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Magnetoresistance of a periodic superconducting network near T,
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The dc magnetoresistance of a superconducting ladder network is computed using linear-response
theory. The calculation employs the time-dependent Ginzburg-Landau equations and is thus expect-
ed to be relevant for T=T, . The results obtained exhibit a surprising qualitative similarity to exper-
imental data for networks of Josephson junctions.

I. INTRODUCTION

Recent experimental' and theoretical ' work on
the properties of two-dimensional granular superconduc-
tors, and arrays of coupled Josephson junctions, has led to
renewed interest in the properties of superconducting mi-
cronetworks. Following the ideas of DeGennes, ' these
networks are modeled by superconducting wires whose

I

transverse dimension is sufficiently small that the super-
conducting order parameter varies only along the length
of the wire (the energy for transverse variation is suffi-
ciently large to suppress transverse degrees of freedom).

In this limit, networks of thin wires are described by a
sum of one-dimensional Ginzburg-Landau free-energy
functionals, i.e.,

2eA (1„) f(1„)

where a =ao(T —T, )/T„5=it't /2m, b is a constant, and n indicates the nth element with 1„the position along the nth
element. A(l„)is the component of the vector potential tangent to the displacement 1„.The probability density for find-
ing''a particular configuration g for a network in thermal equilibrium is then given by

—I'(f, T)/kB T
e

z (2)

—F(f,T)/k~ T
where Z =Tre '

and the trace is over all possible configurations of the order parameter. The order parameter P
also determines the supercurrent density in the nth element through the standard expression

2eA (1„)g(1„)+c.c. (3)4*(1n) —. +Bl„

For T near T, we expect the equilibrium value of
~ @( to be small and, if we ignore terms 0(

~ P) ), we obtain an ap-
proximate expression

2eA(l„)f(4»)=g Jt11n a IW1n) I
+5

1
+ "

4(1n)
n Bl„

2

(4)

for the free-energy functional. The mean-field solu-
tion'4 's for the temperature, magnetic field ( T,B) phase
diagram of' a particular network may be obtained by
demanding that

5f/5/=0,
subject to the constraint that g be continuous on the net-
work and that the superconducting current be conserved
at every network junction. Equations (4) and (5), together
with the junction boundary condition, yield the two equa-
tions

2eA (l~ )
'

Bli Blp Ac ~
I =()
P

Equation (6) is the linearized Ginzburg-Landau equation,

2eA (1„) P(l„)+a@(l„)=0,
I Bl„ (6) FIG. 1. General node of a superconducting network. The

convention for measuring distances I„from a node is as shown.
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X

FICx. 2. A superconducting ladder network illustrating the
geometry and order parameters labeling convention at each
junction.

while (7) represents the su11erconducting-current conserva-
tion requirement, satisfied at each node in the network.
The sum over p is taken over all links connected to a
given node, and lz is measured outward from the node in
question (Fig. 1). Equations (6) and (7) have been used by
a number of authors' ' to study the (T,B) phase dia-
gram for a variety of superconducting networks.

However, since much of the experimental work'
motivating the network model involves the study of trans-
port measurements (in particular, magnetoresistance ),
a study of the transport properties of superconducting
networks appears to be worthwhile. The initial results of
such a study are reported in this paper. In particular, we
have computed for T & T, the contribution of supercon-

I

ducting fluctuations to the conductivity of the ladder net-
work shown in Fig. 2. The calculation employs the time-
dependent Ginzburg-Landau equation and follows the
general procedures developed to treat the case of a single,
thin superconducting filament. ' '

In Sec. II we describe the eigenstates of the order pa-
rameter for the ladder network. These eigenstates permit
us to express f(Q, T) as a sum of independent normal
modes. Section III contains an analysis of the linear
response of these superconducting normal modes to an ap-
plied electric field. In Sec. IV we present our results for
the resistance of the ladder network and compare our cal-
culation, in a qualitative way, to recent experimental
data. "

II. ORDER-PARAMETER EIGENSTATES

Using the expression given by (4) for f(Q, T), we may
integrate by parts on each link of a network. The terms
arising from the end-point contributions may be grouped
according to the node defined by a given end point. This
grouping results in a collection of terms at each node pro-
portional to the expression in (7). The resulting expres-
sion for the free-energy functional then assumes the form

f(P, T)= g f dip'(l„) a+5 a
i 81„

2eA (l„)
(8)

where the ellipsis represents end-point contributions.
Equation (8) may be diagonalized by introducing the nor-
malized eigenstates 1t t, (l), defined by

2eA(l» )g s +a f~(l„)=er, gg(l» )
n

1 a
Bl»

2eA(i» )
g„(l~) =0

I =0
P

(10)

—f(,f, T)/k~ T
8

(12)

at each node of the network. The eigenstates defined by
(9) and (10) form a complete orthonormal set, a linear
combination of which can be used to express a general-
order-parameter configuration (we assume periodic
boundary conditions over the length of the chain). Thus,
we may write

y ak1tk(i
k

and (8) becomes

f(P, T)= gegaga~,
k

with the end-point contributions vanishing by virtue of
the fact that each eigenstate satisfies (10). The resulting
probability density for the linearized theory is then given
by

QJ, (x)= . (P„' 1(k)sin[k (nd —x)]
s111 kd

+ f»'(k)sin I k [x (n —1)d] ] ), —

fq(x) = . (g»' &(k)sin[k (nd —x)]
sin kd

+P„'(k)sint k [x (n —1)d]]—),

(13)

I

and the trace used in obtaining thermal averages is de-
fined by

Tr=~ f «,*«, ,

where the integral is to be taken over the complex ak
plane.

Equations (9) and (10) have been previously
analyzed' ' in the study of the ( T,B) phase diagram of
the ladder network using a mean-field approximation. In
that case, attention is focused on the minimum eigenvalue
eI, of (9), and the values of T and B for which the
minimum eigenvalue is equal to zero are taken to be the
normal-superconducting phase boundary in the (T,B)
plane.

In the study of the transport properties of the network,
it is necessary to know all of the eigenvalues ek and eigen-
states P~. Following previous work, we define PJ,'(n) to
be the amplitude of the order parameter at the nth junc-
tion on the upper (t) or lower (J, ) rail of the ladder net-
work (Fig. 2). Choosing the gauge A=(O, Bx,0) the order
parameter on each link of the network may be written as,
for ( n —l)d &x ~ nd,
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while for x =nd, 0 &y & d,

gk(y) = e '2"»~d[f„'(k)sin[k (d —y)]
1

sin(kd)

+e+""rP„'(k)sin(ky)] .

In (13) we have assumed each link of the ladder net-
work to have length d and introduced the notation

y=nP/itpo, Q=Bd, and $0 2——Mc/2e .

4-
{%d)

I S I I I I I I0
Substituting (13) into (9), we obtain

ek ——5k +a (14)

for the energy corresponding to the eigenstate gk. The al-
lowed values of k, for a given P, are determined by satis-
fying (10) at each node of the network. Substituting (13)
into (10) yields the equations

—3 cos(kd)p„'(k)+g„' ~(k)+e ""rp„'(k)+p„"+~(k) =0,
(15)

—3 cos(kd)p„'(k)+g„',(k)+ e+' "rg„'(k)+g„'+,(k) =0 .

The substitution

yt (k) inyei—nqdf t(q)

e inyeinq—df L(q)

into (15) yields the equations

[—3 cos(kd) +2 cos(qd y)]fk(q)+—fk(q) =0,

fk(q)+ [—3 cos(kd)+2 cos(qd +y)]fk(q) =0,
(17)

and the resultant eigenvalue equation for kd is given
17, 18

3 cos(kd) =leos(qd)cosy+[4sin2y sin2(qd)+ I]'~ . (18)

In (16) and (18) the range of q is given by—m/d &q (m/d with the allowed values of q given by
q =2m.mll. (m =0, +1, . . .). It is convenient to think of
(18) as defining the band structure (in qd and y) of both
kd and by (14), the eigenenergy ek. Clearly, for any solu-
tion (kd) to (18), there exist other solutions given by
kd+2m. n, n =1, 2, . . ., which define a series of energy
bands. It is sufficient, therefore, to consider only those
solutions of (18) in the range 0&kd (2m,' all other solu-
tions then follow from the addition of 2nn. Further sim-
plification arises from the fact that if kd is a solution,
then 2m —kd is also a solution. Thus, the entire band
structure may be obtained from the smallest values of
kd(0 & kd & n)which satisfy . (18). These solutions to (18)

4-
{ad),

3-

0 I ~ ~ S ~ I ~ I ~

q,d

FIG. 3. Eigenvalues kd+ vs qd and y for the order-
parameter normal modes. Only the two smallest solutions to
Eq. (18) are shown. Other solutions in the range 0(kd+ (2~
are given by 2~—kd+.

are shown as a function of qd and y in Fig. 3. We have
used (kd)+ to indicate the sign chosen in (18) and have
taken 0 & qd, y (n.. Solutions for qd and y outside of this
range may be obtained from the symmetry properties of
(18). The remaining energy bands are generated using the
properties of (18) discussed above.

The calculation of the electrical response of the network
requires the eigenstates fk to be normalized, such that

f P*kAdI = I .
network

Equivalently,

f [QJ; (x)Pk(x)+@k'(x)Pk(x)]dx

+ f qk(vW. (v)dv=
d

=&, (19)

where the integrals are taken over one unit cell of the net-
work. Using (13), (16), and (17), together with (19), yields
the normalization

g„'(k)=P(k, q)f„'(k),

p(k, q) =3cos(kd)+2 cos(qd —y) =p,
with

v'X/k f„'(k)=e'"re'~ 3(1+p ) ——,
' sin(2kd)

sin(kd) 2

+ [sin(kd) —kd cos(kd)][p cos(qd+y)+p+cos(qd —y)]
—1/2
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III. LINEAR-RESPONSE THEORY

E =E05(t —t0) (22)

and compute the resulting current to first order in E0.
The coefficient of E0 is then the desired response func-
tion.

Our calculation will concern itself only with the spatial-
ly uniform dc response of the network to an electric field
Eo. In that case we have

g Xt dX
1

dc

tf dx f dx' f dt'K(x, x', t t')E0—

The general linear response of the network to an ap-
plied electric field E (x, t) may be written as

j (x,t)= f dx' f dt'K(x, x', t —t')E(x', t'), (21)

where j (x,t) is the supercurrent at point x time t, and x is
any point on the ladder network. For convenience
E(x', t') has been assumed to be parallel to the rails of the
network and to be a function only of position along the
rails. To obtain the response to a spatially constant elec-
tric field, we may apply a perturbing field of the form

(24). The procedure we use yields identical results to
those obtained by including such a source term, and we
therefore omit it for simplicity.

To obtain the linear response of a normal mode to a
perturbation of the form (22), we assume that at time
t = t0, a normal mode g(l, t0 ) =akpk(1) with amplitude ak
is present in the system (this mode is presumed to be ex-
cited by the noise source). At this time (t0) we apply the
perturbing potential

V(xt) = —E0x5(i —r0) =f(x)5(t —r0)

to the system. Equation (24) may be integrated over time
for a small interval centered about t0, and keeping terms
to first order, we find

2le
(i'k +k (i'k + ~k 4k (26)

for the perturbed normal mode as t~t0+. The second
term in (26) may now be expanded using the complete set
of states defined by Ili)k). Each of these states then
evolves independently via an equation of the form (24),
but with V set equal to zero.

The result is that for t & t0 we may write

ti'k(i r) e ~k(i'k

—(yEO (23)
rok'(t —t0) — 2ief+X" '

Wa z 4a)ok'~
k'

(27)

If the superconducting fluctuations dominate the conduc-
tivity, the resistance of the network is then proportional to
1/o.

Since the order-parameter normal modes pk are statisti-
cally independent, it suffices to study the response of a
single mode to the external field (22). The total response
of the system is then obtained by summing the response of
each normal mode. We assume that the time evolution of
a perturbed normal mode is governed by the tirne-
dependent Ginzburg-Landau equation' '

5 1 3 2eA(i ) a . 8+ f+ g 2i—eVQ—= —A' P, (24)a i BI„Ac a Bt

where a=ma 08/~kT, and V(x, t) is the electrochemical
potential. Strictly speaking, a fluctuating Langevin noise
source' should also be included on the left-hand side of

I

where cok —ek/a))i and Dirac notation has been used to de-
fine the "matrix element"

(4a A)= f vafAd~ (28)

where the integral is understood to be over the ladder net-
work.

The remainder of the calculation now follows standard
quantum-mechanical methods, i.e., t))k(l, t) is inserted in
(3) to obtain the supercurrent jk(l, t) generated by the per-
turbation. The total supercurrent response is then ob-
tained by summing over k and averaging over all the fluc-
tuation amplitudes ak using the probability density given
by (12). The averaging procedure causes the zeroth-order
terms to vanish, while the first-order terms yield the
desired current response

2$
«j(x,t)»=, ge "" ""' '(~k 4') &4k'If Ilk& 4k 4k' +cc E0,

kk' X
(29)

IMkk I

kk' EkEk'(Ek +Ek')

where A, =k&T/(adam ), and 8/Bx is understood to be a
derivative parallel to the rails of the network at the loca-
tion x. The current response to a uniform static field may
be obtained by integrating the above expression over space
and time according to (28). The resulting expression for
the conductivity is given by

16e 5 k~T0'= (30)
Ra I.

where

1 a
~k'k k' ~ k, Ek =6k

l BX
(31)

and we have used the identity valid for our choice of
gauge,
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(32)

to evaluate &fk I f I fk ).
Equation (30) correctly reproduces previous results ob-

k

k 2Ek

in agreement with previous calculations.

tained for a single superconducting filament. In this case,
gk ——(I/~L )e' and Mk k

——k5» k from which we obtain

rewire

IV. RESULTS AND DISCUSSION

The matrix element occurring in the expression for the conductivity is given by

2k'k
Mk k

—— . . [cos(kd) —cos(k'd)][fk (q')fk(q)sin(qd y)+f—k (q')fk(q)sin(qd+y)],
sin(kd sin kd

(33)

A. Intraband contribution

This contribution to o is by far the largest for T=T, .
Taking the limit k —+k in (33) yields the intraband matrix
element

Mk» = . (kd)[fk (q)sin(qd —y)
—X5qq

sin(kd)

+fk (q)sin(qd+y)] . (34)

This matrix element, together with the normalization de-
fined by (20), may be inserted in (30) to yield the intra-
band contribution

15

where we have chosen the arbitrary phase of the normal
modes such that fk(q) and fk(q) are real. Further
analysis of (30) is facilitated by separating cr into an intra-
band o&(k =k') and .interband cr2(k&k') contributions.
In both cases, the 5~ ~ term in (33) ensures that only q =q'
states need be considered.

16e ke T d a (4/d)'
I
dM»k

I

'

, b-es [(k/d)'(kd)'+11'
se'I ~T a"o

S), (35)

where we have introduced the coherence length g =5/g
such that g &0 for T & T, . The factor Si in (35) exhibits
the explicit dependence of o& in the ratio (g/d), since the
factor dM»k is a function only of kd, qd, and y. Using
(35), Si may be evaluated numerically. In Fig. 4 we show
1/Si as a function of y for selected values of g/d. Since
o.

2 «o.i (see below), the results shown in Fig. 4 reflect the
magnetic-field dependence of the network- resistance in
cases where the normal conductivity of the network is
small compared to o ~.

A physical interpretation of the intraband contribution
may be obtained by referring to (30). For the case k'=k
we obtain

45'
I Mk» I

'
o i ——(2e)

fi aE»

(36)
(2e) nkrk

k mk

where the following identifications have been made:
(i) From (24) we obtain the lifetime w„ofthe norrnal-

mode density P» g» to be

10
vk =A/2E» . (37)

EA
CA
CP
h

g
OP

Q
Vl
C
LD

C
0.5

(ii) From (11) and (12) we obtain the average magnitude
of the normal mode pk to be

kgT
& ~»~») =T«ka»P=

o,'Ek

and thus, the density of this normal-mode excitation is
given by.

n, =I,Ty~E, I. . (38)

0
-'t 0

Flux (quanta/ceI0

FIG. 4. Dimensionless resistivity of the superconducting
chain vs flux density, . One Aux quantum/cell corresponds to
y =+. Inset illustrates resistance data for a two-dimensional ar-

ray of Josephson junctions (Ref. 21).

(iii) From (14) and (31) we see that dimensionally we
may define the effective mass of the fluctuation by

A aEk
mk = (39)

45 IM»k I

Using the above identification, the intraband contribution
to o assumes the standard form for a gas of charged parti-
cles. The somewhat surprising result, however, is that the
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dynamical mass in (36) and (39) is proportional to the re-
ciprocal of the band mass defined by the dispersion rela-
tion for ek. This unusual behavior has its origin in the
fact that, despite the fact that ek exhibits a band-structure
spectrum, the underlying time-dependent equation (24) for
fk is diffusive rather than the usual wavelike Schrodinger
equation. Thus, an order parameter wave packet com-
posed of eigenstates centered about k does not propagate
ballistically as a function of time, and the standard ac-
celeration theorems familiar to quantum-mechanical
behavior do not apply.

B. Interband contribution

As previously mentioned, contributions from interband
terms are negligible for g'/d )2. The matrix element (33)
is nonzero only for the case where cos(kd) and cos(k'd)
correspond to opposite-sign solutions of (18). In that case
we may write (33) in the form

&&, ,fk (q)fk(q) 2k'k
~k~k =+

sin(k'd )sin(kd)

Equation (40) was inserted in (30), and interband contribu-
tions involving the lowest four bands of (kd) were com-
puted. In general, this contribution is ((10 )o ~ for the
values g/d )2 and is thus negligible on the scale of varia-
tion exhibited in Fig. 4. For smaller g/d, these interband
terms increase in relative importance (they amount to
=10% correction for g/d =1), but do not qualitatively
alter the magnetic-field dependence shown in Fig. 4.

As a final comment, it is worth noting that a two-
dimensional grid of superconducting wires belongs to the
same universality class as the two-dimensional array of
Josephson junctions. ' The resistive behavior of our
ladder network should, therefore, qualitatively reflect the
resistive behavior of a similar array of Josephson junc-
tions. The inset to Fig. 4 shows the data of Webb et al. '

on an = 140& j.40 array of Josephson junctions. The data
were obtained well below T, for Nb. Nevertheless, the
general functional variation of resistance with magnetic
flux is remarkably similar to that obtained for our net-
work model for T=T, . This similarity provides some en-
couragement for the use of superconducting networks as
models for Josephson-junction arrays.

&& —,[4sin y sin (qd)+ I]'~ cos(qd)sing . (40)
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