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Critical properties are studied in systems with quenched bond disorder that is correlated along dl
of d dimensions. A renormalization-group scheme (based on the Migdal-Kadanoff method) which
follows the full distribution of the random bonds and which gives correctly the modified Harris cri-
terion P =a+d& v is used. For d~ (d —1, we find fixed distributions at finite temperatures, yielding
new "random" exponents for various q-state Potts models. For dl ——d —1 there is no long-range or-
der if there is a finite weight to zero coupling. Otherwise, we find a novel zero-temperature fixed
distribution, for which all the moments diverge to infinity with finite ratios among them. This fixed
distribution has a magnetic eigenvalue equal to d, indicating a first-order transition in the magneti-
zation and possible related essential singularities. Thus, by analogy, the possibility of a magnetiza-
tion jump is raised for the McCoy-%u transition on a square lattice. The results for dl ——1 are
relevant to random quantum systems.

I. INTRODUCTION

The critical properties of systems with quenched ran-
dom interactions have been the subject of much interest in
recent years. ' It is generally accepted that random ex-
change interactions, with short-range correlations, have a
rather small effect (at least far above the percolation
threshold). Harris used a heuristic argument to show
that the critical behavior is unchanged if a=2 —dv(0,
where e is the specific-heat exponent, v the correlation-
length exponent, and d the dimensionality of the "pure"
(nonrandom) system. Momentum-space renormalization-
group (RG), general scaling, ' and position-space RG
arguments ' were later introduced to show that a is equal
to the crossover exponent of the width of the distribution
of the random exchange interactions. When a )0, one ex-
pects a crossover to a new behavior, characterized by a
RG flow to a finite-width fixed distribution of the ex-
change variables. Such a fixed distribution was indeed
found by both momentum space and position space
RG calculations. '

A different type of randomness arises in the case of
quttntum mechanic-al spin models at zero temperature. '

A well-studied example concerns the Ising model in a
transverse field, with the Hamiltonian

In the pure case, this model exhibits a phase transition at
zero temperature T=O, as a function of the transverse
field I . The properties of this transition in d dimensions
may be found by looking at a (d + 1)-dimensional classi-
cal (I =0) Ising model, with the coupling in the addition-
al "time" direction related to I ." ' Approximate RG
calculations for the random case, in d=1, found a "ran-
dom" fixed distribution of J's and I"s, with a negative

specific-heat exponent. ' An alternative approach would
be to map the random quantum case onto a (d+ 1)-
dimensional classical model. Clearly, the randomness in
the corresponding coupling constants will occur only in
the d-dimensional "space" coordinates, and not along the
additional time direction. The random interactions are
fully correlated along this direction, having the same
value along one-dimensional "rods." These statements
can be easily generalized to any quantum problem. ' '
Similar rodlike random interactions may arise due to ex-
tended linear (or planar) defects in crystals. All of these
serve as physical motivations for studying correlated im-
purities.

In this paper we consider the general case, in which the
random interactions are correlated along di of the d spa-
tial dimensions. In the first exact analysis of such a case
(the Ising model with d=2, di =1), McCoy and Wu'
found a so-called "smeared" transition which exhibited an
essential singularity (i.e., a= —00 ) in the specific heat at
the transition. However, our present work suggests a pos-
sible discontinuous onset of the magnetization at this
transition. One can generalize all the arguments listed
above for the Harris criterion and show that the crossover
exponent for such rodlike randomness is

(1.2)

Lubensky, who first derived Eq. (1.2) using momentum
space RG, found a "runaway" of the RG flows in
d =4—e dimensions, which he interpreted as indicating a
smeared transition. More recently, several authors em-
ployed a double expansion in e and in dl to find stable
randoin fixed points. ' ' However, similar expansion of
the Potts model in a=6 —d and in dl —2 yielded no
stable random fixed points ' and was interpreted as yield-
ing a smeared transition. %'e note again that these runa-
ways could also signify first-order transitions.
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Equation (1.2) shows that the exponent p is usually pos-
itive and large, and therefore the RG recursion relations
are expected to flow far away from the pure fixed point.
Such drastic changes in the critical behavior will hopeful-
ly be easily observable in real (or computer) experiments.
However, they are usually difficult to find using a pertur-
bative expansion, as used in the momentum-space RG cal-
culations. ' ' ' ' In the present paper we therefore em-
ploy the alternative approach of position spac-e RG. Fol-
lowing the ideas of Ref. 9, we generate the recursion rela-
tions for the full (correlated) distribution of coupling con
stants, and search for fixed distributions.

As we show below (Sec. II), there is a variety of ways to
introduce correlated randomness. In the earlier work, the
correlations were always along the same d& axes, and this
resulted in anisotropic correlations, e.g., different correla-
tion lengths along the d& correlated axes, gii-t " and
along the remaining axes, gi-r '. Permutations among
axes will generate an isotropic behavior.

Specifically, we study the correlated random q-state
Potts model, using the Migdal-Kadanoff position space
approach. ' This approach, which is exact on hierarch-
ical lattices, has the advantage that Eq. (1.2) is exactly
obeyed (with the appropriate approximate exponents).
The exponent P can be continuously varied ' by chang-
ing the number of states, q. A discussion of Eq. (1.2) is
given in Sec. III. Our detailed recursion relations are then
described in Secs. IV and V.

Unlike the perturbative calculations, ' we do find ran-
dom fixed distributions for all q's when d= 3, d

&

——1, and
P) 0. These are described in Sec. VI. In contrast, we find
a different behavior for the McCoy-Wu case, d =2,
di ——1, as well as for d=3, d& ——2. We believe this
behavior to apply whenever d

&
——d —1, in which case the

system will break into finite one-dimensional rods for any
infinitesimal concentration of zero bonds. If this concen-
tration is zero, we find a flow to a new random fixed dis-
tribution at T=O, with a magnetic exponent equal to d.
This is interpreted as a first-order transition. ' The
essential singularity found by McCoy and Wu' may thus
be related to that encountered (as function of the magnetic
field) at the first-order transition which occurs at the
coexistence curve. Conversely, the McCoy-Wu transi-
tion could have a magnetization jump from zero. These
results are discussed in Sec. VII, and our conclusions are
given in Sec. VIII.

(0) (b)

xI

(i) We start by choosing one of the lattice directions, for
example, the z axis in Fig. 1(a). A constant value is as-
signed to all bonds pointing in the other d —1 directions
[e.g., the x and y directions in Fig. 1(a)]. We will choose
all the bonds along the z axis to be equal to one another if
they belong to the same line and the quenched disorder is
introduced by having bonds which vary randomly from
line to line according to the following rule: each line is re-
peated along d& —1 prechosen directions, so that there are
no correlations among lines along the other d —dl direc-
tions. In Fig. 1(a), the lines that are repeated along the x
axis are identical and those that are repeated along the y
axis are independent, namely di ——2. Notice that in this
case the prechosen z axis is always one of the d i direc-
tions because the lines are composed of identical bonds.
An example of this type of correlated randomness in d=2
is a model that is the dual of a McCoy-Wu random
model' where there are constant horizontal lines of bonds
and the bond value along the vertical lines changes ran-
domly from line to line but is the same within the same
line. Clearly, here d I ——1. For the construction described
above, we expect two correlation lengths, gii and gj, and
the free energy will scale with the exponent
2—cx =divii+(d —dt )vi.

(ii) In this case the procedure that was used in (i) is re-
peated for lines along all the d directions, and the di
directions are chosen with cyclic permutations. This is
shown in Fig. 2(a) with d=2, di ——1. Since the d axes are
now treated symmetrically, we expect the correlation
length to be the same in all directions, and 2 —o.'=dv.

(iii) This is similar to (i), with the difference that each
line itself is composed of independent random bonds and
the correlations are in the di of the other d —1 orthogo-
nal directions. This is illustrated in Fig. 3(a) where d=3
and di ——1 were chosen. In d=2, this reduces to the
correlated random Ising model that was solved exactly by
McCoy and Wu. ' In their model the lattice is composed

II. THE MODEL

The quenched disorder that we consider in this paper is
axially correlated bond disorder on hypercubic lattices,
where the bonds are independent random variables in
d —d

&
dimensions, d being the lattice dimensionality, and

identical along the remaining d& dimensions. In the con-
tinuum limit, i.e., e expansion, the value of d& will com-
pletely define the correlations between various random
bonds, whereas on Bravais lattices (discrete) specifying d

&

is not sufficient, since there are several ways to assign the
random bonds. This will be described in what follows. In
order to construct lattices with such quenched disorder,
four possibilities are considered.

K1 -KP

d=3 d, =2

FIG. 1. (a) An example of the case (i) of Sec. II with d=3,
d~ ——2. The bonds in the xy plane have a constant value. The
bonds in the z direction have the same value if they belong to
the same xz plane. This value varies randomly from one xz
plane to another and is represented by the numbers 1, 2, 3, etc.
(b) The hierarchical lattice on which the Migdal-Kadanoff
scheme is exact. It corresponds to the RCx of the z-direction
bonds of (a).
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FIG. 2. (a) An example of case (ii) of Sec. II with d=2,
d~ ——1. Notice that the lines along the y direction are repeated
along the x direction and also vice versa. For general (d, d~)
this is done with cyclic permutations. The different bonds along
the x direction are labeled: 1,2,3,4,5, . . . and those along the y
direction: A, B, C, D, E, . . . . (b) The hierarchical lattice that
corresponds to (a), for which the Migdal-Kadanoff scheme is ex-
act.

FIG. 4. (a) An example of case (iv) of Sec. II with d=2,
d& ——1. The bonds along each line in the y direction are ran-
domly distributed, but the entire line is repeated along the x
direction. The same procedure is also used for the x-direction
bonds (and in general with cyclic permutations). (b) The
hierarchical model that corresponds to (a), for which the
Migdal-Kadanoff is exact.

A = A /kgT= —g K;J5., . (2.1)

where s;=1,2, . . . ,q and the random K;J s have correla-
tions as described above.

Ca) (b)

of one random vertical line which repeats itself along the
x axis and of constant horizontal bonds.

(iv) We can yet construct another model by cyclicly per-
muting the d, directions of (iii), in the same way that was
done in (ii), and this is shown in Fig. 4(a) for a lattice with
d=2~ d) = 1.

The above discussion applies to any nearest-neighbor
model Hamiltonian. For the purposes of the present pa-
per we present results on the q-state Potts model,

III. THE CROSSOVER EXPONENT

Using the e expansion, Lubensky showed that the
crossover exponent from the pure to this correlated ran-
dom behavior is given by Eq. (1.2). The same results can
be obtained using general scaling arguments as outlined in
Ref. 7. This is a modification of the usual Harris cri-
terion for the isotropic disorder, where the crossover ex-
ponent is just a. Therefore there are systems where
the isotropic disorder is irrelevant, a &0, but nevertheless
the correlated disorder is relevant when P=a+d~v&0, v
being positive for second-order phase transitions. A sim-
ple derivation of the Harris criterion for systems with iso-
tropic bond disorder was given by Kinzel and- Domany,
using a position-space RG method. We will generalize
this derivation to include correlated disorder after review-
ing it for the isotropic case. Starting with the assumption
that each renormalized bond X' depends only on n =bd
original bonds I K; I, i =1, . . . ,n, where b and n are the
length and volume rescaling factors, respectively, the re-
cursion relation for K is

t

K'=R (Ki,K2, . . . , K„) . (3 1)

z il

K( K2

Kp -I-Kg
Kg -K4

The pure critical point is obtained by setting all K;=E
and finding the fixed point K'=K =K* of Eq. (3.1). The
pure thermal exponent yT ——1/v is given by

d=3 dl= I

b
i =1 ~+i E.=E+

J

(3.2)

I

FIG. 3. (a) An example of case (iii) of Sec. II with d=3,
d~ ——1. The bonds in the xy plane have a constant value. The
bonds along the z direction are repeated along the y direction
but vary randomly in the xz plane. (b) The hierarchical lattice
on which the Migdal-Kadanoff scheme is exact. It corresponds
to the RG of the z-direction bonds of (a).

Near the pure critical point, the I K; I are taken to be ran-
dorn independent variables which are characterized by a

, mean (K ),„=K*and a small variance b,x, such that

(, K,K, ).„(,K)',„=S 5,, — (3.3)

Expanding Eq. (3.1) up to first order in 5K;=K; K*-
leads to
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n

5K —=K' —K*= g 5K, .
, , az,

(3.4)

Therefore the variance of the renormalized distribution is

S =((5K')'),„= g (5K,5K, ),„
j= aK * aIc

BR
ax,

(3.5)

2yT —d
~x =b ~x. (3.6)

Thus, the crossover exponent for the isotropic disorder is
P=(2yr —d)/yz. . Using the hyperscaling relation 2 —a
=d/yT yields /=a as was originally found by Harris.

Returning to the correlated disorder, for every n =b
d —cg)bonds there are only m = n/n ~ b ——independent bond

variables, where n& =b ' is the number of repetitions for
each independent bond. From Eq. (3.5), the renormalized
variance can be expressed as

n

~rc= g
n

(5K,5K, ).„aK, .. . aK,
2

b
2+7 d +d$gaR

BEC;
(3.7)

Thus the crossover exponent for this case is

P=(2yT —d +d, )/yT =a+d, v,
confirming Eq. (1.2).

(3.8)

IV. RECURSION RELATIONS AND FIXED
DISTRIBUTIONS

When P &0, the randomness is relevant and the critical
behavior is characterized by a fixed distribution P*( tK) ),
where IKI is the set of all the bonds. We consider only
distributions where the random bonds are independent
random variables, i.e., P ( IK I ) = +p (K; ). As noted
above, no correlations among the K s are generated
within the Migdal-Kadanoff RG, so that we also have
P'(IK'I)= +p'(K ). For real Bravais lattices, such a
factorization is an approximation, similar to the trunca-
tion of longer-range interactions that are generated in the
RG of the pure system. Notice that for the particular
correlated randomness, described in Sec. II, we should al-
ways choose a RG procedure that preserves the structure
of the correlated randomness. The neglected additional
correlations are only between the independent bonds. To
make this more clear, we label the independent bonds

d.—6
1inside a rescaled volume by I K, 1 & a & m =b I

Note that off-diagonal correlations, (5K/5KJ' ),„, with
i&j, are generated if K and KJ' depend on the same
original bond K;. This does not happen for our Migdal-
Kadanoff recursion relations, as discussed below. If the
recursion relation, Eq. (3.1) is invariant under permuta-
tion of its arguments, ' then Eq. (3.2) yields
aR/aK,

~
„«=b, and

whereas I K;, 1 & i & n =b I are al/ the bonds in the same
rescaled volume. The recursion relation K'
=R (K&, . . . , K~, . . . , K„) can also be written as
K ' =R (K&, . . . , K~, . . . , K ) where R is the recursion
relation that depends only on the m independent bonds.
Now we are able to write the renormalized bond distribu-
tions p'(K') as an integral over the original distributions
p(K ), a=1, . . . , m,

p'(K')= f Q dK~(K )
a=1

X 5(K' R(K—(, . . . , K~, . . . , K~ ) ) . (4.1)

where 6;(K) equals 1 if K falls into the ith interval, and is
zero otherwise. The range of the bond strengths is divid-
ed into M intervals and if the range is [0, oo) then an
upper cutoff K„ is used so that the last interval acts as an
integrated tail of the distribution. Each interval is cen-
tered at a; and has a width b;. The functional recursion
(4.1) can now be written as an algebraic recursion relation
for the histogram probabilities I p; I,

M M

p =b; ' g . . Q b,;(R(K(, , . . . , K( ))
l&=1 1~=1

X + bg p(, i=1, . . . ,l.
j=1

(4.3)

The Newton-Raphson algorithm is then applied to solve
the M —1 coupled nonlinear equations, Eq. (4.3), for the
fixed-point condition p =p; =p;*. (The normalization
condition g,, ,p;b;=1 is conserved by the RG and can
be regarded as an additional constraint for the M vari-
ables p;, thus only M —1 of the p s will be linearly in-
dependent. ) Eigenvalue analysis is then performed on the
linearized version of Eq. (4.3). A more detailed discussion
on this procedure can be found in Ref. 9.

V. THE MIGDAL-KADANOFF RG METHOD

The Migdal-Kadanoff (MK) approximation ' is by
far the simplest position space RG method available to-
day. Even though it is only an approximation for Bravais
lattices, it can be viewed as an exact decimation procedure
on hierarchical lattices. We used the MK method be-
cause of its simplicity and the fact that it gives the correct

Even in its simplified form, it is extremely difficult to
find the exact solution for Eq. (4.1) and we will rely on a
numerical approach that was introduced iri an earlier pa-
per. This method uses a multidimensional version of the
Newton-Raphson algorithm in order to determine the
fixed distribution p*(K) for successively finer numerical
representations. Within a given representation, the fixed
distribution is approximated by an histogram with M in-
tervals:

M
(4.2)
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K'=R (Ki, . . . , K~ )=E(Ki, . . . , Kb ), (5.2)

where F(K&,K2, . . . , K&) is the resulting bond strength
that is obtained after we carry out an exact decimation of
the intermediate spins 1,2, . . . , b —1 of a one-dimen-
sional chain with b bonds E~,E2, . . . , K~. For b=2,
d=3, and d ~

——1 we can see from Fig. 3(b) that

K'=R(K), . . . , K4) =F(2(K)+K )2, 2(K3+K )4} . (5.3)

The renormalized lattice has the same structure and most
importantly the same type of correlations between the re-
normalized bonds as did the original lattice.

We can also use the MK method for cases (i) and (ii) of
Sec. II, and the resulting renormalized bonds are

and

K=Kp= g b ' K, P=l, . . . , b
a=1

(5.4)

K'=R(K), . . . , K~) =F(K), . . . , Kg)=Ii(K, . . . , K),
(5.5)

for all the bonds in case (ii) and only for bonds along one
of the d~ directions in case (i). For example, when b=2,
d=3, and d ~

——1 then

K'=F(K, +K2+K3+K4,K)+K2+K3+Kg), (5.6)

which of course differs from Eq. (5.3). Also we can see
from Fig. 1(b) that when b=2, d= 3, and d i

——2 then Eqs.
(5.4) and (5.5) reduce to

K'=F(2(K)+Kg), 2(K)+K2)) . (5.7)

As can easily be verified, both recursions Eqs. (5.2) and
(5.5) satisfy all the assumptions of Sec. III, i.e., each re-
normalized bond depends on n original bonds of which m
are independent. Thus the general derivation of the cross-

crossover exponent P for isotropic and for correlated dis-
orders. It will be shown in this section that the MK satis-
fies all the general requirements of Sec. III and thus giv-
ing the correct crossover exponent.

Two steps are involved in carrying out the MK pro-
cedure: the first step is to move some of the original
bonds from their positions, and to add them to bonds in
other locations of the lattice. In the correlated disorder,
case (iv) of Sec. II, this means that each one of the
remaining bonds is

m/b dK~= g b 'Kg, a=1, . . . , b . (5.1)
i =1a

Note that for case (iii) of Sec. II, Eq. (5.1) holds only for
bonds along one of the d& directions. In the other d —1

directions E =b 'E, since K is a nonrandom bond. The
second step, which is exact, is to decimate over the inter-
mediate spins that have one-dimensional connectivity,
thus a renormalized lattice is obtained with bond strength
K':

over exponent given in Sec. III holds for the MK approxi-
mation. Another important observation for the MK
method is that bonds that point in different directions do
not mix in the recursion relation, i.e., the renormalized
bonds that are along the x direction will only depend on
original bonds that are also along this direction and the
same is true for all other directions. Thus depending on
the type of randomness, we will or will not get two corre-
lation lengths in the system. Cases (i) and (iii) are exam-
ples where there are two different exponents. Even within
the MK approximation we will have two different
thermal exponents: one will be the correlated-random ex-
ponent and the other will be the regular pure thermal ex-
ponent. In cases (ii) and (iv) we will have, because of the
permutational symmetry, only one correlation-length ex-
ponent, since the recursions of the random bonds in all
directions are identical. This is also the behavior that we
expect for correlated disorder on Bravais lattices, and in
this sense the MK approximation mimics the true
behavior. Nevertheless one of the weaknesses of the MK
approximation is that because of an effective dimensional
decoupling in the scaling form for the free energy, we
could not generalize the hyperscaling relation for the
specific-heat exponent, a=2 —d~v~~ —(d —d&)vz, even
though we do obtain two different thermal exponents
whenever we should.

VI. RESULTS FOR d) &d —1

As indicated in the introduction, we found different
types of results for d&

——d —1 and d
~ &d —1. We start by

describing a particular case of the latter, i.e., d=3 and
d& ——1 (Fig. 3). We substituted Eqs. (5.1}—(5.3), corre-
sponding to cases (iii) and (iv) of Sec. II, into Eq. (4.3),
and solved for the fixed distribution for various values of
q. The method can equally be applied to the disorder
characterized by Eqs. (5.4)—(5.6).

For all q values where P =a+ 2v & 0 (i.e., q & 3 within
our approximate RG), we found a new fixed distribution
p*(K) with a finite width that characterized the random
critical behavior (see Table I). The fixed distribution is
obtained numerically, with M=16, as was described in
Sec. IV, and in Fig. 5 we plot it for q=3 (the last data
point represents the tail for K~0.8). The eigenvalues,
found by linearizing the recursion relation (4.3) around
the new fixed distribution, are tabulated in Table I. Only
the leading eigenvalue is relevant, y~ & 0 and all the others
are irrelevant, y; &0, i & 1. Both the mean and the vari-
ance of p'(K) grow as q increases. It can also be seen
that as a and P of the pure system decrease, y~ increases.
Basically the results for d& & d —1 are similar to those for
the isotropic disorder, d

&

——0, but the numerical values are
quite different, and the correlated disorder will be relevant
for small q values where the isotropic disorder is still not
relevant. For q=2 we have P=—0.128, and the pure 5-
function distribution is recovered.

Note that we can interpret our results for the fixed dis-
tribution for both cases (iii) and (iv). In case (iii), MK
gives two different correlation-length exponents: one is
v~~

——y~ from the fixed distribution of the bonds along
the z axis and the other is vz ——yz. , which is exactly like
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TABLE I. Random and pure criticality of the q-state Potts models under the b=2 Migdal-Kadanoff recursion for d=3, di ——1,
Eq. (5.3). The fixed distribution with mean (&).„and standard deviation o'* were obtained with M= 16 histograms of equal width

using an upper cutoff E„=0.8. y& and y2 are the two leading eigenvalues at random criticality. The exponents

a& ——2—di/yi+(d —d& )/yT and a2 ——2—d/y~ are the specific-heat exponents for the two models discussed in Sec. VI. 1/IC~, yT, a,
and P are the critical temperature, the thermal exponent, the specific-heat exponent, and the crossover exponent for the pure model,
respectively. Note that for q=2 we get a good agreement with pure criticality even though with our discretization, the fixed distribu-

tion has a finite width.

q &x)*,„
Random criticality

y2 P

Pure criticality

yT a

0.136
0.170
0.201
0.225
0.243
0.262

0.080
0.147
0.196
0.218
0.234
0.248

0.588
0.865
0.975
0.969
0.963
0.947

0.939
0.916
0.890
0.885
0.877
0.873

—0.037
—0.148
—0.364
—0.399
—0.427
—0.517

—1.193
—1.043
—0.957
—0.878
—0.824
—0.777

—1.193
—1.275
—1.370
—1.391
—1.422
—1.441

0.131
0.165
0.192
0.215
0.234
0.251

0.939
1.025
1.091
1.144
1.188
1.226

—1.193
—0.927
—0.750
—0.623
—0.526
—0.447

—0.128
0.049
0.167
0.251
0.316
0.369

VII. RESULTS FOR d, =d —1

When d
&

-——d —1, we have correlations between the ran-
dom bonds in all but one dimension (an example is the
McCoy-Wu model on the square lattice). Consider the
randomness that is discussed in case (iii) of Sec. II with
d i

——d —1. If the bonds have a finite probability to have
a zero value, namely

p (K)=po5(K)+p(K), (7.1)

the exponent of the pure system. In Table I, we give
the two corresponding specific heat exponents: ai ——2
—di/yi —(d —di)/yT for case (iii) and a2 ——2 —d/yi for
case (iv).

zero. Therefore all the distributions of the form (7.1) will
renormalize to the trivial sink, P in Fig. 6(a), for which
p*(K)=5(K), since the renormalized weight of the 5
function at zero will always grow. The projected flow di-
agram for this case is shown schematically in Fig. 6(a), in
which o denotes the width of the distribution, i.e.,

(7.2)

Since our discretization, Eq. (4.2) gives a finite weight
to a region around K=0, it is clear that po&0 will always
be generated, and thus no fixed distribution with finite
(K)",„can be found. The flows would rather follow Fig.
6(a). In order to avoid this problem, we introduced a
lower cutoff, Ki. The fixed distributions that were then

then the system will be cut into an infinite number of
disconnected pieces, each piece being infinite only along
the single direction along which there are no correlations.
This means that there is no phase transition for this sys-
tem at finite temperatures. This fact can be seen also
from the MK recursion, since from Eqs. (5.1) and (5.2)
K'=F(b 'Ki, . . . , b 'Kb)=0 if any of the K s is
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FIG. 5. Fixed distribution of the q= 3 (4 ) Potts model under
the Migdal-Kadanoff recursion with b=2, d=3, d& ——1, Eqs.
(5.1) and (5.2). The bond strength range 0(X(0.8 is divided
into M=16 intervals of equal width. The tail K &K„=0.8 is
integrated and added to the last interval. The curve between the
data points has only presentational purpose.

FICx. 6. Projections of the flows for d=2, d& ——1, Eqs. (5.1)
and (5.2), into a two-dimensional space of the first two moments
of the distribution: (K),„' and cr/(IC), „. In (a) our starting
distribution has a finite weight at %=0: p (K)
=po(K)6(K)+p(E). The only fixed points are the three pure
fixed points F(X = oo), C(%=K, ), and P(E=O). The flows
are drawn schematically. In (b) we started with a I distribution
p(IC)-K 'exp( —P 'IC). The calculated critical line starts
from the pure critical point C and approaches a new fixed point
F~ at IC = ao which is different from the pure fixed point F at
E =oo.
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found were very sensitive to the value of Ii I,' as ICt~O the
average (I(.')*,„and all the moments (e.g., o) approached
infinity, with what seemed to be finite ratios among them.
The corresponding limiting fixed distribution is denoted
by FIt in Fig. 6(b), which we believe describes the flow in
the general cases di ——d —1 (we checked it explicitly for
d=2, 3).

Because of the difficulty with the lower cutoffs, we also
studied the flows by repeatedly integrating (numerically)
Eq. (4.1) for d=2, q=2 (Ising), without the use of our
discretization procedure. Starting with a I distribution,

ity of a discontinuous onset of magnetization at the
McCoy-%'u transitio~.

Some support for our flow structure is found in a recent
paper by Collet et al. They studied the flow of the dis-
tribution function of an Ising spin glass on a hierarchical
lattice, with a discretization in which the interval width
varies as b; -2 [Eq. (4.3)]. Their results indicate a sur-
face in the distributions space above which the flows go to
T =Do. The points on and below this surface flow to
T=O, as also found by us.

Jp(IC)-E 'exp( —13 'E), (7.3)
VIII. CONCLUSIONS

~yq
h'

(7.4)

The value for yi, found when we approach FIt is

y~ =1.996 for the d=2, d i
——1 Ising model. Since it is so

close to y~ ——d=2 it shows that I'z is a discontinuity
fixed point, and that along the whole line C-F~ (except
the point C) we have a first-order phase transition with a
discontinuous onset of magnetization (yp, =d), but no la-
tent heat (yi —0.4). We are not aware of any other calcu-
lation that predicts this behavior for correlated disorder.
It is interesting to note that, on the one hand, first-order
transitions are usually accompanied by essential singulari-
ties. On the other hand, McCoy and Wu' found such
an essential singularity in the square Ising model with axi-
al randomness. This raises, by analogy, the novel possibil-

with (K),„=5.0, we found a critical value o =4.9331 for
which the flow indeed foll'owed Fig. 6(b). (The entire C-

FIt line is obtained from other initial conditions as well. )

As the point FR was approached, we indeed found that
(K),„, o~ao but o/(I(. ),„remained finite. Although
Fz occurs at T=O, it is different from the ferromagnetic
sink fixed point F, where only (E),„=Do, while o and
higher moments at zero.

Our numerical integration was not accurate enough to
determine the thermal exponent yT close to I'~. However,
crude estimates indicate that a&0, as expected from
a= —ao of McCoy and Wu, and in agreement with Ref.
10. Estimates of the specific-heat exponent were also ob-
tained by a discretization on the tanhK variable, with a
lower cutoff Et that ranges between 0.025 to 0.050. We
found that at ——2—1/y i —1/yT- —1.8, and a2 ——2
—2/y i ——3.0.

We found it easier to determine the magnetic exponent,
yl„near Fz which can be calculated by averaging the fol-
lowing expression over the critical distribution (near FIt ):

Unlike the perturbative calculations of the correlated
random Potts models, ' we have been able to find fixed
random distributions for d i & d —1 whenever P =a
+. div&0. These new distributions have well-defined

critical exponents, and their correlation lengths depend on
the symmetry of the random correlations. It remains to
be seen if the accounting of effective vacancies may
change these continuous transitions into first-order ones.

We find more unusual results for di ——d —1, when the
random behavior is controlled by a novel zero-
temperature fixed distribution, with a magnetic exponent

yi,
——d which indicates a first-order transition and associ-

ated essential singularities.
It will be very interesting to understand the connection

between this phase diagram which is exact within the MK
scheme, and the essential singularity in the McCoy-Wu
model, and whether this essential singularity is charac-
teristic to all models with P&0 and di ——d —1. Notice
that when P &0, the flows on the critical surface are re-
versed and the pure critical point K, =K will determine
the critical behavior.

Also of interest would be to check the qualitative and
quantitative features of the cor'related random models in
real experiments. A candidate system is the random
quantum Ising magnet LiTbp Y] pF4 which exhibits a
zero-temperature transition for p=0.21.
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