of the present theory, we must consider the analytic
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continuation of the theory to all real n &0. (The method
can be easily extended to include negative values of n ).
As is customary, the analytic continuation is defined
perturbatively.

We first consider a noncanonical renormalization of the
(P ) field theory in d =4—e dimensions (e)0, d &2).
This renormalization scheme is a nonminimal one: %'e
perform all subtractions appropriate for @=0, even
though, for e & 0, the theory does not require any renor-
malization of the coupling constants. The renormaliza-
tion of the, theory in the symmetric phase ( T & T, ) is well
understood. Our interest here is to study the renormalizi-
bility of the theory below the critical temperature
(T & T, ), where there is a nonzero spontaneous magneti-
zation for n =1,2, 3, . . . for any d & 2. (For d =2, there
is no spontaneous magnetization for any integer n &2,
which is the reason we have excluded d =2 from the
range for d.) Since the symmetry is broken, we make a
distinction between the longitudinal and the n —1 trans-
verse modes. Owing to the presence of Nambu-Goldstone
modes, the renormalization of the theory below T, is
shown to be very different from the renormalization of the
theory above T, . It is not difficult to understand why our
result is in apparent contradiction with that due to Lee.
It has been shown by Lee that the counterterms required
to renormalize the theory above T, are also sufficient to
renormalize the theory when the symmetry is -broken ei-
ther spontaneously or by an external source. The key idea
in the proof is the observation that when one uses the
counterterms of the symmetric theory in the broken-
symmetry phase, it merely introduces terms that are finite
as far as the ultraviolet behavior (A~ 0D ) of the theory is
concerned, and, therefore, are not relevant for the renor-
malization of the theory. Since the infrared behavior is
usually of no interest in field theory when making the
theory finite as A —+ ao, no attention is paid to the
relevance of such terms in the'infrared limit, which is the
limit relevant for studying the effect of the Nambu-
Goldstone modes. When we consider the behavior of the
theory in the infrared limit, we find that the theory looks
very different in the syminetric and the nonsymmetric
phase. For example, it is shown that below T, there are
three different quartic couplings in the theory, while
above T, there is only one quartic coupling in the theory.
The three different quartic couplings at T & T, become
identical as T—+T, and remain identical for all T& T,
(H =0). The observation that the infrared behavior of
the renormalized theory is different above and below T,
does not seem to have been appreciated properly in the
literature. On the other hand, the result due to Lee is
about the ultraviolet behavior of the renormalized theory
and says nothing about the infrared behavior of the
theory. As has been shown here, the different infrared
behavior of the theory above and below T, is due to the
Nambu-Goldstone modes of the symmetry. This also
means that the counterterms we have introduced below T,
in our scheme do not have the full 0 (n) symmetry, as op-
posed to the counterterms in the symmetric phase that
have full O(n) symmetry.

The analysis carried out in Sec. III in terms of renor-
malized parameters was greatly simplified because the

perturbation expansions were well behaved. This meant
that various conclusions about the existence of the theory
could be drawn even when only a few terms in the expan-
sions [see (9), (11), and (12)j were known. We find that
the infrared behavior of the theory as analytically contin-
ued here is devoid of any anomaly for n & 1, but the situa-
tion is drastically different for n & 1. We find that while
the two coupling constants A,LTp and A,Tp do not show any
anomaly, the coupling constant ALp develops a zero at
some finite nonzero magnetic field denoted by H, and be-
comes negative for H &H„see (16), as soon as n becomes
less than one. A negative A,Lp means that the analytic con-
tinuation of the theory cannot exist below curve AC, Fig.
1(b), where AC is determined by the zero of A, LO. It is our
belief that the zero of A,io, i.e., that of Z„(n) in (21), at
AC, persist to all orders in the perturbation.

The analysis carried out in Sec. IV in terms of bare
quantities is, however, complicated by the fact that the
series we obtain here are not well behaved at all, as is evi-
dent from (23) and (24). Because of this, the truncated
forms of the perturbation expansions are not valid for all
values of H, even for integer n & 1, where we do not ex-
cept any anomalies. We present a method of expressing
various quantities in terms of bare ones that remain sensi-
ble for all values of H when n & 1. This method amounts
to a tricky resummation of the perturbation expansion as
explained in detail in Sec. IV and expressed in (27). In
this situation, the catastrophe for n ~ 1 appears in the
form of a pole in A,i, on AC. The presence of this pole is
due to the zero of ZL(n), and presumably persists to all
orders in the perturbation.

In Sec. V we consider the equation of state obtained in
a symmetric renormalization scheme to establish that the
appearance of a new phase below AC is not due to our
choice of an asymmetric renormalization scheme. We
show that the pathology appears in the form of a complex
solution below AC: For real H, Mp must be complex.
Since the density of a polymer chain, (()~, is related to
MOH, in the analogy n =0, we find that the analytic con-
tinuation must break down since Pz must be real. The re-
sult of this section also proves that the pathology persists
even if one considers Nambu-Goldstone modes carefully,
as was done by Schafer and Horner" and by Lawrie. '

Thus, we find that the appearance of a new phase below
AC is not due to our asymmetric renormalization scheme,
or to an oversimplified treatment of the Nambu-
Goldstone modes. The catastrophe below AC is genuine
and is caused by n as soon as it becomes less than unity.

The arguments presented here clearly establish that the
analytic continuation of the (P ) field theory along PiPz,
Fig. 1(b), cannot be extended below AC for n &1. It
should be noted that the catastrophe responsible for this
does not appear in a mean-field approximation, ' ' where
the effect of fluctuations are completely neglected. How-
ever, it is these fluctuations that ere responsible for the
new catastrophe.

From what has been said above, it should be clear that
the new phase below AC must be very different from the
paramagnetic phase above AC. However, we have not
been able to say anything derisive about whether the tran-
sition from the phase above to the phase below AC is
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sharp or not. Because the new catastrophe appears just
below AC and because the phase above AC must remain
paramagnetic arbitrarily close to AC, this transition may
be sharp. We believe that this transition cannot be a
first-order transition because, with a first-order transition,
one usually associates the notion of the analytic continua-
tion across the transition to describe a metastable exten-
sion of the phase, something that has been shown here to
be impossible across AC.

The nature of the new phase below AC is quite unclear.
By analogy with n ) 1 an integer, we say that the H=0.
T & T, describes a "ferromagnetic" phase even when n is
not an integer and, in particular, when n & 1. It has been
known for some time' that this ferromagnetic phase has
some anomalous behavior for n &1. For example, the
spontaneous magnetization Mo, which is supposed to be a
monotonic function of the temperature for at least integer
n & 1, is a nonmonotonic function of the temperature'
for n & 1. Since the new phase, which is an intermediate
phase between the ferromagnetic phase and the paramag-
netic phase, does not exist for integer n ) 1, it cannot be
obtained as an analytic continuation in n of some phase.
The analytic continuation along P&P2 only indicates the
appearance of this phase for n & 1, but provides no infor-
mation about the actual nature of this phase. Our intui-
tion at this stage is not sufficiently deep to provide any in-

sight into the nature of this phase. However, it is expect-
ed that our analysis would be a first step towards this
goal.

We should again emphasize that our analysis regarding
the appearance of the new phase for n ~ 1 has been re-
stricted to d &2, which'ensures that there is a nonzero
spontaneous magnetization for arbitrary n. Thus, it is not
clear if such a phase would exist for d &2. However, it
appears that there are certain anomalies, for example, a
negative value of the exponent g, at low temperatures for
n & 1 even when d =2, which might indicate that such a
phase also exists for d=2. The arguments leading to
such anomalies for d =2 are quite independent of the ar-
guments presented here. Therefore, if the arguments for
d =2 are correct and indicate the existence of the new

phase below T„ it is indeed an important result and lends
support to our conclusion about the appearance of the
new phase for n &1. Unfortunately, here again (d =2),
no information has been obtained regarding this phase.
For d = 1 it appears that such a phase does not exist.

As discussed in Sec. VI, the appearance of this new
phase for n =0 and d &4 poses serious problems for the
description of the semidilute regime of the polymer solu-
tion by considering H —+0+ and T & T„as was originally
proposed by des Cloizeaux. However, as far as the
description of the dilute limit of the polymer solution is
concerned, there does not appear to be any problem at all.
We have excluded d =4 from our consideration here be-
cause the extensive overlap necessary to define the semidi-
lute regime is impossible for d =4.

Before we close, we wish to discuss the relevance of our
result about the 0 (n) model considered here for two other
models that have also been used to describe the polymer
problem. The first one is the axis model, ' in which each
spin S of length ~n, which has n components, points

along one of the axes of the n-dimensional spin space:
S=(+v n, 0,0, . . . , 0), (0, +v n, 0, . . . , 0), etc. As
n~0, this model at high temperatures becomes' identi-
cal to the n ~0 limit of the 0 (n) model at high tempera-
tures: they both describe a polymer solution. The second
one is the supersymmetric formulation of the polymer
problem using commuting and anticommuting quantities
in a symmetric way. ' Here, the loops in the Feynman
diagrams are made to disappear by a proper choice of the
numbers of commuting and anticommuting fields: Each
commuting field contributes a +1 to a loop, while each
anticommuting field contributes a —1. Thus, choosing
2m commuting real fie1ds

01 02. . .02

and 2m anticommuting fields

41 1t2. 0 41 1t2.

we form the superfields

@=«'1 ~'2, . @ 41 02

@' =(+1 ~'Z, . ~ @ Pt 4Z

where

~ k ( 1~v 2)(42k —1+ 1t'2k)~ @k (1~~2)(42k —1 42k ) ~

Now, the theory in terms of the superfields @ and N~ is
effectively a theory of zero component field, and describes
the polymer solution. ' The analogy between the poly-
mer problem and the supersymmetric theory is again
shown in the case in which the supersymmetry is not bro-
ken. The supersymmetry is spontaneously broken at the
phase-transition point. The point we wish to stress is that
this supersymmetry model and the axis model as n~O
are identical to the 0 (n) model considered here as n —+0
only at T& T, : They all have the same partition func-
tion. Since our study of the 0 (n) model clearly exhibits a
genuine instability in this partition function for n =0
below AC, Fig. 1(b), we should observe a certain instabili
ty in the other two models. We wish to emphasize that
this instability in the above supersymmetry model and the
n —+0 limit of the axis model must be present since their
respective partition functions are identical to that of the
0 (n) model for n =0. However, there is no reason to as-
sume that the phases of these three models below AC are
identical: they may indeed be very different.
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