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Transition layer in a lattice-gas model of a solid-melt interface
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The equilibrium solid-melt interface in a lattice-gas model of a single-component system is shown
to be isomorphous with a earlier calculation of an interface between ordered and disordered struc-
tures. When the surface is parallel to a plane that is not close packed, the solid structure changes
smoothly into the liquid structure. For the close-packed surface direction, a layer of an intermediate
structure is found. In the intermediate layer, atomic planes parallel to the solid surface become
liquidlike {i.e., disordered), while the density alternates between high and low from plane to plane.
This two-stage interface corresponds to the one reported by Landman et al. in their molecular-
dynamics calculations.

INTRODUCTION

In a recent simulation of molecular dynamics, Land-
man et al. ' have studied the solid-melt interface of a
rare gas during rapid crystallization perpendicular to a
close-packed direction. They found an interfacial struc-
ture that indicated two stages in the gradual loss of solidi-
ty as one moves from solid to melt. Successive layers of
atoms became more disordered, until there were disor-
dered layers of atoms parallel to the interface that were
clearly distinct layers. Then with still increasing distance
from the solid the layers become less distinct, as the oscil-
latory density that characterized the layers became the
uniform liquid density. The processes of two-dimensional
disordering of the layers and the merging of the layers oc-
curred in two distinct stages that characterized the mov-
ing interface.

In their most recent communication, the calculation
was continued until equilibrium was reached. The equili-
brated interface retained the layered structure with density
oscillations extending far into the liquid. In Fig. 1 of
their paper, the quantity 04 is a parameter representing
the transverse orientational order. It is a measure of the
probability that three neighboring atoms form a right an-
gle. Its value is high in the fcc structure parallel to the
(001) and is normalized to vanish in the liquid. In the in-
terface calculation [see Fig. 1(c) of Ref. 3] it became zero
at a reduced distance Z*=1.3 well inside the interface,
not only well before the average density has converged to
the liquid density but also well before the density oscilla-
tions have damped out. If anything, the transition to
two-dimensional melting could be located more clearly in
the equilibrated than in the moving interfaces. In this re-
cent calculation, however, an alloy of two rare-gas species
was used. This might have been a factor in the results.

The structure of interfaces between a solid and a Auid
has been the subject of many studies. ' When the fluid is
a dilute vapor, there is little ambiguity about which phase
a given atom is in, and one can describe the interface as

smooth or rough and one can, for example, speak of a
roughening transition. Under some conditions the inter-
face can even lower its energy by forming. a melted layer.
Such a layer would occur close to the triple point, if the
solid-vapor interfacial free energy exceeded the sum of the
solid-liquid and liquid-vapor interfacial free energies.

For solid-melt interfaces there is considerable ambigui-
ty about the location of the interface on an atomic scale.
Atoms in the melt have a packing that is not too different
from that of a solid and the densities of the two phases
are comparable. As one moves from solid to liquid
through the interface one expects a region of gradual tran-
sition from solid to liquid. Unlike the case of the dilute
vapor, it will be difficult to find meaningful structural cri-
teria for deciding whether individual atoms are in the
solid or liquid phase. Most local measures of solidity,
whether structural, energetic, or ones that probe proper-
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FIG. 1. Labeling of the axes and the four sublattices of the
fcc lattice.
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ties on the atomic level should show gradual transitions
with distance as one moves from solid to liquid.

Solid interface structures and transitions will be dif-
ferent for different orientations. Interface structures may
also change with changing temperature along equilibrium
coexistence. Interface motion caused by nonequilibrium
as in Landman et al. 's calculations also affects structure.

We report herein a calculation of the equihbrium solid-
melt interface in a lattice-gas model using the cluster vari-
ation method (CVM). The calculation was done in the
context of order-disorder in a binary system. Details of
the procedure are published elsewhere. '

Our basic interpretation of using the lattice-gas model
in treating the fluid-solid transition is the following. The
system is regarded as an alloy of atoms and vacancies.
When the sublattices in an ordered lattice structure are
equally occupied by atoms, we identify the phase as fluid.
When their occupancies are not equal, the phase is identi-
fied as solid. This interpretation is justified when we
think of the limiting case of the lattice constant reducing
to zero.

Based on this interpretation, we convert from the
order-disorder binary alloy language to a lattice-gas
language, by identifying A and 8 atoms with vacancies
and atoms. In our model the underlying lattice is fcc and
the disordered phase is an fcc lattice fluid. The ordered
Cu3Au phase can have either of two crystal structures, a
simple cubic structure if we let Cu be vacancies or a com-
plicated cubic structure if we let Au be vacancies. The
CuAu tetragonal phase become a simple tetragonal crystal
with a c/a ratio of V2. These changes from order-
disorder to lattice-gas description are detailed in the next
three sections.

In the following section we present results of our calcu-
lations of the boundary structure for two orientations
(001) and (110), and for various values of the chemical po-
tential.

Our lattice-gas calculations show the structure reported
by Landman et al. very clearly, but only for interface
parallel to the (001) which is the close-packed plane of the
simple-cubic crystal. The (110) interface has a much
simp1er structure. Additional calculations were per-
formed to rule out wetting arising from the triple point as
an alternate explanation.

THE MODEL

Ep ——E) ——0,
E2 ——8',

E/NW=Z, +3(1+A )Z, +6(1+8)Z4 .

The number of atoms in the system is

n/N =(Z)+2Z2+3Z3+4Z4)/4 .

(2)

(3)

In order to show that this lattice-gas model is isomor-
phous with the fcc ordering models, we add and subtract
6(1+8)n/N to Eq. (2):

E/NW= ——', (1+B)Z, —
2. (1+38/2)Z2

——', (1—2A+38)Z, +6(1+8)n/N .

If we let to = —W(1+38/2)2,

1+a=(1+8)/(1+38/2),

1+P=(1—2A+38)/(1+38/2),
(5)

we obtain

E/2Nw = —,(1+a)Z&+2Zz+ —,
' (1+p)Z3 —6(1+a)n /N .

(6)

Except for the last term this equation is identical to Eqs.
(1), (5), and (4.1)—(4.2) of Refs. 6, 7, and 8, respectively,
for the binary alloy. The last term can be absorbed in the
chemical potential and is not relevant to the phase dia-
gram and boundary structure calculations.

If we instead identify atoms in the present model with
species 1 (or A) in the earlier model, a and p are inter-
changed in Eq. (5), and we obtain a different solid phase
of the lattice-gas model.

E3 3W——(1+A ),
E4 6W——(1+8),

where 8' is the near-neighbor pair interaction energy
chosen to be positive when this interaction is repulsive; A
and 8 are multiatom interaction corrections (not names of
species) which can easily be introduced into the CVM if
desired.

For the lattice-gas model, when Zk is the fraction of
tetrahedra containing k atoms, then the energy E for a
system containing N lattice sites (or 2N tetrahedra or
N/4 fcc unit cells) is

We consider an fcc lattice gas with soft near-neighbor
repulsion. There is no interaction between atoms beyond
first neighbors. Near-neighbor pairs contribute a finite
energy. In addition we introduce multiatom near-
neighbor interaction terms. We vary the melting tempera- .

ture (and pressure) by varying the chemical potential.
The fcc lattice can be divided into four simple-cubic

sublattices which are named 1, 2, 3, and 4 as in Fig. 1. In
working out the statistical mechanics of the lattice-gas
model as described here, we use a tetrahedron as the basic
cluster of the CVM.

Let the energy E„ofa tetrahedron containing n atoms
be given by

GROUND-STATE STRUCTURES
AND IDENTIFICATION OF PHASES

The previous ground-state calculation demonstrated the
existence of four phases whose occurrence depends on the
interaction parameters and the chemical potential. These
phases have one, two, three, or four atoms in the fcc unit
cell and have, respectively, the following space groups and
site occupancy, and Pearson symbol:

(a) cP1, Pm3m (Ot', )—a simple-cubic crystal with one
atom at (000);

(b) tP1, P4/mmm (D4t, )—alternate (001) layers of the
fcc lattice occupied, c/a =V 2;
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FIG. S. Density profile for the (110}boundary at P of Fig. 2.
Note the absence of a transition.

tials between Q and R on Fig. 2 and found no qualitative
change in structure. The (001) continued to display the
intermediate structure.

We were not successful in finding a scaling relation for
these curves. In general the interfaces broadened towards
the triple point.

DISCUSSION

Our calculations clearly show that the boundary struc-
ture differs with orientation. The boundary parallel to
(001) has a two-stage structure similar to that reported by
Landman et al. In the first stage close to the solid, suc-
cessive atomic layers parallel to the (001) plane of the
crystal become increasingly disordered. Beyond a certain
plane (in Fig. 3, for planes less than position no. 40), the
second stage sets in, where the individual layers are fully
disordered, but the atoms are still layered on alternative
planes of the underlying lattice of our model. The layer-
ing gradually disappears with increasing distance. On the
other hand, the (110) boundary disorders smoothly
without the onset of the second stage; in this boundary,
reduction in layering and reduction in order occur with
similar length scales.

In comparing our results with those of Landman et al.,
two problems are to be pointed out. The underlying lat-
tice of our model restricts the positions that atoms can
take, and so atoms are always layered even in the lattice
liquid. Thus the confirmation of the layered structure is
done by looking at the alternating density variation from
layer to layer. Similarly, the loss of order within each
atomic layer is more limited. Instead of Landman et al. 's
orientation order parameter 04 we have a much clearer
indication of an abrupt loss of two-dimensional long-
range order. However, the quantity ( pq —p3) in our model
has many of the characteristics of 04. In the cP1 crystal
with sublattice 4 occupied and sublattice 3 empty the
atoms on (001) are arrayed on a square lattice. There is
thus a high degree of 04 orientational ordering with right
angles. In the liquid where p3 ——p4 the (110) pairs of
atoms on different sublattice introduce 45' angles. This
plus the occurrence of randomly empty sites reduces 04
to nearly its random value.

The second problem is the possibility of wetting by the
tPl phase. " In Landman et al. 's case the intermediate
structure can be considered as a thin smectic layer that
has intruded itself between solid and liquid. Since in his
model there is no triple point where a smectic crystal
coexists with crystal and liquid, the possibility of wetting
is remote. There is always the possibility that a triple
point is close but physically inaccessible. The smectic
phase might be a low-lying metastable phase requiring im-
position of special fields such as ones existing at inter-
faces. For the lattice-gas model triple points exist and the
structure of disordered layers of alternating density bears
a strong resemblance to a wetting layer of the tP1 phase.

At the triple point, wetting occurs whenever the free en-
ergy of an interface between two phases, say a and y,
exceeds the sum of the energies of interfaces between a
and p and between p and y. At the a-p-y triple point the
a-y interface is wet by a bulk layer of p and the interfa-
cial free energy of the a-y interface is reduced to the sum
of that of the a-p and p-y interfaces. Away from the tri-
ple point along the a-y coexistence curve, p becomes in-
creasingly unstable and the intruding p layer becomes in-
creasingly thinner and changes its character. Sufficiently
from the triple point the a-y interface may cease to be
wet by P.

Our calculation exactly at the triple point, Fig. 4, shows
that the layered structure differed significantly from that
of bulk tP1 phase. In addition the thickness of the lay-
ered portion of the interface did not diverge as the triple
point was approached. Its thickness increased to what ap-
peared to be a finite limit. We therefore conclude that in
the two-stage structure observed in Figs. 3 and 4 we are
not seeing wetting.

Our lattice-gas model confirms the existence of a two-
stage interface for the (001). We find a simple interface
for (110). The fact that the in-layer order p4 —p3 vanishes
before propagating into the liquid state in the (001) boun-
dary of Fig. 3, while p4 —p3 decreases but extends into the
liquid in the (110) boundary of Fig. 4 can be understood
as follows. We note that the distance between (001) planes
is larger than that between (110) planes. For the (110)
boundary, one 3-4 plane directly interacts with adjacent
3-4 planes through the 3-4 bond, and therefore the pre-
ferential occupancy of the sublattice 4 can propagate and
is kept into the liquid. On the other hand, a 3-4 plane of
the (001) boundary does not interact directly with adjacent
3-4 planes and thus the difference between the 3 and 4
sublattices cannot propagate.

Based on the above interpretation, if molecular-
dynamics calculations are done for the liquid-crystal
boundary parallel to a dense plane of the crystal they
should show the boundary's behavior similar as Fig. 5
rather than Fig. 3. This property has been recently con-
firmed by Landman, ' and supports our interpretation of
the behavior of the in-layer order.

Finding two such different interface structures for two
different orientations suggests the possibility of an interfa-
cial phase transition with changing orientations. Our cal-
culations give interfacial free energies for these two orien-
tations that differ only by a few percent. With so little
anisotropy it seemed unlikely that an equilibrium shaped
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solid particle would be faceted, but if there is a phase
transition a singularity in its shape is expected. '
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