
PHYSICAL REVIEW 8 VOLUME 31, NUMBER 7

Magnetic structure and critical properties of Feoe2
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A neutron study of the tetragonal antiferromagnet FeGe2 has shown the existence of two continu-
ous magnetic transitions at temperatures of -263 and -289 K. The upper temperature corre-
sponds to a transition from paramagnetism to a basal-plane spiral structure propagating along the
cell edges in that plane. At the lower temperature the spiral structure is transformed into the simple
collinear structure previously reported in the literature. Typical critical behavior is observed at the
upper temperature for individual satellite peaks. T' he spiral propagation vector decreases continu-
ously to zero at the lower critical point, exhibiting power-law behavior with an exponent of
0.407+0.005. Heat-capacity measurements reveal two A.-type anomalies with critical exponents in
the expected range. The phase diagram has been analyzed using mean-field and renormalization-
group considerations. A model based on zero basal-plane spin anisotropy yields a magnetic struc-
ture which agrees with the observed structure of the intermediate phase. The effect of an external
field has also been treated theoretically.

I. INTRODUCTION

The magnetic properties of FeGe2 have been extensively
studied but have not been satisfactorily related to magnet-
ic structure. The present study reports new information
on the magnetic structure, its temperature dependence,
and critical point properties, which can provide a basis for
interpreting physical measurements.

FeGez crystallizes with the tetragonal ( C16) structure'
(a =5.908 A, c =4.955 A) shown in Fig. 1, in which
layers of Fe atoms alternate with layers of Ge atoms. Its
magnetic properties were first studied by Yasukochi
et a/. , who reported it to be antiferromagnetic and weak-
ly ferromagnetic below 190 K. The antiferromagnetism
was confirmed in the work of Airoldi and Pauthenet, but
in this, as well as in later work, no evidence of fer-
romagnetism was found.

A powder neutron diffraction study by Kren and Sza-
bo gave the magnetic structure indicated in Fig. 1, but
the accuracy was not sufficient to give both the moment
and the orientation of the antiferromagnetic axis. A basal
plane configuration was suggested inasmuch as this gave a
value for the iron moment of 1.2p~, which is close to that
found in the isostructural compound FeSn2.

A powder neutron diffraction study by Kren and
Szabo gave the magnetic structure indicated in Fig. 1, but
the accuracy was not sufficient to give both the moment
these authors concluded that the structure was noncol-
linear with a configuration that can be visualized using
Fig. 1, by rotating the spin axis at z = —,

' through an angle
of 71'+6' about c with respect to that at z =0. The

powder intensities were regarded as too weak to give reli-
able structure information. The temperature dependence
of the peak intensity of the (100) antiferromagnetic reflec-
tion showed the rapid decline expected for a second-order
magnetic transition together with a tail attributed to

FIG. 1. Crystal structure of FeGe2. Ge atoms are represent-
ed by dotted circles and Fe by open circles. Plus and minus
signs refer to the collinear spin structure first suggested by Kren
and Szabo (Ref. 4).

31 4337 1985 The American Physical Society



4338 LESTER M. CORLISS et aI,. 31

short-range order. The steep part of the curve extrapolat-
ed to -270 K, whereas the tail extended to between 285
and 290 K. Mossbauer measurements performed by these
authors gave a Neel point of 287+2 K, based on the
disappearance of the hyperfine field. The discrepancy be-
tween this value and that given by magnetic scattering
measurements was thought to be associated with the high
degree of short-range order above -270 K.

Independent powder neutron studies by Satya Murthy
et al. , Bertaut and Chenavas, and Adelson and Austin,
confirmed the collinear model with the spin in the basal
plane and the magnitude of the moment equal to
(1.2+0. 1)pz. Bertaut and Chenavas pointed out that
of the reflections predicted by the noncollinear model of
Forsyth et al. should have been visible in the powder di-
agrams, but was not observed. They concluded that the
single crystals might have been been chemically different
from the powder and suggested further study.

Solyom and Kren reviewed the various proposals for
the magnetic structure, pointing out that according to the
Landau theory of second-order transitions, only collinear
structures were allowed, with moments directed along the
tetragonal axis or along either [100] or [110) in the basal
plane. They suggested three possibilities. (1) The transi-
tion is not second order. (2) The noncollinear structure is
associated with two successive second-order transitions,
with the first giving rise to a collinear structure and the
second to a structure, such as that proposed by Forsyth
et al. , having two components, each of which has an al-
lowed symmetry. (3) The interpretation of the single-
crystal measurements is erroneous.

This analysis was followed by a series of papers report-
ing anomalies in a variety of physical properties which
could be associated with two successive transitions.
Krentsis et al. ' measured the temperature dependence of
resistivity, thermoelectric power, and linear expansion
coefficients, using crystals cut in the [001] and [100]
directions, and observed distinct anomalies at two tem-
peratures. Mikhel'son et al. ,

" using the same samples,
measured the variation with temperature of the specific
heat and also the susceptibility along [001] and [110].
The specific heat exhibited two fairly sharp maxima at
265 and 285 K in agreement with magnetic transitions ob-
served in XI »0~. Mossbauer measurements were carried
out by Sachkov et al. ' on single crystals at 242 K. They
reported that line intensities agreed best with the model of
Forsyth et al. , but as in the work of these authors, the
spectra showed no evidence of a transition at 265 K. The
anisotropy observed in the basal-plane spectra was ex-
plained on the basis that the thin crystal plates were single
domain. Proceeding from this idea, the authors suggested
that the apparent transition observed at -265 K for bu&k

single crystals and powders represented a domain reorien-
tation. The results obtained in this Mossbauer study in-
duced Piratinskaya et al. ' to carry out a more detailed
investigation of the anisotropy of the magnetic suscepti-
bility. The behavior of the low-temperature susceptibility
along various symmetry directions was explained in terms
of the noncollinear model, using the idea of domains and
making assumptions about the easy magnetic axes. No
explanation was offered, however, for the abrupt changes

in X~~ooj and LI-»o~ near 260 K and for the disappearance
of basal-plane anisotropy above that temperature.

Zinov'eva et al. ' studied the temperature dependence
of the velocities of longitudinal and transverse ultrasonic
waves in single-crystal specimens, and reported anomalies
at two temperatures. The discontinuities in compressibili-
ty obtained from elastic constants near 287 K, taken to-
gether with previously determined discontinuities in
specific heat and thermal expansion were found to satisfy
Belov's relation' for a second-order transition. In confir-
mation of this characterization of the transition, the
change in the velocity of sound waves was found to exhib-
it a power-law dependence on temperature in the vicinity
of 287 K, as predicted by Bennett. ' More recently, ul-
trasonic attenuation anomalies were studied by Pluzhni-
kov et al. , ' using crystals also grown at the Kirov Po-
lytechnic Institute, Sverdlovsk. The lower transition was
found to exhibit thermal and stress hysteresis and was
judged to be first order. It was not found possible, howev-
er to characterize satisfactorily the transition at T~.

II. SAMPLE PREPARATION

Two large ingots (50 g, 110 g) of FeGe2 were prepared
by fusion, in evacuated silica tubes, of a stoichiometric
mixture of "spectroscopically pure" iron rod and
99.9995 + % grade germanium, at 975'C for several days,
using an MgO crucible to contain the melt. Since the
compound is quite brittle, the ingots were readily crushed
and remelted to ensure maximum reaction. After the
remelting procedure, the smaller ingot was crushed (not
ground) to a fine powder and sealed in vacua in a silica
tube, which, in turn, was inserted into a length of heavy-
walled copper pipe, to minimize temperature gradients.
The, ends of the pipe were plugged with "quartz wool"
and the assembly sealed under vacuum in a large silica
tube. This assembly was heated to 550'C for several days
and then slow-cooled (80'C/day) to room temperature.
This annealed, finally divided sample was used for neu-
tron powder measurements. The larger ingot, prepared
for use in the heat-capacity measurements, was similarly
treated, but crushed only to a particle size range of I—5
mm prior to annealing.

Utilizing a portion of the fine powder, a modified
Bridgman technique was used to grow large (4 &(3 in. )

rods of FeGez (mp -866'C) in a shaped, recrystallized
alumina crucible, contained in an evacuated silica tube.
The conventional technique was modified to maintain the
bottom tip of the crucible approximately 200 C cooler
than the rest of the melt in order to prevent supercooling
into a metastable eutectic. Single-crystal specimens were
cleaved from the rods.

Slow vapor-phase growth of FeGe2 crystals was found
to occur when a small amount of FeGe2 powder was
sealed under I2 vapor in an otherwise evacuated silica tube
and placed in a horizontal tube furnace in a way that pro-
duced a temperature gradient of approximately 50 C
along the length of the tube. It was observed that trans-
port of FeGe2 solid occurred in the direction of cold to
hot in the temperature range 500 C to 725'C, as measured
at the hot end of the tube. At higher temperatures a re-
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versal of transport direction occurred even for gradients
of 20'C or less. Crystals grown at, or very close to, the
inversion point are expected to be stoichiometrically
equivalent to the original powder charge, and indeed,
crystals grown under these conditions showed excellent fa-
cial development.

III. LOW- TEMPERATURE STRUCTURE
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FIG. 2. Powder diffraction scans of the (100) magnetic re-
flection showing the sharp line, characteristic of the low-
temperature structure, and the splitting associated with the in-
termediate phase.

The noncollinear structure of Forsyth et al. was de-
duced from the appearance at low temperatures of two
sets of extra reflections: type 1, with h +k odd and I odd,
and type 3, with h +k odd and l even. The type-3 reflec-
tions are those observed in all the powder neutron studies,
whereas type-1 reflections were observed only with single
crystals. The initial experience in the present work was
the same as that of earlier workers and a number of exper-
iments were performed to clarify the difference between
single crystals and powders. In the first of these experi-

ments, the temperature dependence of the (100) reflection
(type 3) was compared with that of the (101) and (103) re-
flections (type 1), using a single crystal of approximately
10 mm in volume. Whereas the (100) decreased in typi-
cal Brillouin fashion, the (101) and (103) were essentially
constant in the same temperature interval, suggesting, at
the very least, that they were not associated with the same
magnetic structure. In a second experiment, a very small
perfect crystal with typical linear dimensions of 0.1 mm
was grown by vapor transport and oriented with x rays to
facilitate the location of reflections with neutrons. This
crystal exhibited a (100) reflection (type 3), but not the
(101) which is of type 1. A large single crystal with a
volume of -5 cm and which exhibited prominent type-1
reflections, was then ground into a powder and reexam-
ined. The powder pattern showed only type-3 reflections.
These experiments strongly suggested that type-1 reflec-
tions were spurious and were produced by double-Bragg
nuclear scattering, which is allowed for type 1, but not for
type 3. This suspicion was confirmed by studying the
variation of the (101) intensity as a function of incident
wavelength and observing that it was reduced essentially
to zero by a 10% change in wavelength. [Nuclear
double-Bragg scattering would produce an apparent peak
at the (101) position if the (101) and a suitable second
reciprocal-lattice point were simultaneously located on the
Ewald sphere of reflection. This geometrical coincidence,
if accidentally realized, can be destroyed by varying the
wavelength and hence the radius of the sphere. ]

We thus conclude that the low-temperature structure of
FeGe2 is, in fact, the collinear one suggested by the'several
powder studies and shown in Fig. 1. It is difficult, how-
ever, to obtain both the magnitude and orientation of the
spins from powder data. The single-crystal data of For-
syth et al. for the type-3 reflections show most clearly
that the spins have magnitude 1.2pz and are confined to
the basal plane. '

IV. INTERMEDIATE PHASE

The magnitude behavior at higher temperatures can be
seen qu'alitatively in the powder diffraction scans of the
(100) magnetic reflection shown in Fig. 2. At 250 K the
peak is sharp, with an angular width of 0.4' determined by
the instrumental resolution. At 265 K the peak is
broadened to 0.75' and at 270 K a definite splitting is ob-
served. This splitting increases with increasing tempera-
ture and at 285 K, in the vicinity of the Neel point, indivi-
dual components are noticeably broadened. The splitting
is clearly seen in single crystal scans of the magnetic re-
flections, as illustrated in Fig. 3. (To perform this type of
scan, the scattering vector is advanced in uniform steps
through the reciprocal-lattice point in a direction parallel
to a'. )

A detailed mapping of reciprocal space in the tempera-
ture regime where splitting occurs showed the presence of
four spots of equal intensity, located symmetrically in
[100] and [010] directions about reciprocal-lattice points
corresponding to the low-temperature structure. At these
temperatures the low-temperature phase is evidently
modulated with equivalent propagation vectors along the
[100] and [010] directions. The determination of the dis-
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FIG. 5. Log-log plot of the temperature dependence of the
magnitude of the propagation vector for the spiral spin struc-
ture. The exponent Pk, given by the slope, is 0.407+0.005; T„
the low-temperature transition point is 265.55 K.
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The magnitude of the propagation vector was found to
follow quite closely a power-law dependence on tempera-
ture:

with a transition temperature T, =262.55 and I33I, =
0.407 0.005. A log-log plot of this equation is given in

Fig. 5. It is quite remarkable that linearity is observed
over essentially the whole temperature range in which the
modulated structure is stable. Attempts to detect possible
thermal hysteresis in the temperature dependence of the
propagation vector were inconclusive; an upper limit was
estimated to be approximately 0.1 K (0.04%%uo).

VI. NEEL POINT TRANSITION

The planar configuration of four equal satellite spots is
maintained up to the Neel point. The intensity associated
with individual spots was found to decrease continuously
as Tz was approached and critical scattering typical of
second-order transitions was observed near T&, centered
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FIG. 7. Critical scattering associated with a single satellite
reflection at 290.0 K.

at each satellite position. The temperature dependence of
the integrated intensity of an individual satellite reflection
was measured at the (010) position, with the c axis verti-

cal, by scanning in the [100] direction. Just below Tz, the
satellites are well separated and intensity measurements
were straightforward. The results, corrected for critical
scattering, are represented in the log-log plot of Fig. 6, us-

ing an experimental value of T~ given by the temperature
at which the critical scattering was a maximum. The
value of 0.64+0.01 for 2P is seen to be typical of values

observed for Heisenberg antiferromagnets in second-order

phase transitions.
The critical scattering above T&, and its temperature

dependence, were more difficult to determine because of
overlap of the Lorentzian tails associated with different
satellites. Typical data for the region least affected by
this overlap is shown in Fig. 7. Values of the inverse

range parameter a. were obtained for several temperatures

by least-squares fitting with a Lorentzian cross section
convoluted with the instrumental resolution function.
The data are of limited accuracy but nevertheless provide
strong confirmation of second-order behavior. A log-log

plot of ~ versus ( T —T~)", shown in Fig. 8, yields a rough
value for the exponent v of 0.72+0.08, which is in the ex-
pected range. The Neel point used to construct Fi.g. 8 was
taken as the point where the data could no longer be satis-
factorily represented by a Lorentzian owing to the super-
position of Bragg scattering at the center of the scan. The
independently determined values of T~ used to obtain P
and v, differ by approximately 0.5%. This is larger than
one would like for a quantitative determination, but small
enough to support the general description of the transi-

' tion.

10 100 VII. HEAT-CAPACITY MEASUREMENTS

FIG. 6. Log-log plot of the integrated Bragg intensity of a
single satellite reflection as a function of temperature near the
Neel point. The line is drawn for 2@=0.64+0.01 and T~ ——288
K.

Heat-capacity measurements over the range 4—300 K
were carried out using a computer-controlled adiabatic
calorimeter system which has been described in detail else-
where. ' ' The absolute error of this system was deter-
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mined to be less than 0.5% using National Bureau of
Standards (NBS) standard samples of Cu and benzoic
acid. The electronic heat-capacity coefficient y was deter-
mined using a computer-controlled pulse calorimeter
operating over the range 1.5—10 K with an accuracy of
less than 1%.

The total heat capacity, as determined in this work, is
consistent with the results reported by Mikhel'son et al. ";
however, the resolution and precision of the present data
are considerably improved with respect to those reported
earlier. In order to extract the magnetic contribution to
the heat capacity we measured the heat capacity over the
range 1.5—300 K. This allowed for the evaluation of both
the electronic and lattice contributions. The electronic
heat-capacity coefficient y was determined to be 0.0043
J/mol K . The lattice contribution was evaluated by
determining the value of OD as a function of temperature
from the data below 80 K and extrapolating smoothly to
300 K. These values of OD were then used to calculate
the 1attice contribution to the heat capacity up to 300 K.
The magnetic contribution, given by C~ ——C„„,

p T Coebye p is shown in Fig. 9. These data exhibit two
A,-like anomalies occurring at 264.0 and 285.0 K. The
solid lines indicate the results of a gradient expansion
nonlinear least-squares fit to the equation

T TN
C A+8

TN

Both anomalies can be fitted, to within the indicated
errors, with 3 = 1.692+0.001, B =3.516+0.001 and
o.=0.159+0.001. The results of this treatment are con-
sistent with both transitions being of second order. The
transition temperatures are consistent with those reported
by Mikhel'son et al. ,

" but are slightly higher than those
given by the neutron measurements.

In order to ascertain that there was in fact no latent
heat associated with either transition, the amount of ener-
gy required to cover a 10-K range spanning each transi-
tion, was measured to determine the enthalpy change. In
each case the value of the enthalpy determined in this
manner agreed, within experimental error, with that ob-
tained from an integration of the heat-capacity data over
the same temperature range. This agreement leads to the
conclusion that the heat-capacity results show evidence

FIG. 9. Temperature dependence of the magnetic specific
heat. The solid lines represent a nonlinear least-squares fit, as
explained in the text.

for only second-order transitions at both temperatures.
The entropy associated with the magnetic heat capacity

up to 300 K has been determined to be 4.73 J/molK .
This is to be compared to R ln2 as expected from the
measured magnetic moment of 1.2pz determined from
the neutron studies. Thus 82%%uo of the expected entropy is
achieved by the magnetic system at 300 K.

VIII. SYMMETRY AND RENORMALIZATION-
GROUP CONSIDERATIONS

In this section we construct a Landau-Ginzburg-Wilson
(LGW) model associated with FeGe2. The expected mag-
netic structure and the phase diagram of this model are
then analyzed using mean-field and renormalization-
group considerations. We first consider the zero magnetic
field case and then analyze the phase diagram in the pres-
ence of an external magnetic field.

A. H =0

The neutron-diffraction studies presented in this work
suggest that the low-temperature phase of FeGe2 is associ-
ated with a two-component order parameter

= S ) —S2„+S3„—S4

Qy:S&y S2y +S3y S4y

Here (S;„,S~),i =1, . . . , 4 is the spin vector associated
with the Fe ion at site i (see Fig. 1). In the intermediate
phase this order parameter becomes modulated, with
propagation vector q along [100] and [010]. Such a phase
may be described by one of the following order parame-
ters: (a) A transversely polarized spin-density-wave
(SDW) order parameter

+iqy0'~ +q
——A„e—

+ iqx
Vy +q

——Aye —q

and (b) a longitudinally polarized SDW order parameter
+i'

+q
——A„e

(3)
+iqy

%y +q ——Aye —qy .

Each of these order parameters has n =4 components.
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Note that the two order parameters belong to two dif-
ferent irreducible representations of the paramagnetic
symmetry group of FeGe2 (D4&). Therefore, if the transi-
tion from the paramagnetic to the intermediate phase is
continuous, then one expects that the magnetic structure
of the intermediate phase should be given by one of these
order parameters (and not both). However, if the spin an-
isotropy is negligible, ' the two order parameters become
degenerate. We will consider this possibility at the end of
this section. We assume now that the order parameter is

In order to analyze the magnetic structure of the in-
termediate phase we define the following rea1 order pa-
rameters P;,P;, i =1,2:

(4)

The LGW model associated with the para-intermediate
transition takes the form

2 2

+u g p;+p; +U g(p;+p;)

Minimizing this Hamiltonian with respect to P; and P;,
one finds that for U &0 a transversely polarized SDW
structure (namely, a structure for which (4„+~)&0 but

(4~+~) =0) is favored. On the other hand for v &0 a
multi-q structure is favored. Here both (4„+~) and

(f„+~) are nonzero in the same domain. Within the
Landau theory both structures may be associated with a
continuous para-intermediate transition.

However, renormalization group (RG) calculations
yield further restrictions on the possible magnetic struc-
ture. RG studies of the model (5) in d =4—e (e&0) di-
mensions show that this model has a stable fixed point
which satisfies U* ~0 to second order in e. This suggests
that if the para-intermediate (i.e., para-incommensurate)
transition is second order, then the magnetic structure is
described by a multi-q spin arrangement.

The model (5) is associated with the para-
incommensurate transition. We now construct a more
general LGW model which may describe both the para-
incomrnensurate and incommensurate-commensurate
transitions. Let A, A~ be the order parameters defined in

Eq. (1). Consider the following Landau-Ginzburg model:

Minimizing (6) we find that this model exhibits a para-
commensurate (antiferromagnetic) transition at r =0 for
o. ~0 and a para-incommensurate transition at r = 4o,
for a&0. The two ordered phases are separated by a
first-order line. The fact that this line is first order is due
to the anisotropic term u in the Hamiltonian. The three
transition lines join at a Lifshitz point (see Fig. 10). Note
that the discontinuity of the order parameter along the
first-order commensurate-incommensurate line is expected
to vanish as one approaches the Lifshitz point. Therefore,
in the vicinity of this point the commensurate-
incommensurate transition is expected to be weakly first
order. In applying the model (6) to a concrete physical
system, one should consider temperature-dependent pa-
rameters r and o, . In the case of FeGe2, the parameters
might be such that as one lowers the temperature, one
finds a para-incommensurate transition followed by a
weakly first-order incommensurate-commensurate transi-
tion.

The experimental results discussed in the preceding sec-
tion suggest that the magnetic structure of the intermedi-
ate phase is composed of both transverse and longitudinal
order parameters %' and 4 . Within the Landau theory,
such a structure may indicate that the para-intermediate
transition either (a) is first order or (b) splits into two
second-order transitions each of which is associated with
one order parameter (either 4 or 4 ). Experimentally it
may not be easy to observe the two transitions if they are
close to each other, or to detect a discontinuity in the
transition if it is only weakly first order. The fact that the
intermediate phase seems to be obtained from the
paramagnetic phase by a single continuous transition, in-
dicates that the two order parameters 4 and %' are al-
rnost degenerate. In order to study this possibility, we
consider the phase diagram assuming that the in-plane
spin anisotropy is negligible and may be ignored —in this
case the two (n =4)-component order parameters %' and

form a single 8-component vector. Let

PARA

COMM.

0

1+—
2

2g d 2g
+u(A„+Ay)

+u(A„+A~) .

A 0= —r(A'+A')+ —a
k T 2 2 dy d

(6)

FICx. 10. (r, a) phase diagram of the model (6), obtained
within the mean-field approximation. The model exhibits three
phases: paramagnetic, commensurate, and incommensurate,
separated by three lines. The three lines join at a Lifshitz point
L. Here and in Figs. 11 and 12 thin lines represent second-order
transitions and thick lines, first-order transitions. Note that in
the zero spin-anisotropy case the commensurate-incom-
mensurate line is second order and not first order as shown (see
text).
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++1=Ae +iqx
t

0,= Ae+-'~&,

be the 8 components of the order parameter. Here ++~

and 4'+2 describe SDW with propagation vector along the
x and y axes, respectively. The LGW model associated
with this order parameter has four fourth-order invari-
ants, and it takes the form

AT 2 r(q I +—1++2 +—2)+ 2 (~+I ~+—I+~+2 ~+—2)+ I[(+I q —I) +(+2 —2) ]

+u (+ +—)(+ +—)+ z[(+I +I)(+—I +—I) (+I +—I) +(+2 +2)(+—2 +—2) (+2 +—2) ]

+ 2 [(+I +2)(+—I +—2)+(+I +—2)(+—I +2)]

The phase transition associated with this model may be
studied by renormalization-group calculations. We find
the following recursion relations to first order in v =4—d,
where d is the dimensionality of the system:

du) 2 2 2 2

dl
=au I

—k4(48u I +4u 2+z —4ulz+2IJ +4IIIu2),

du2 2 2

dl
=eu2 k&(—8u 2+48u2u, 4u2z+—2IJ

In summary, we find that the para-intermediate phase
transition is not expected to be continuous even if the
basal-plane spin anisotropy is neglected. The experimen-
tal observation, that the intermediate phase is composed
of both transverse and longitudinal order parameters indi-
cates that these order parameters are almost degenerate.
Simple considerations indicate t'mt the magnetic structure
may be a single-q planar spiral, in agreement with the ob-
served magnetic reflections.

+ 16wu I
—4wz),

dz 2 2
dI

=ez —k&( —Sz +48ulz+4ul )

In this section we consider the (H, T) phase diagram of
a model corresponding to FeGe2, with H~ ~[100].
LGW model takes the form

dw 2

dl
=ew —k4(8ul +16wul+16wu +4wz) .2

Here k4 is a constant. These recursion relations do not
have a real, stable fixed point. In particular we find that
all fixed points with III*=0 are unstable to perturbations
of w, while all the fixed points with ul*&0 are complex,
and therefore not physically accessible. This analysis sug-
gests that the para-intermediate transition is expected to
be first order.

By minimizing the LGW Hamiltonian, one obtains the
order parameter in the intermediate phase. The resulting
magnetic structure (whether it is, for example, single-q,
multi-q, linearly polarized SDW or a spiral) depends on
the parameters u~, u2, z, and w which define the model.
These parameters are not easy to calculate, and one needs
a detailed microscopic model for the magnetic interac-
tions in FeGe2 in order to estimate them. However, one
can get a rough estimate of these parameters, if one as-
sumes that the LGW Hamiltonian is derived from the
model (6), with U =0. Here, all four terms u I, u2, z, and
w are obtained from the single fourth-order term,
u(A„+A&), which appears in (6). In order to calculate
u I, u2, z, and w one has to Fourier transform the u term
in (6). We find ul ——6u, u2 ——8u, z =Su, and w =16u. It
can be verified that the magnetic structure which mini-
mizes this Hamiltonian is a single-q planar spiral, name-
ly, a structure for which %=x+iy and %2——0; where x
and y are unit vectors along the x and y axes, respective-
ly.

TN
T

H
PAR A

FIG. 11. Schematic {H,T ) phase diagram associated with
the model (7) for U &0, (a), obtained by mean-field calculations
and (b) consistent with the renormalization-group arguments.
In this case the incommensurate phase exhibits a single-q struc-
ture. TC is a tricritical point and L is a Lifshitz point.
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—cP p+A ]

where A o is the LCxW Hamiltonian in zero external field
given by Eq. (6) and

PA RA

A )=aH (A Ay—)
B

describes the coupling of the antiferromagnetic order pa-
rameter to the external magnetic field. Here a is a con-
stant. The magnetic field H favors ordering of A~ (rather
than A„) in the low-temperature, commensurate phase
and ordering of %'~+~ (rather than 4„+~) in the incom-
mensurate phase. The other term which affects the mag-
netic structure in the ordered phase is the cubic anisotropy
u. The (H, T) phase diagram will be affected rather drast-
ically by the sign of u. Consider first the case u & 0. Here
the cubic anisotropy favors ordering along [10] or [01]
(but not along [11] or [11]) in the antiferromagnetic
phase. It also favors a single-q structure in the intermedi-
ate phase. Therefore, in this case, the magnetic field and
the cubic anisotropy are not competing but rather they
favor the same type of ordering in both phases. The ex-
pected mean-field phase diagram is given schematically in
Fig. 11(a). This phase diagram displays second-order
para-commensurate and para-incommensurate lines and a
first-order commensurate-incommensurate transition.
The three lines join at a Lifshitz point L. This phase dia-
gram is expected to be valid also for the case in which the
the cubic anisotropy favors ordering along [10] or [01]
(but not along [ll] or [11]) in the antiferromagnetic
phase. It also favors a single-q structure in the intermedi-
ate phase. Therefore, in this case, the magnetic field and
the cubic anisotropy are not competing but rather they
favor the same type of ordering in both phases. The ex-
pected mean-field phase diagram is given schematically in
Fig. 11(a). This phase diagram displays second-order
para-commensurate and para-incommensurate lines and a
first-order commensurate-incommensurate transition.
The three lines join at a Lifshitz point L. This phase dia-
gram is expected to be valid also for the case in which the
cubic anisotropy v is taken to be zero. Within the RG ap-
proach the para-incommensurate transition at H =0 is
first order since the incommensurate phase exhibits a
single- q structure. We thus expect that the para-
incommensurate transition is first order not only at H =0
but also for sufficiently small H. At larger H the transi-

FIG. 12. Same as Fig. 11 but for U &O. Here the model ex-
hibits five phases: paramagnetic, two incommensurate phases
with single-q and multi-q structures, respectively, and two com-
mensurate phases with magnetic structures given by Ay and
( Ay Az ) respectively. CE 1 and CE2 are two critical end points.
Here T~ is a tetracritical point.

tion may become continuous via, for example, a tricritical
point. A simple phase diagram consistent with these con-
siderations is given in Fig. 11(b).

Consider now the case U & 0. Here the cubic anisotropy
favors ordering along [11] or [ll] in the commensurate
phase, and multi-q structure in the incommensurate
phase. The cubic anisotropy, therefore, competes with the
magnetic field. In this case one expects that at finite
field, the para-incommensurate transition should split into
two transitions: first a transition associated with %z+z
and then, at a lower temperature, a transition in which

+~ orders as well. Similarly the para-commensurate
transition should also split into two transitions associated
with A~ and A„, respectively. A schematic ( T,H) phase
diagram consistent with these considerations is given in
Fig. 12.
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