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We have performed a high-resolution x-ray scattering experiment to study the two-dimensional
melting of xenon adsorbed on exfoliated graphite near the first-order—to—second-order multicritical
point for coverages at and below 1 ML (ML denotes monolayer). We have crossed the liquid-solid
phase boundary at three points by varying the vapor pressure at fixed temperature. At 116 K we
find a weak first-order transition. At 125 and 134 K, which correspond to coverages of about 0.9
and 1.0 ML, respectively, the transition is continuous within experimental accuracy. Fits of the data
in the solid phase to theories of dislocation-mediated melting yield 7(P,)=0.35+0.02 at both 125
and 134 K. From hydrodynamic scaling in the liquid phase, we find 7(P,,)=0.24+0.02 at 116 K
and 7(P,,)=0.23+0.02 at both 125 and 134 K. The discrepancy between the two methods for ob-
taining 7(P,,) cannot be simply explained. Indirect evidence for an orientationally ordered phase is
also observed at 125 and 134 K through the azimuthally averaged diffraction line shapes.

I. INTRODUCTION

How does a two-dimensional solid melt? In the last
decade there has been considerable success in efforts to

obtain high-quality experimental data on two-dimensional -

(2D) systems. During the same period, significant
theoretical progress has also been achieved. In particular,
the dislocation-disclination unbinding model of Kosterlitz
and Thouless,! Halperin and Nelson,> and Young® has
provided a mechanism to explain this phenomenon along
with specific testable predictions. One of their main re-
sults is that the melting transition can be continuous and
not first order as in three dimensions. However, some ex-
perimental results and computer simulations still strongly
indicate that both types of transitions may occur in the
same system, implying the existence of a multicritical
point.

One important realization of a 2D melting transition is
provided by rare-gas monolayers on graphite. Specifical-
ly, for xenon on graphite, Heiney et al. have reported a
high-resolution study using synchrotron x-ray techniques
of the melting transitions at coverages of 1.1 and 0.85 ML
(where ML denotes monolayer). The former transition is

found to be continuous within the limits imposed by the -

substrate heterogeneity, whereas the latter is first order.
More recently, Rosenbaum et al. have shown that the xe-
non fluid is orientationally ordered. One important ques-
tion which immediately arises in assessing the experi-
ments of Heiney et al. is whether or not the excess cover-
age above 1 ML played a role in making the 1.1-ML tran-
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sition continuous. More generally, one would like to
understand the crossover from continuous to first-order
melting as the coverage is decreased below 1 ML.

In this paper we report the results of such a study. We
have again used high-resolution synchrotron x-ray-
diffraction techniques; because of technical improvements
we are able to make a number of statements about the
correlations that are more precise than was possible at the
time of the study of Heiney et al. We have crossed the
liquid-solid phase boundary at three different tempera-
tures by varying the three-dimensional xenon vapor pres-
sure. The three temperatures were chosen so as to observe
the first-order, the continuous, and, if possible, the mul-
ticritical region; all are at or below 1 ML coverage.

The paper has been organized in the following way: In
Sec. II we outline the main features of the dislocation-
disclination unbinding model of two-dimensional melting,
particularly those relating to the x-ray structure factor.
In Sec. III we give a summary of the experimental situa-
tion, in addition to a review of the current status of com-
puter simulations. Section IV contains a description of
the experimental setup. In Sec. V we describe some of the
details of the data analysis. In Sec. VI we discuss the re-
sults of the experiment and the conclusions that may be
drawn from them. Section VII is a summary of the pa-
per. More details may be found in Ref. 4.

II. THEORY

For completeness, we review the general aspects of the
theory of melting in two dimensions. Mermin® has
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proved that a two-dimensional crystal cannot have long-
range order (LRO) except at T=0. However, as suggest-
ed by Stanley and Kaplan,® this does not rule out the pos-
sibility of a phase transition at finite temperature between
two phases, neither of which possesses LRO. Kosterlitz
and Thouless! have proved this explicitly by showing how
the 2D XY model and symmetry-equivalent models can
have topological defects which mediate phase transitions.
Topological defects would include vortices in a 2D super-
fluid or a 2D superconductor and spin vortices in the 2D
XY model. In the Kosterlitz-Thouless (KT) scenario,
below a critical temperature Txt there will only be pairs
of defects in the system. This phase will have quasi-LRO;
that is, the correlations will decay algebraically with dis-
tance. At Tkt the pairs will begin to dissociate into free
defects which establish the high-temperature disordered
phase.

Later, Halperin and Nelson (HN) developed a model for
the melting of a two-dimensional crystal which belongs to
a different but related “universality class.” In their
model, as in the XY model, topological defects play an
important role. However, unlike the XY model, two types
of defects (dislocations and disclinations) are needed and
the melting is a two-step .process. Based on this model,
‘Halperin and Nelson,? Nelson,” and Young® have extract-
ed quantitative predictions from the original work of Kos-
terlitz and Thouless.! The major points of the 2D melting
theory of Kosterlitz, Thouless, Halperin, Nelson, and
Young (KTHNY) are as follows:

When T <Tkt, only bound dislocations exist in
thermal equilibrium. In this phase, the crystal has posi-
tional quasi-LRO; that is, the pair-correlation function
-takes the form

= 1
CG(R)~W aSR— o , (1)
so- that the structure factor resembles
= 1
BT I ?

near a reciprocal-lattice vector G. For a smooth sub-
strate,
kB TG2 3‘LL R +}\.R

(T)= , (3)
e 4mpr  2uR +Ag

where up and A are renormalized Lamé elastic con-
stants. There is, however, LRO in the bond orientations;
that is, (Y(R)h(0))—const as R—>co, where %(R)
=¢%9%R) s the bond-orientation order parameter and
O(R) is a bond angle at the site R AsT approaches Tkt
from below, ng(T) for the smallest reciprocal-lattice vec-
tor approaches a value n* =n(Tkr), where

T<nt <, @)

depending on the specific limiting values of ug and Ay
near Tkt.

For Tkt <T < Ty, the dislocation pairs begin to dis-
sociate into free dislocations and the solid melts. There is
no longer positional quasi-LRO; that is,

G(T)~e ™™ asr—o , (5)

where k=£"! and £ is the correlation length. Also, at the
peak Q, in the structure factor,

S(Qo) ok =2, (6)

in agreement with hydrodynamic scaling principles. The
bond orientations now have quasi-LRO, i.e.,

<¢(?)¢(6)>~7,§T—) as r—> o | ™
where
N T) =18k T /7K, . )

K, is a renormalized Frank elastic constant. Since some
form of bond-orientational order still persists, this has
been termed an “hexatic” phase. Furthermore, as T ap-
proaches Tkt from above, £ is predicted to have the
unusual scaling form

E(T)=Epexp(bt ™), 9)

where b is a positive, nonuniversal constant,
t=(T —Txt)/Tgr is the reduced temperature, and
7=0.36963... for a smooth substrate. Note that £
diverges at T'xr, indicating a continuous transition. In
practice, this scaling form is probably unobservable.
Greif et al.® and Cardy® have estimated the size of the
critical region for the KTHNY theory and found that
such a scaling law should apply only for reduced tempera-
tures, t <0.01, corresponding to correlation lengths of
~ 108 lattice spacings. (Typical experimental systems are
only ~ 10 lattice spacings.)

Finally, when T > Tyn the dislocations will dissociate
into free disclinations. Now bond-orientational order is
also lost (ignoring substrate effects) and one has a true
liquid, i.e.,

(HEWO))y ~e %0, (10)

where &4 is the bond-orientation correlation length. This
transition is also continuous.

The KTHNY theory assumes that the core energy of a
dislocation is large enough so that the density of disloca-
tions is small. If the opposite were true and many disloca-
tions were present, they could conceivably form grain
boundaries. Chui'® has in fact argued that grain
boundaries will always form before the dislocation pairs
unbind, and that the transition would then most likely be
first order.

III. ' PREVIOUS EXPERIMENTS

The structure of xenon on graphite has been studied by
a variety of methods including adsorption isotherms,!!
low-energy electron diffraction (LEED), transmission
high-energy electron diffraction (THEED), Auger-
electron spectroscopy (AES),'? ellipsometry,!> x-ray
scattering,'*~!® and hydrogen'® and helium atom scatter-
ing.? In particular, the adsorption-isotherm, LEED,
THEED, and AES measurements have all reported a
first-order melting transition at submonolayer coverages.
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The adsorption isotherm measurements of Thomy and
Duval,?! however, show the liquid-solid coexistence region
narrowing down considerably up to their highest mea-
sured temperature, 118.1 K. Schabes-Retchkiman and
Venables?? have reported that the xenon incommensurate
lattice is not rotated with respect to the graphite surface,?
although D’Amico and Moncton®* have now observed this
effect at higher temperatures.

The first x-ray scattering experiments of xenon on gra-
phite were performed by Brady et al.,'* who observed a
liquid phase at a temperature of 175 K. The melting tran-
sition was first seen by Hammonds et al.,!> who con-
firmed the existence of a 2D triple point at 99 K and
found a first-order transition up to 112 K (the highest
temperature they studied). As we discussed in the Intro-
duction, more detailed experiments by Heiney et al.!” re-
sulted in the observation of a continuous transition at a
temperature of 152 K and a coverage of 1.1 ML. Further-
more, the data outside of the asymptotic region were well
described by Eq. (9) with rescaled parameters and with

=+ at melting. A possible phase diagram proposed by
Heiney et al. is shown in Fig. 1. Most recently, Rosen-
baum et al.!® have directly observed an orientationally or-
dered fluid phase using exfoliated single crystals of gra-
phite.?®

In addition to “real” experiments, there have also been
a number of computer simulations, of both the Monte
Carlo and molecular-dynamics type, which have attempt-
ed to simulate a system of interacting particles in two di-

mensions. The results for particles interacting with a
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FIG. 1. Hypothetical pressure-vs-temperature and pressure-

vs-density 2D phase diagrams with a multicritical point. First-
order lines are solid and continuous lines are dashed. The mul-
ticritical point is shown by an open circle. The hexatic phase is
not shown. The trajectories taken in the course of the present
experiment are shown schematlcally by the dotted lines where
T1 < T2 < T3

Lennard-Jones potentlal show transitions which are first
order,**~28 continuous,?’ and ambiguous.’® Many of the
simulations with first-order transitions also find that there
is no hexatic phase. In particular, Koch and Abraham,?’
and Abraham,?® have specifically tried to simulate xenon
on graphite, taking into account the effects of both sub-
strate and vapor. The most recent results now appear to
be consistent with this and other experiments.!”!8

Taking another approach, Saito®! has simulated a sys-
tem of dislocation vectors and has found that the order of
the transition depends on the size of the dislocation core
energy. If the core energy is sufficiently small, disloca-
tions will be created in large numbers and will form grain
boundaries. This results in a first-order transition as

redicted by Chui.'® If the core energy is too large, there
p

will not be enough dislocations present to form grain
boundaries and the transition will be continuous as
predicted by the KTHNY theory. Strandburg et al.’?
have simulated the Laplacian roughening model which is
dual to the dislocation model of Saito. They find a con-
tinuous transmon but cannot vary the core energy.
Swendsen,*? who has performed simulations of the 2D XY
model, has found results similar to Saito regarding the
core energy of a spin vortex. These particular computer
experiments, then, also suggest the existence of a mul-
ticritical point.

IV. DESCRIPTION OF THE EXPERIMENT

This experiment was performed on the high-resolution
setup on beam line VII-2 (wiggler line) at the Stanford
Synchrotron Radiation Laboratory (SSRL). More details’
may be found in Ref. 34. The synchrotron produces a
pulsed, highly collimated, highly-plane-polarized photon
beam. It is monochromatized by a pair of parallel
Ge(111) crystals which were tuned to a wavelength of
1.7548 A corresponding to a wave vector of 3.5806 A~
The beam then passes through a monitor counter used to
normalize all counting rates since the beam intensity
changes with the varying ring current. The beam size at
the sample was about 2 mm X2 mm. The scattered x rays
are then analyzed by another Ge(111) crystal in the non-
dispersive configuration, and finally detected by a Nal'
scintillation counter (also used in the monitor). The in-
plane (Q 1) resolution of this arrangement is ~0.0003 A~!
in both the longitudinal (radial) and transverse (angular)
directions. The out-of-plane (az) resolution is ~0.03
A~! near the Xe(10) peak. The sample, analyzer, and
detector are all mounted on a Huber 5020 six-circle
goniometer with a stepping precision of 0.0005° and an ac-
curacy of ~0.005°. The goniometer and data collection
are controlled by a PDP 11/34 computer interfaced to a
CAMAC clectronics crate. An overall schematic of the
experiment is shown in Fig. 2.

The sample itself was a piece of ZYX exfoliated gra-
phite with dimensions 25 mm X 25 mm 2.5 mm. The ¢
axis is perpendicular to the thin plane. The crystallites of
which it is comprised typically have a surface size of
~2000, A (or ~800 lattice spacings), and a thickness of
~500 A (or ~150 carbon layers). Thus, as has been dis-
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FIG. 2. Overall schematic of the experiment.

cussed extensively in the past,'”*® in an experiment one is
not observing the scattering from a single layer of ada-
toms, but from many layers, each with a different but
well-characterized orientation in space. Therefore, in or-
der to compare the observed scattering intensities with
theory, it is necessary to perform an orientational averag-
ing of the appropriate theoretical structure factors, which
consists of two parts: an in-plane powder average and a
c-axis mosaic average. This will be reviewed in the next
section. - The in-plane powder average unfortunately
compromises one’s ability to study orientational ordering.
The sample was enclosed in a cylindrical sample cell
which could be filled with gas from an external line. The
sides of the cell were made of thin beryllium windows to
allow for the passage of x rays. The cell was mounted on
the end of the cold head of an Air Products Displex cryo-

stat. A heater located on the cold-head shaft and connect- '

ed to a Lakeshore DTC-500A temperature controller en-
abled variable-temperature regulation of the sample from
~15 to ~300 K. Both feedback and sensing were done
with a calibrated silicon diode embedded in the base of the
sample cell. Temperature stability was +20 mK over a
24-h period with an accuracy of ~0.1 K. The diode volt-
age was read from a Hewlett-Packard 3455A digital
voltmeter (DVM) and the temperature was interpolated
from a calibration table.

A gas-handling system controlled the amount of gas in
the system. We used xenon gas with a purity of 99.995
mol %. The pressure in the system was measured by two
MKS Instruments, Inc. (MKS) Baratron capacitive pres-
sure sensors with ranges 0—10 and 0—1000 Torr, respec-
tively. The pressure was read out directly on a Keithley
192 DVM. The precision of the (0—10)-Torr sensor was
+0.0001 Torr with an accuracy of ~0.002 Torr. Using
the ideal-gas law PV =NkpT, N can be determined by
measuring the pressure in a known volume at a fixed tem-
perature. Since the temperature of the gas-handling sys-
tem remains fixed, the amount of gas adsorbed is most
conveniently measured in units of pressure times volume,
i.e., Torrcm®. By expanding gas into (or pumping gas out
of) the system, and measuring the initial and final vapor
pressures, the amount of gas adsorbed (or desorbed) can be
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determined from the missing (or excess) vapor. The pre-
cision of this method was +0.1 Torr cm?® with an accuracy
of ~1 Torrem®. Owing to the small diameter of the gas
line in the cryostat, it was necessary to correct for thermal
transpiration effects at low (< 1 Torr) pressures.>¢

V. DATA ANALYSIS

The data analysis consisted of hypothesizing a structure
factor, calculating the intensity which one would then ex-
pect to see at a detector, and then comparing this result
with the data. This has been discussed by Stephens
et al.,*® but for completeness, we present the essential
features here. In- the solid phase, we should use the
power-law structure factor, Eq. (2). In practice, we have
used the modified form of Dutta and Sinha®’ which takes
into account finite-size effects:

S(q)=Ao®(1—+n; 1; —q*L%/41m) , (11)

where g = |(§ ,—G |, L is the size of a crystallite, 4, is
an overall amplitude, and ®(a;b;z) is a degenerate hyper-
geometric function also known as Kummer’s function.
[In two dimensions the scattering will only depend on the
in-plane (6 1) component of the momentum transfer.] In
the hexatic phase, where there is still orientational order,
we shall assume for simplicity that the structure factor
consists of Lorentzian spots; that is,
— A0K2
S(Q=—F—F—"7". (12)
(Qr—Qp)*+«*
Equation (12) should be an adequate approximation for
the actual structure factor, when the long-range hexatic
order is highly developed.’®* When there are no (or weak)
bond-orientational correlations, the structure factor
should be isotropic. Thus in two dimensions there will be
cylindrical shells of scattering, which we hypothesize to
be of the simple form

A0K2

(Q1 — Qo) +x*

This form should apply to a true 2D liquid. Also, as the
Lorentzian spot of the hexatic phase becomes more aniso-
tropic away from the melting transition as bond-
orientational order decreases, we expect that its structure
factor will cross over from Eq. (12) to (13).

As discussed previously, due to the nature of exfoliated
graphite, the theoretical structure factors must be aver-
aged over the distribution of crystallite orientations. The
in-plane powder average will smear the structure factor
into a ring so that all the phases will show cylindrically
symmetric scattering; that is,

Sn= [ s[31e)Nds, Cae

where S [(_jl(qﬁ)] is a 2D structure factor in a primed
frame that is rotated an angle ¢ relative to an unprimed
reference frame. The sharp power-law peaks of the solid
phase will still be apparent, although the in-plane powder
average cannot be calculated analytically. As originally
discussed by Hammonds et al.,'* if we substitute Eq. (12)

S(Q)= (13)
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for the hexatic phase, then S(Q,) can be evaluated exact-
ly, yielding, to a good approximation,
2w Aok?

S = . 1
S RV=10 T o a2 1

Thus a radial scan should produce a square-root Lorentzi-
an line shape. In the liquid phase, where the structure
factor is already a ring [see Eq. (13)], the in-plane powder
average will obviously have no effect. Therefore, al-
though all explicit information on orientational order has
been lost, the hexatic and liquid phases may still have dif-
ferent radial line shapes.

After the in-plane powder average is done, it is neces-
sary to perform a c-axis mosaic average, namely

~ 2 L —
$(01,0)= [ da [ d(cosp)S(Q’(a¥)PW), (16)

where S(Q' (a,)) is the in-plane powder-averaged struc-
ture factor in a primed frame that is tilted an angle ¢ in a
plane which makes an angle a with, for example, the Q,-
Q, plane in the unprimed frame. P(1) is the probability
of finding a crystallite whose ¢ axis is tilted an angle ¥
from the mean. This distribution can be measured direct-
ly. A mosaic scan about the graphite (100) peak is shown
in Fig. 3. The distribution appears to be approximately
Lorentzian with a half-width at half maximum (HWHM)
of 8.5°. (This must be corrected for absorption effects,
after which one obtains a value of 8.3°, or 0.14 rad.)

Since the resolution of the measuring apparatus is not
perfect, a resolution function R (Q—Q’) must be convo-
luted with the in-plane powder- and mosaic-averaged
structure factor. The total intensity from a diffraction
peak is then given by

ILig(Q= [ &*Q’'R@Q—-Q"|f(Q)]’8@"). a1

The form factor f(Q) has now been included. There is
also a polarization factor P(Q), but since synchrotron ra-
diation is highly-plane-polarized in the orbit of the elec-
trons, and since all further scattering of the x-ray beam
(i.e., from the monochromator, sample, etc.) is in the
plane perpendicular to the incident polarization vector, we
may take P(Q)=1. In the experiment described here, the
limiting resolution factor ig not the apparatus resolution
(~0.0003 A‘l, or ~ 3000 A) but rather the finite size of
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FIG. 3. Rocking curve of the (100) peak in ZYX graphite
showing the c-axis mosaic distribution. The solid curve is a fit
to a Lorentzian line shape. (5X 10* monitor counts is ~5 sec.)

the crystallites ( ~2000 A). Furthermore, the out-of-plane
(Q,) resolution will be unimportant if

1807
2 G

where 8Q, is the out-of-plane resolution, G is the magni-
tude of the reciprocal -lattice vector of the scattering peak,
and ogwywm is the half-width at half maximum of the
peak. In this experiment, 8Q, =0.03 A-l G=16 A,
and aHWHM~O 003 A~ 1" so that this condition is satls-
fied. It is therefore a valid approximation to treat the
resolution as perfect and take R (Q—Q ’)=83(6—6 ") so
that

I Q)= | £(Q)|%5(Q,,0,) . (19)

There are also other sources of scattering to be con-
sidered in addition to diffraction from the adsorbate.
These will all contribute to an overall background intensi-
ty Tpak(Q). There is scattering from the graphite sub-
strate (~400 counts per 5 10* monitor counts) which
can be measured directly in the absence of any adsorbate.
This is by far the largest source of background. There is
scattering from the 3D vapor coexisting with the adsorbed
phases. Even in the worst case (largest vapor pressure),
this is quite small (~8 counts per 5 10* monitor counts
at a vapor pressure of 10 Torr) compared to the substrate
scattering and can be neglected. All other sources of
background are totally negligible.

As discussed by Heiney et al., the presence of any ad-
sorbate or vapor also results in additional absorption of
the x-ray beam, which must be corrected for.!” The total
calculated intensity must be multiplied by a factor
B =e~#°! for each absorber, where u is the mass absorp-
tion coefficient of the absorbing medium at the wave-
length of the incident radiation, p is the mass density of
the absorber, and / is the path length through the ab-
sorber. For a typical total amount adsorbed of 400
Torr cm?, absorption by the adatoms yields B =0.82; thus
this is a significant effect. Absorption by the xenon vapor
in the sample cell was found to be negligible.

The final calculated intensity is then given by

Leate(Q) =B [Lir(Q) 4+ Taer (Q)] (20)

The data analysis consisted of performing least-squares
fits of the measured intensities to the calculated intensi-
ties. It should be emphasized that for each phase only
three parameters were adjustable: peak amplitude, peak
position, and 7 or «, depending on the line shape used. A
best value for the sample size L [necessary for the solid
fits; see Eq. (11)] was first determined by least-squares
analysis and then fixed. All other parameters (e.g., ab-
sorption factor, mosaic width) were either calculated
a priori or directly measured.

<<OHWHM > (18)

VI. EXPERIMENTAL RESULTS

The melting transition of xenon on graphite was studied
as a function of vapor pressure with the temperature of
the graphite sample held fixed. This was done at three
temperatures, 116, 125, and 134 K, which were estimated
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from the Thomy-Duval!! isotherm data to be in the first-
order, multicritical, and continuous regions, respectively
(see Fig. 1). Thus, at each temperature, we also have
in situ adsorption isotherms. Unfortunately, these were
not as clean as we would have liked, possibly due to capil-
lary condensation.’® Adsorption isotherms of xenon on
graphite taken more carefully after the completion of the
x-ray experiment are shown in Fig. 4. We will show
below that the melting transitions at 116, 125, and 134 K
are at pressures (P,,) of 0.0405, 0.305, and 2.05 Torr,
respectively. The first of these pressures is too low for the
transition to be observable in the isotherm in Fig. 4. At
125 K there is an inflection in the isotherm which is ap-
proximately at the P,,. By 134 K the inflection in the iso-
therm has become quite broad and is at a pressure slightly
below P,,. Unfortunately, because the isotherms were not
carried out coincidentally with the scattering experiments,
we cannot rule out slight systematic errors in the absolute
values of the transition pressures. Point B; is the conven-
tional definition of 1 ML which was found to be (535+10)
Torr cm?. The coverage in these units at the melting tran-
sitions at 116, 125, and 134 K are 0.86, 0.88, and 1.0 ML,
respectively. It should be emphasized, however, that since
there is no unique way of defining a monolayer, these
numbers are subject to systematic errors.

At each vapor-pressure point, a radial x-ray scan was
performed from 1.3 to 1.8 A~!, with a more detailed
scan taken near the peak if it was sharp. Scans were taken
repeatedly as the system approached equilibrium. Thus,
when the vapor-pressure and x-ray intensities stopped
changing, we could be reasonably sure that equilibrium
had been achieved. Also, as a further test, the system was
periodically thermally shocked to see if it would return to
the same equilibrium conditions as before the shock,
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FIG. 4. Adsorption isotherms of xenon on graphite. The
melting transition is evident at 125 K and is seen as a small in-
flection at 134 K. There is not enough detail to see it in the
116-K data. Point B, is the conventional definition of 1 ML.
The error bars are smaller than the size of the points.

which it did. A summary of the melting (or actually
freezing) sequence at 134 K is shown in Fig. 5. The data
have been background-subtracted, leaving only the signal
from the adsorbed layer. An attempt was made to fit
each scan to each of the three postulated line shapes: a
Lorentzian spot (LOR SPOT), a Lorentzian ring (LOR
RING), and a Kummer function (KUMMER). It is re-
vealing to plot the normalized X-squared values for each
fit as a function of vapor pressure, as shown in Fig. 6. At
125 and 134 K the Lorentzian-ring fits work best at low
pressures, the Lorentzian-spot fits work best in some in-
termediate region, and both the Kummer-function and
Lorentzian-spot fits work almost equally well at high
pressures. (This is not too surprising, since for a very
sharp peak, a Lorentzian spot is mostly power-law tail
anyway.) At 116 K there does not seem to be a region
where the Lorentzian-spot structure factor works best. By
fitting the central peaks of the data that are clearly in the
solid phase to the Kummer function, a best value for L
of 2300 A was determined.

The ability to distinguish a Lorentzian ring from a
Lorentzian spot is demonstrated in Fig. 7. The fact that,
at 125 and 134 K, the Lorentzian spot works better in
some small region that either a Lorentzian ring or a Kum-
mer function implies that the original assumption of an
orientationally ordered phase is correct. Thus, we have
indirect evidence for the hexatic phase close to T,. An
orientationally ordered fluid has now been directly ob-
served by Rosenbaum et al.!® Although no Lorentzian-
spot fits were found to work best at 116 K, there are not
enough data points to rule out the existence of the hexatic
phase at that temperature.

At 116 K, under the assumption that the transition is
first order, and that there is therefore a coexistence region,
fits to a sum of a Kummer function and a Lorentzian
spot were attempted. (This assumes the existence of the
hexatic phase. Using a Lorentzian ring instead made little
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FIG. 5. X-ray scans of the Xe(10) peak at 134 K. The pres-
sures are in Torr. The error bars have been omitted for the sake
of clarity. The solid lines are fits to the data as explained in the
text. '



T =
F 116 K
51 E
a
Z T -
NS
10}
Y | . [y t
. N
st . .9t .
- -+ M
Py S N
0.02 0.03 0.04 0.05 0.06

VAPOR PRESSURE (torr)

24—
K

L
20[: 125 K L]
op
z
NSRS -
BT . a2
st . . e
. . ot ept. e s ]
4 . ®
[ o, = sas  sa= z
o L% e N
0.15 0.20 0.25 ) 0.35 0.40

VAPOR PRESSURE (torr)

i y
2F 134K

R
Z st
S~
% t
+} Py 4
. e
XN . . 4
M ---o' ]
R . A
o 1 2 3 4

VAPOR PRESSURE (torr)

FIG. 6. Normalized X-squared values as a function of vapor
pressure for Lorentzian-ring fits (M), Lorentzian-spot fits (@),
Kummer fits (A ), and coexistence fits ( + ).

difference in the qualitative results.) Since only the peak
amplitudes should vary in a coexistence region, these fits
were made with « and 7 held fixed at their estimated
values on the liquid and solid phase boundaries, respec-
tively. The positions of the peaks were allowed to vary as
a consistency check. (The same analysis was performed
on the 125-K data, but since there is no obvious coex-
istence region at that temperature, there is no way to as-
sign values to the fixed variables.) An example of a coex-
istence fit is shown in Fig. 8. In some cases this proved to
be a better fit than either a Kummer-function or a
Lorentzian-spot fit alone. Further evidence that the tran-
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FIG. 7. Comparison of a Lorentzian-ring fit and a
Lorentzian- -spot_ fit for the same scan. In the Lorentzian-ring
fit, k=0.1166 A-t , and in the Lorentzian-spot fit, k=0.0475
A-L
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FIG. 8. Coexistence fit at 116 K. The line through the points
is the sum of the dashed line (Kummer function) and the solid
line (Lorentzian spot). In this example, G=1.58440 A,
Q0=15860AK 000864A*,andn 0.25.

sition at 116 K is first order may be seen in Fig. 9. This
shows a plot of the measured peak intensity as a function
of vapor pressure. There is a discontinuous jump at the
melting pressure P,,. This may be interpreted as the solid
peak growing out of the liquid peak in the coexistence re-
gion where the pressure is constant. It is clear, however,
from the large correlation length of the liquid at the tran-
sition, that at 116 K the freezing is only weakly first or-
der. This agrees with the 54-A correlation length deter-
mined by Hammonds et al.?.

The fits yield values for the melting pressure of

. P, =(0.0405+0.005) Torr at 116 K, (0.305+0.004) Torr

at 125 K, and (2.05+0.01) Torr at 134 K. As we have
noted previously, the melting transition at both 116 and
125 K is well below 1 ML. At 134 K it seems to occur at
or just below above 1 ML.

Several features of the data should be noted at this
point. First, there is no evidence in the solid phase at
these temperatures for satellite peaks produced by the
modulation of the adsorbate lattice by the substrate field.
These should occur at linear combinations of adsorbate
and substrate reciprocal-lattice vectors. Thus, for a xenon
superlattice rotated 30° with respect to the substrate, there
should be a primary modulation peak at 1.75 A1 coming
from the Xe(10) reciprocal-lattice vector at 1.6 A-!and
the graphite (100) reciprocal-lattice vector at 2.946 AL
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FIG. 9. Peak intensity as a function of vapor pressure at 116
K.



444 DIMON, HORN, SUTTON, BIRGENEAU, AND MONCTON 31

L e
0.12 | L. e " R
N
L ]
= H
| 008}
< |
9] - (o) 4
. 116K
0.04 " a oe 125K 1
| g aa 134K
ao
Py L N
0 0.2 0.4 0.6
(Pm—P)/Pp
T — T T —
.
0.10 | . 4
3 ¢ . .
0.08 | Ang L e
o L . . 4
| h
< 0.06 | r g
= L .
(o)
= 004 |
+ o . 116K
_ . 125K
0.02 |- s 134K 1
L o §
b‘
° . L " L A
0 0.2 0.4 0.6
(Pr=P)/Pp

FIG. 10. (a) Fitted « and (b) HWHM of the peaks as a func-
tion of reduced pressure. The open symbols are from the
Lorentzian-spot fits and the solid symbols are from the
Lorentzian-ring fits. The error bars are approximately the size
of the points.

No such signal is observed. Second, the solid scans seem
to deviate slightly from the predicted power-law behavior,
particularly on the low-Q, side, but since the theory was
derived in the limit of large R or small g, it should break
down when g ~1/a. Third, in principle, 77 should vary as
02> but in this analysis it was taken to be independent of
Q. [In the KTHNY theory, it is always assumed that one
is very near a reciprocal-lattice vector, so that in Eq. (3)
they have fixed Q =G.] Fits were tried with a Q%
dependent 77, but this had little effect on the results, not
surprisingly, since all the statistical weight is in the peak
anyway.

The values for « at all three temperatures, obtained
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FIG. 11. Peak amplitude 4, vs « from the Lorentzian-spot
fits on a double-logarithmic plot. The error bars are approxi-
mately the size of the points.

from the best fits, are plotted in Fig. 10(a) as a function of
reduced pressure (P, —P)/P,. Thus, at low pressures
they are all from the Lorentzian-ring fits, and at higher
pressures, but still in the liquid phase, they are all from
the Lorentzian-spot fits. The data appear to scale even
though they are all outside of the KTHNY asymptotic re-
gion. Because of the change in line shape there is an ap-
parent jump in k from ~0.004 to ~0.010 A~!. This is
clearly an artifact since the intrinsic line shape must
evolve continuously. To give a better indication of the ac-
tual evolution, we plot in Fig. 10(b) the fitted HWHM.
The concave curvature near the transition may be real, al-

_ though we cannot rule out inhomogeneities in the graphite

surface. However, it probably does not reflect the asymp-
totic form for «(T) from the KTHNY theory [see Eq. (9)].
(It should be noted here that, whereas all the predictions
in Sec. II were given as a function of temperature, in this
experiment we have studied everything as a function of
pressure. Nevertheless, the results should be the same.)
The data shown in Fig. 10 are quite similar to those ob-
tained by Heiney et al. at 152 K. One of the most in-
teresting features of the data is that the actual transition
region is extremely narrow. By way of comparison, for
the nearest-neighbor 2D XY model for a comparable
change in K, the temperature scale is expanded by more
than an order of magnitude.** This compression is to be
expected for two reasons. First, the existence of hexatic
(bond-angle) correlations will rescale the bare lengths,
thereby increasing &, and decreasing b [Eq. (9)] from their
values in the XY model. Second, all temperatures studied
are in the vicinity of the multicritical point at which the
transition becomes first order. Indeed, the surprising fact
that the data scale with reduced pressure suggests an ex-
tremely gradual crossover (large crossover exponent) as
one moves away from the multicritical point.

From the Lorentzian-spot fits we may obtain a value
for n* from the hydrodynamic scaling relation 4q « K72
[see Eqgs. (6) and (12)]. A plot of A, versus k on a
double-logarithmic scale is shown in Fig. 11 for all three
temperatures. The values obtained are n*=0.24+0.02 at
116 K, and #*=0.23+0.02 at 125 and 134 K. (Notice,
however, only three points exist in the liquid phase at 116

107 ———— 11 T T =
? k- 1
2 K LOR SPOT FITS ]
=z o e 116K 1
> - . 125K .
>
% L_ s 134K N
<
x
ia] 105L~ .
o4 = E
< F ]
= o ]
J - _
o = J
=}
= = J
I
o L 4
=
<
% 10% =
a C

| . .
4x107* 1x1073 2x1073
© (A7

FIG. 12. Lorentzian-spot fits continued into the solid phase
showing the breakdown of hydrodynamic scaling. The straight
line has been extrapolated from Fig. 11.
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K.) These may be compared to the value of
1* =0.28+0.05 obtained by Heiney et al.!” using the same
method. In Fig. 12 the same data are shown, but with fits
to a Lorentzian spot extended into the solid phase as well.
Near the melting transition the fitted values deviate from
the straight lines shown in Fig. 12 extrapolated to smaller
k. (Only one line is shown for clarity.) Thus, even though
the Lorentzian spot works equally well as the Kummer
fits in the solid phase, this breakdown in the scaling rela-
tionship is an indication that a Lorentzian spot is no
longer the correct line shape.*! The correctness of the
Kummer-function line shape in the solid phase can be
directly illustrated by noting how the observed scattering
depends on the instrumental resolution.!” It should be
noted that the Lorentzian-spot fits from 116 K have been
included in Figs. 11 and 12. Why they should follow the
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FIG. 14. Peak positions from the best fits: Lorentzian ring
(M), Lorentzian spot (®), Kummer function (A), and the solid
peak from the coexistence fits ( + ). The error bars are approxi-
mately the size of the points.

universal curve is a mystery since the transition is first or-
der, and, moreover, they are not the best fits. This may,
however, be just another indication that the transition has
a large crossover exponent. The values of x from the
Lorentzian-ring fits do not scale, but this is to be expected
when k~1/a.

Values for 17 may also be obtained from fits to the
Kummer function, Eq. (11), in the solid phase. The re-
sults are shown in Fig. 13 as a function of reduced pres-
sure. These results are quite similar to those obtained by
Heiney et al.'” At both 125 and 134 K, 7 approaches a
value of 7*=0.35+0.02 at the melting transition, a num-
ber rather different from that obtained above from hydro-
dynamic scaling on the liquid side. At present, this
discrepancy is not understood. There could be some sys-
tematic error in 7* determined either by hydrodynamic
scaling or from the line-shape analysis. In either case, it
appears that additional theoretical input is called for. Un-
fortunately, there are not enough data at 116 K to deter-
mine n*.

Finally, the peak positions from all the best fits are
plotted in Fig. 14 for each temperature. In a first-order
transition the peak position of each phase would remain
unchanged as the vapor pressure was increased. This ap-
pears to be the case for the solid peaks in the coexistence
fits at 116 K. Certainly at 134 K the peak position
changes smoothly and monotonically. The data at 125 K
are not as clean. .

VII. SUMMARY

We have examined the melting of xenon on graphite at
three temperatures, 116, 125, and 134 K, as a function of
vapor pressure. At 116 K the transition is weakly first or-
der, as evidenced by a jump in the peak intensity at the
transition pressure, the ability to fit to coexistence line
shapes, and a solid peak position that does not change sig-
nificantly in the coexistence region. At 125 and 134 K
the transition is continuous within our experimental accu-
racy; all quantities change smoothly as a function of va-
por pressure and there is no apparent coexistence region.
Values. for n* have been obtained from hydrodynamic
scaling at all three temperatures. We find that
7*=0.24+0.02 at 116 K, and *=0.23+0.02 at 125 and
134 K. Indeed, the inverse correlation lengths at all three
temperatures follow a universal law as a function of re-
duced pressure, even though the data are taken well out-
side the asymptotic critical region®° and the transition at
116 K is first order. Values for * have been obtained
from fits in the solid phase. We find that n*=0.35+0.02
at 125 and 134 K. These values disagree somewhat with
the results from hydrodynamic scaling and this remains a
mystery. All the results, however, are still within the
bounds of the KTHNY theory and are consistent with the
experiments of Heiney et al.!’

It appears that we have indirectly seen an orientational-
ly ordered fluid phase at 125 and 134 K by observing a
crossover in the best fits from a Lorentzian-ring line
shape to a Lorentzian-spot line shape.

The crossover from a first-order transition at 116 K to
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a continuous transition is remarkably gradual. For exam-
ple, the transition at 125 K is essentially identical to the
transitions at 134 and 152 K, while the transition at 116
K is quite weakly first order. We found this very surpris-
ing since we initially anticipated dramatic effects in the
multicritical region.

It is certainly clear that the melting of xenon on gra-
phite can be either first order or continuous, depending on
where one crosses the phase boundary, and hence, the den-
sity at melting. This may be connected with the computer
simulations of Saito’! and Swendsen,’® which indicate
that the dislocation core energy must play a role in the
physics of 2D melting. However, there is an urgent need
for a renewed theoretical effort to examine the crossover
from first- to second-order melting in physically relevant
models. Hopefully, the results reported in this paper will
provide an appropriate testing ground for such theories.
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