
PHYSICAL REVIE%' 8 VOLUME 31, NUMBER 7 1 APRIL 1985

Microscopic approach to critical behavior in 3He-4He mixtures.
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The thermodynamics of a weakly interacting fermion-boson mixture has been worked out on the
basis of the effective Hamiltonian derived in an earlier paper. Tricritical-point behavior is discussed
in terms of the fields ( T,p3,p4). For the degenerate phase of the mixture, the theory reproduces the
classical Landau expansion near a tricritical point. For the nondegenerate phase, the theory differs
materially from the Landau theory; it predicts tricritical exponents in agreement with those calculat-
ed by applying renormalization-group theory to phenomenological models, and a slope for the upper
line larger than that of the A, line in the x- T plane.

I. INTRODUCTION

In an earlier paper' (hereafter referred to as I) a system
of weakly interacting bosons and fermions was used as a
model to develop a theory of critical behavior in He- He
mixtures. The fermion amplitudes and the short-
wavelength boson amplitudes were eliminated from the
problem to obtain an effective, low-momentum boson
Hamiltonian. It was pointed out that if one completely
ignored fluctuations of the order parameter ( ho /~V ), the
effective Hamiltonian assumed the form of the well-
known Landau expansion near a tricritical point. For the
nondegenerate phase of the mixture, this approximation is
obviously inadequate. The known disagreement between
predictions of the Landau theory and experimentally ob-
served tricritical behavior in the normal phase of He- He
mixtures is, therefore, not surprising from the point of
view of the microscopic theory.

The simplest approximation which takes fluctuations of
the order parameter into account is the self-consistent
Hartree-Fock (HF) approximation. In this paper the ther-
modynamics of the mixture is worked out in this approxi-
mation. For the degenerate phase of the mixture, the
theory reproduces, essentially, the Landau expansion near
a tricritical point. For the nondegenerate phase, the
theory is an improvement over the Landau theory. It
gives tricritical exponents in agreement with those ob-
tained by applying a renormalization-group approach to
classical phenomenological models, and also a slope for
the upper line larger than that of the A, line in the x-T
plane. The latter result is in qualitative agreement with
experiments.

An outline of the contents of the paper is as follows:
The self-consistent HF approximation is introduced in
Sec. II and the thermodynamic potential and the equation
of state for the mixture are calculated. As ( T,p3,p4) ap-
pear as natural variables in the theory, the thermodynam-
ics is discussed in the T-p3 plane with p4 playing the role
of a parameter. The domains of the nondegenerate and

II. THERMODYNAMIC POTENTIAL
IN HARTREE-POCK APPROXIMATION

The effective boson Hamiltonian derived in I is [cf.
Eqs. (51) and (73) of I]
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degenerate phases and the existence of the tricritical point
(TCP) form the content of Sec. III. In Sec. IV we deal
with the calculation of tricritical exponents and the slopes
of the upper line and the A, line in the x- T plane.

A general discussion of the work reported in I and this
paper is given in Sec. V. A derivation of the expression
for p4 used in I to discuss the stability of the mixture has
also been indicated.
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F
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Q= —P = P~(TP3—)+Q~(P &P, )+Q~(q &P, ),
where P denotes the pressure of the mixture, and

1 Ep, (T,p3) = g in i+exp —P
Pl 3

(9)

IIa(S &P, )= 1
ln ~ 1 —exp —P'

V m4

(10)

The expression for cq in (4) is given by Eq. (47) of I. It
will not be reproduced here. Although u6 is of order
( u 34 ), as will become evident it is not necessary to calcu-
late the third-order contributions to u4, p4, and co.

Upon taking into account the symmetry-breaking term
H, [Eq. (2) of I], the thermodynamic potential per unit
volume can be written as

O Coc'= pF(T—;@3)+II'(p&p, )+ (18)

The approximation (17) for 0 is exactly of the form
postulated by Landau. It is evidently inadequate for the
normal phase where the order parameter vanishes.

The simplest approximation which takes fluctuations
into account is the self-consistent Hartree-Fock approxi-
mation. It corresponds to replacing the four- and six-
operator terms in h4 and h6 by their diagonal parts, i.e.,

2Q4 2h4 X" (19)

h6 (18u6M +6u6f} + N" +u6f N",2

V2
(20)

It was pointed out in the discussion in I that one ex-
pects the effective Hamiltonian to yield a Landau expan-
sion for the mixture if fluctuations in the order parameter
are completely ignored. Upon ignoring terms containing
bq's (q&0), one obtains

Q=c'+( —p4+u6f )M +(u4+3u6f)M +u6M —hM,

(17)

Qs(q &p, ) = — ln Tr exp[ P(H, +H, )]—. '1 N"=+babb» . (21)

h4: Vu4M +4M u4 gbqbq+h4+h4'
q

b, b, b, b, ~(qi+q3
Q4

q1p ~ ~ ~ p q4

h6 ——Vu6M +u6Vf M +3Vu6fM

(9u6M +12u6fM )gbqbq+h6+h

(12)

(13)

Following Bogoliubov, we replace bo/v V by a c num-
ber, M. The four and six--operator terms in (1) then take
the form

2X" = —2n" V+4n "%",
V

6X" = —12n" V+18n" N",
V2

(22)

(23)

Since in thermal equilibrium X" is expected to be a
macroscopic quantity, fluctuations in N" about its mean
value will be small. In calculating the thermodynamic po-
tential, one may, therefore, allow only such quantum
states of the system as are characterized by small fiuctua-
tions in N" about its mean value (N"). For such states
the terms containing N" and N" in (19) and (20) can be
linearized in the fluctuations in the following manner:

9u6M
b bq b» b 5(q&+q3 —q3 q4)

q1p ~ ~ ~ p q4

where

n"=(N") yv (24)
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q1, q2, q3
I I

denotes the mean density of bosons in the range
0 &

~ q ~
&p, . The Hamiltonian in the HF approximation

consequently takes the form

&&@qi+ql+q3) . H, +H, = VC&(n",M) hMV+ g — +b4 bqb»,
lq I &u,

Here,

1 1,
lql &~,

(16)

and h4' and h6' represent terms containing unequal num-
bers of creation and annihilation operators. Each q sum-
rnation excludes the point q =0. The unknown order pa-
rameter M will be determined by the requirement that 0
be minimum with respect to M.

where

Cs(n", M) = —2(u 4 +3u6f)n" 12u6n" +co V—

+( p4+u6f 18u6n" )M- —

+(u4+3u6f}M +u6M (26)

and the effective boson chemical potential ( —h4) is given
by
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Q~(q, g) =— ln Tr exp —P H +H& —ggbqbq
q

(28)

without any restriction and then choosing the parameter g
such that

I

bqbq ——— ——n",
q

(29)

with ( ) denoting a thermodynamic average calculated
with the Hamiltonian H, +H, —gg bqbq. The required
Qz(q) is then given by

b4 ——( —p&+u6f )+4(u4+3u6f)n "+18u6n"

+4(uq +3u6f +9u6n")M +9u 6M

In Cz as well as b4, 3u6f appears as a correction of order
u 34 to u q, , and will be omitted. Similarly, u 6f appears as
a small renormalization of p4 and will be omitted.

The linearizations (22) and (23) hold for states having a
mean density n" of bosons. The eigenstates of the linear-
ized Hamiltonian, however, can have arbitrary values of
N" /V. Consistency demands that, in calculating
Q~(q &p, ) defined by (11), the trace should be restricted
to only those states that satisfy (24).

As usual in statistical mechanics, the restriction (24)
can be taken into account by calculating

h
=a2(b4)+2a4(b4)M +3u6M

a2(b4) = —pq. +4ugI(b4)+ 18u6I (b4),

a4(b4) =u4+9u6I(b4) .

(37)

(38)

In the notations (37) and (38), Eq. (27) for b4 takes the
form

b4 a2(—b—4)+4a4(b4)M +9u6M (39)

I (b4) =Io —a
& ( T)b4' +c & ( T)b4+ (40)

where Io, a &, and c
&

are regular functions of T, one finds

Q —A ( T p3 p4) —2a )agb4 —, a ) b 4
——hM2 3/2

+azM +a4M +u6M +O(18a fu6M bq),

h 2 4 1/2

2M
= a2+2a4M +3u6M —4a1a4b4

(41)

—18a~u6M b4 +18a~u6b4+O(18c~u6M2b4),

Equation (36) is not the same as in the Landau theory in
as much as the coefficients a2 and a4 are implicit func-
tions of M.

Equations (36) and (39) imply that, for small M and
small h/M, b& is a small quantity. Upon using the ex-
pansion

Qg ——Qg+n "g(n") . (30)
(42)

The unknown quantity n" is fixed by the requirement
that Q~ be minimum with respect to n". It should be
noted that the trace on the right-hand side of (28) is
meaningful only if

b4 ——a2+4a4M +9u6M —4a1a4b42 4 1/2

—36a(u6M b4 +O(c)u6M b~) .

Here,

(43)

bq g&0 . — (31)

[4u 4 +9u 6I (b 4 ) +9u 6M ]- dI
4

&0. (33)

The calculation of Qz is trivial. We find that it has a
minimum with respect to n", provided that

n"=I(bg)= f 3 2, (32)
d q 1

(2m)' exp[P(q'/m4+b4)] —1

A (T~p3,p4) pF(T p3)+c0(T~p3~p4)V

+Qa(p &p. ;p4)+Qa(q o)

+2u 4Io+ 6u 6Io —p4Io (44)

and aq and a4 denote, respectively, a2(0) and a4, (0). In
writing the above expansions, the dimensionless quantities
a1u6, c1a4, and c1u6Io are considered to be small in com-
parison with unity. The order of the terms ignored is in-
dicated in each of the equations. It is convenient to ab-
sorb u6 by redefining M, b4, h, and az as follows:

Equations (29) and (32) imply that at the minimum point
g is zero.

We can regard (27) and (32) as self-consistent equations
for n" or b4. The stability condition (33) will prove use-
ful later. The thermodynamic potential in the HF ap-
proximation can now be written as

Q= pF(T p3)+Q~(p &p, ;p4—)+Q~(q, b4) hM+C~, —
(34)

Q~(q, b4)= —
2

ln 1 —exp —P +b41 qdq q

P 2m' PPZ 4

(35)

The requirement that Q be stationary with respect to M
gives the equation of state,

pn ——3u6M, a 2 ——3u6a2,2 I

t'

b1 —3am + 2m +2a4m +1/2 2 4 I

2'
1/2

1 2 4
2' =a2+2a4m +no

—2V2a(2a4+3m ) m +a4m +2 4 2 h1

4m

a=(3a,u6)'

b] 3u6b4, ——h$=(3u6)

Equations (42) and (43) can then be solved to give

(45)

(46)

(47)

(48)

(49)
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Note that in the degenerate phase (h&~0, m&0) the
above expressions are meaningful only if

m & —a'(T,Ps,Pg) . (50)

III. NONDEGENERATE AND DEGENERATE PHASES

It is convenient to discuss the nondegenerate and degen-
erate phases of the mixture separately.

A. Nondegenerate phase

The nondegenerate phase is defined by

b
~ ~0, m —+0, and b ~/m&0 .

The equations for h
&
/m and b ~ for this phase are

h'/rn =b&, b~ ———2aa4+(4a a4+a2)'

(51)

(52)

A positive sign for the square root in (52) is required by
the stability condition (33).

If we hold p4 fixed, a2 ——0 and a& ——0 define two curves
in the p3-T plane. It is not difficult to check that in the
limit of a degenerate Fermi gas (p3/kT»1), the curve
a 2

——0 is concave downward, while the curve a 4 ——0 is
concave upward (cf. Fig. 1). The two curves intersect pro-
vided that

In the region a4 &0, this condition is satisfied for all m,
no matter how small; in the region a«0, (50) implies the
absence of a critical line.

stable than the nondegenerate phase below the line
a 2 ———,a 4. In the region a4 & 0, the boundary a 2 ——0 of
the nondegenerate phase will be defined as the X line.

B. Degenerate phase

The degenerate phase is defined by h '~0, m&0. The
equation determining m in this case is (48).

Consider first the region a4 &0 in the T-ps p'lane. The
square-root term in (48) is meaningful provided that
m & Ia4I. It is easy to see that, for m & Ia4I, the last
term in (48) is only a correction term. We consequently
obtain the Landau-theory solution for I,

m = —a4+(a4 —a2)2 1/2

Substitution for m in (47) gives

b& —2I Io4I' —o2+ Io'If«4 —o2)'"ll .

(54)

(55)

The solutions (54) and (55) exist provided that a2 &a4,
but not too close to a 4. Together with the results ob-
tained above for the nondegenerate phase, this condition
implies that in the region a4 & 0 the degenerate and non-
degenerate phases overlap in the domain

—4A a4 &a2 &a42 r 2 (56)

In order to determine the relative stability of the two
phases in this domain, we compare the values of the ther-
modynamic potential in the two phases. Using (41), (52),
(54), and (55), we obtain

3
64m. u 4

3 5I3Q34
(53)

3

QD —QND ——
2 I

—2+3x —2(1—x) +2ax
I&41 3/2 3/2

27u 6

We shall refer to the intersection of the curves as the tri
critical point (TCP) and shall show that thermodynamic
behavior in its neighborhood corresponds to tricritical
behavior.

Equation (52) implies that, in the region a4&0, b4
does not exist at points a 2 & 0, whereas in the region
a4 & 0, b4 does not exist in the domain a 2 & —4O a 4.
The nondegenerate phase is thus possible only in the
hatched area in Fig. 1. It will, however, be seen below
that, in the region a 4 & 0, the degenerate phase is more

—4~2a[1 —x +(1—x) ]

where

2x =a2/a4, (58)

and the subscripts D and ND refer, respectively, to the de-
generate phase and the nondegenerate phase. Examina-
tion of this expression shows that

3

3
AD&AND, x& 4

QD)AND, x ) 4

(59)

ash
if one ignores the correction term a in (57). More exactly,

in (59) and (60) should be replaced by xo, where xo is
solution of

—2+3x —2(1 —x) ~ =2.375a.

The conclusion is that, below the line
I 3

a2 ——
4 a4,

(61)

(62)

FICx. 1. Qualitative plots of the curves a2 ——0 and a4=0. A
nondegenerate phase is possible in the hatched region only. The
dashed line corresponds to a 2 ———4a la4.

the degenerate phase is the more stable one, while above it
the nondegenerate phase is more stable. On the line (62)
the two phases have equal thermodynamic potential and
can coexist. The order parameter on the coexistence (ce)
line has a nonzero value
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2 3m„= —, a4 (63) m —(Tt —T), T& Tt, p3 p——3t . (68)

In the region a4&0, the last term on the right-hand
side of Eq. (48) behaves like a correction term if m is
much larger than a4, or is of the order of a4. The solu-
tion for m in this case is given by the Landau-theory re-
sult (54) provided that a2 &0. The conditions for its va-
lidity become

I a2 I »« (64)

(65)

The first of these is satisfied if a 2 and a4 are quantities of
the same order of smallness; the second is satisfied if a 2 is
of the same order of smallness as a 4. In the calculation of
tricritical exponents (cf. Sec. IV) these are the only cases
which arise.

IV. CALCULATION OF TRICRITICAL EXPONENTS

As seen above in the degenerate phase, the HF theory
reduces to the classical Landau description. It will, there-
fore, give the same critical behavior near the TCP as
predicted by the Landau theory. In the nondegenerate
phase, however, the HF theory differs from the classical
theory through the presence of b4 terms [cf. (41)]. The
critical exponents associated with the normal phase will

consequently be different. The disagreement between the
Landau-theory and experimental results has been noticed
by several authors, ' and proposals have been made at a
phenomenological level to improve Landau's theory. No
attempt, however, appears to have been made to explain
the experimental results in terms of a microscopic theory.

In the notation proposed by Griffiths, the tricritical
exponents may be divided into two classes: sub-t ex-
ponents and sub- u exponents. The sub- t exponents
describe critical behavior along a line parallel to the T
axis and passing through the TCP. The sub-u exponents
describe the thermodynamic behavior associated with the
coexistence line near the TCP. For the definitions of the
exponents we refer the reader to Griffiths's paper and the
report by Kincaid and Cohen. Below, calculations of a
few typical exponents are presented.

As pointed out in Sec. I of I, and as may also be seen
explicitly from Eqs. (41) and (43), the potential Q+hM is
a function of the variables (T,p3,p4, M). It is therefore
convenient to discuss critical behavior in the T-p3 plane
treating p4 as a parameter. Some remarks on the use of
the variables ( T,b„P) will be found in the discussion in
Sec. V.

An examination of the expressions for a2 and a4 shows
that both of them are regular functions of T and p3 at the
TCP ( T„p3,). For small deviations from TCP, one may,
consequently, write

The segment T& T, of the line p3 ——p3, lies in the region
a4&0 (cf. Fig. 1). On this line, m is determined by Eq.
(54), which yields, for small T —T„

m =(3u6d2)'i (T —T, )'i (69)

It follows that p, = —,'. Using this result, one finds, for the
susceptibility exponent y„ the value l.

In Landau theory the specific-heat exponent u, is zero
in the normal phase. In HF theory the entropy per unit
volume for the normal phase obtained from (41) is

aa 1/2 2 4 2

aT +(a,b4 +2a ~a4) +2a &d4b4 .

At p3 —p3g (52) gives

b4-d2(T —T, ) .

(70)

(71)

It is evident that this result arises from the part of the
thermodynamic potential associated with the long-
wavelength fluctuations b». The Landau theory corre-
sponds to ignoring these fluctuations, and, hence, a zero
value for u, .

The values of other sub-t exponents are given in Table
I. For comparison, the values obtained by Riedel and
Wegner, by applying renormalization-group theory to a
phenomenological one-component spin model, have been
listed, along with those calculated by Kincaid and Cohen.

We next calculate two sub-u exponents, namely y„and
6 +. Their values in the Landau theory are, respectively,
0 and 1. The role played by the long-wavelength fluctua-
tions becomes manifest again.

At constant p4, y„may be defined by

Bx (T —Tg), x =xg, T) Tg
BP3

(73)

where x, denotes the values of the fermion concentration
x at the TCP. Alternatively, since the quantity conjugate
to p3 is n 3, we can set

()Pl3 y(T —Tt), x =xg, T) Tt
BP3

Both definitions give the same result for y„.
Upon differentiating the equation

1/x —1 =n 4/n 3

at fixed ( T,p4), we obtain

(74)

(75)

The entropy thus contains a term proportional to
( T —T, )'~, which implies

(72)

a2 =d2( T —T~ ) +e2(tu 3—p3t ),
a4 d4(T —T, )+e4(P3——P3, ) . —

(66)

(67)
Bx

2
Xg ~@3 x =x,

87l 3

BP3

Bn4

BP3

The coefficients d2, e2, and d4 are positive, while e4 is
negative. They depend upon p4 through T, and p3g.

We first calculate the order-parameter exponent p, de-
fined as

(76)

the derivatives on the right-hand side being evaluated at
x =x, . Expressions for n3 and n4 follow from the ther-
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TABLE I. List of tricritical exponents of helium mixtures. For definitions, the reader is referred to
Refs. 8 and 9.

sub t

Exponent, Experiment

1

2

Kincaid-Cohen
theory (Ref. 9)

1

2

1

4

Present
theory'

1

2

1

2

1

4

Renormalization-group
theory (Ref. 4)

1

2

1

2

4

undefined

sub u &u
r

u

'Although the exponents are calculated in this paper treating p4 as a parameter, they are expected to be
the same at constant pressure (cf. Sec. V). In renormalization-group theory (Ref. 4) they are defined
with respect to "scaling fields" whose relationship to the elementary (experimental) fields cannot be
unambiguously specified.

modynamic potential. We find

F
F Bn3

l13 —n 3 [03' 3 +a 34n 4 (p,pq) +u 34IQ]
Bp3

e3=
xr Bp3

r

1 —x, Bn3 Bn4

p3
(82)

F
2 &/2 Bn3

+034( —M +a&b& )
Bp3

(77)

I

ng n4(p, p4)+I——O u34n3 — +M aib4 . (78—)F 4 2 1/2

p4

d3(T —T, ) e3(p3 p—3, ) ai—b4 ——0, —1/2 (80)

the nondegenerate phase, the terms in (77) and (78)
which can lead to singular behavior of the derivatives are
those containing b4 . We therefore restrict our attention
to the derivative of b 4, which, in view of (52), is

Bb4 1 e2+Sa )a4eg
1/2 2

= —2a
& e4+ —

&/2 (79)
Bp3 2 $4 +2a ia4

We need to calculate the right-hand side of (79) on the
line x =x„defined by replacing x by x, in (75). For
small deviations from the TCP, the equation of this line
becomes

p3 —p3~ =—

The value of b4 on this line is

( b 1/2) e3+d3 (T —T, ) .
e2

(84)

Equations (79), (83), and (84) allow us to infer that

(85)

The exponent 5 + is defined along the line T =T, by
writing

n 3 and n4 denote, respectively, the regular parts of n3 and
n4, and the subscript t means that the derivatives are
evaluated at the TCP. Since the dependence of n3 on T
(degenerate fermion gas) and n4 on p3 are both small, d3
and e3 are positive coefficients. Equations (80) and (52)
lead to the conclusion that the line x =x, is given by

(T—Tt)+0(T —T, )' . (83)
e2

where
T

1 —x, Bn3

x
(81)

5 +
p3 —p3t (X —xg), X )Xg (86)

For small deviations from TCP along T =T„Eqs. (75),
(77), (78), and (52) give
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1/2

xg
(x —x, ) =e3(p3 —l43, ) +a, b4

b4 —[e2(p3 p3t )1 l43) p3t

(87)

(88)

where e3 is defined in (82). We infer that, for small
jtl3 p3g (86) is satisfied with

5 +=2. (89)

The values of all the sub-u exponents obtained in the
HF approximation are listed in Table I together with the
experimental results. The values obtained in other treat-
ments"' are also tabulated. Perusal of the table shows
that the tricritical exponents derived in this paper are in
agreement with the experimental values as we11 as with
the results of scaling theories.

In the x-T plane, the coexistence line (62) degenerates
into two lines, x„(T) and x~(T). The line x„, called the
upper line, represents fermion concentration in the normal
phase, while xi, called the lower line, represents the same
quantity in the coexisting degenerate phase. In the classi-
cal theory, the upper line has the same slope at the TCP
as the A, line. As will be shown below, this is no longer
true in the HF approximation.

The equation of the upper line is

—1=-n4[T, l 3(»,s 4]

n3[»s 3(T),l44]
' (90)

where d3 and e3 are given by (81) and (82) and the quanti-
ty on the right-hand side is to be evaluated on the coex-
istence line (62). To first order in T —T„ the coexistence
line is the same as a2 ——0, i.e.,

IJ3—P3~ =—
e2

(92)

To the next approximation, it is given by

d2 (T—T, )
a~= d4+

e2 4u6
(93)

Using these results, (91) becomes

Xt
2

Q) d2
d3+ e3+ )~2 d4+ I e4

I

n3g e2 (4u6)' e2
x —x, =—

Q

where p3( T) denotes the coexistence line in the p3- T plane
and n4 and n3 refer to the densities in the normal phase.
For a point on x„(T) close to the TCP, one can write

&3~ 1/2
2 (x„—x, )= [d3 ( T —T, ) —e3 (p3 —l43, ) a) b 4 ], —

Xg

(91)

Replacing x„ in (91) by X3 and using the fact that b4 is
zero on the A, line [cf. Eq. (52)], we obtain

2
X, d2

xg —xt= — d3+ e3 (T —Tg) . (96)
e2

Equations (94) and (96) imply

dxg 2x, aI
d4+

I
e4

I

n3~ (4a6) e2

dxg

dT
(97)

i.e., the slope of the upper line is larger in magnitude than
that of the A, line. This result is in qualitative agreement
with experimental facts. It is easily seen to be a conse-
quence of the b4 term in (91). The role of long-
wavelength fluctuations of the order parameter is thus
reemphasized.

V. DISCUSSION

0+ hM =Q„+Q,
'
(a2, a4, M), (98)

where Q„denotes the regular part of Q+hM, and

, = —2~,~,b4 ——,a, b, +a,l +a4M +u,M .l 2 2 3/2 2 6

The work reported in I and this paper was motivated by
the desire to provide a microscopic quantum-mechanical
foundation for phenomenological theories of critical
behavior in helium mixtures. As the earlier attempts
were not successful in obtaining a Landau expansion for
the mixture, a primary objective was to understand how
such an expansion in powers of the order parameter could
arise in a microscopic theory and to discover its limita-
tions. While we have not been able to achieve this objec-
tive using realistic interaction potentials between helium
atoms, investigations of a model fermion-boson mixture
have provided satisfactory, qualitative answers to the
above questions.

The quantity of central importance in the investigation
turns out to be the effective, low-momentum boson-boson
Hamiltonian H, derived in I, particularly the structure of
the coefficients of the four- and six-operator terms of H, .
This structure is similar to that assumed in the Landau
theory of a tricritical point. As pointed out in Sec. II, the
Landau expansion results on completely ignoring fluctua-
tions of the order parameter in the effective Hamiltonian.
This derivation of the Landau theory also makes evident
its inadequacy in explaining the tricritical behavior of the
normal phase. When the fluctuations are taken into ac-
count in an approximate manner, one finds a tricritical
behavior in the normal phase, in accord with experiment.

The thermodynamic potential calculated in Sec. II con-
forms to the scaling hypothesis ' for the TCP. We may
write (41) as

X(T—T, ) .

The A, line in the x-T plane is given by

(94)

It is easily verified that 0,' scales as

(99)

—1= n4[»v 33.(T»l 4]
n [»pu(T»p ]

' (95)

where @3~(T) represents the line a2 ——0 in the p3- T plane.

0,'(la2, l 'a4, l 'M) =l 'Q, (a2,a4, M), (100)

with P, = —,, P, = —,, and a, = —,, provided that b4 scales
as
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b4(la2, l 'a4, / 'M)=lb4 . (101)

p4 —— +4u4I(b)+4u4n4+2uqM +u34n3
2M

Q3Q34 Q 34+4
BP3 BP3

(102)

Equation (43) for b4 implies that (101) holds. The equa-
tion of state [Eq. (42)] enables one to conclude that h

scales as l ' with 6, equal to 4.
The agreement between the results for tricritical ex-

ponents obtained in this paper and in the renormal-
ization-group approach applied to a phenomenological
Hamiltonian can be traced to the scaling property (100)
of the thermodynamic potential in both treatments. It
should, however, be pointed out that whereas we have de-
fined exponents in terms of the elementary fields T —T,
and p3 —p3„ in the phenomenological theory they are de-
fined with respect to certain "scaling fields" whose rela-
tionship with the elementary fields can only be postulated.
The importance of microscopic theories derives from the
necessity to illuminate the connection between the scaling
fields and the elementary fields which enter the physical
description of the system. The expressions for a2(0) and
a4(0) [cf. Eqs. (37) and (38)] provide an example. It
should also be pointed out that values of exponents other
than a„13„and P, are deduced in the scaling theories
from scaling laws which usually require assumptions
about the regular behavior of certain multiplying func-
tions.

The HF approximation gives a correct description of
tricritical behavior in the degenerate as well as the nonde-
generate phase. However, it gives a reasonable description
of ordinary critical behavior in the degenerate phase only
as long as the inequality (64) is satisfied. In the opposite
case (m «a4), Eq. (48) gives a solution for M, which,
instead of approaching zero on the )t. line, assumes a finite
value (8a ~a4). In the region az &0, the degenerate phase
is, therefore, meaningful in an asymptotic sense only,
namely if one first fixes

~
a2 ~, or the deviation

~

T —T~ ~, and then chooses a suitably small a& to satisfy
(64). This situation, however, is not peculiar to the HF
approximation only. More sophisticated approaches such
as the Green's function method' and the renormal-
ization-group approach"' give equation of state near a
critical point in the above asymptotic sense.

An expression for p4 up to second order in u 34 was
used in I to discuss the conditions of thermodynamic sta-
bility of the mixture'. We indicate briefly the derivation of
that expression. Elimination of p4 from (5) and (36) gives

Writing u4 as u4+u4' and using Eqs. (77) and (78), (102)
reduces to Eq. (79) of I with the difference that —h /2M
replaces is&(n&) T. hese two quantities, however, are easily
seen to be equal. In the degenerate phase both are zero.
In the nondegenerate phase, h/2M equals b4, which, ac-
cording to (27), is given by —pq —u34n3 up to first order
in u34 Equation (75) for n4 now implies that in the non-
degenerate phase, —b4 is equal to the chemical potential
of an ideal Bose gas of density n4.

Finally, we comment on the fact that we have derived
tricritical behavior treating p4 as a parameter, whereas ex-
perimental observations usually refer to a fixed pressure
P. Following Bogoliubov*s work on symmetry breaking,
the correct order parameter for a system of bosons is con-
sidered to be (bplv V ) with the be's playing the role of
fluctuations. It was pointed out in I that with (bp/~V )
as the order parameter, just one thermodynamic potential
of the fields exists, namely 0'( T,p 3,p4, M). From a
theoretical point of view, therefore, a Landau expansion in
powers of the order parameter is possible only with
( T,p3 p4) as field variables; the quantities ( T, b, ,P) cannot
be used as fields for such an expansion. The experimental
situation, however, corresponds to the limit h ~0. In this
limit potential function of the variables (T,A, P) exists
and is simply p4. To express the theoretical results for
h —+0 in terms of the variables ( T,b„P), all that is neces-
sary is to replace p4 everywhere by p4( T, b,P). Since ls4 is
a regular function of its variables at TCP (its first deriva-
tives being the entropy per particle, the volume per parti-
cle, and the fermion concentration x), the critical
behavior at constant P may be expected to be the same as
at constant p4. The nonuniversal aspects of tricritical
behavior emphasized by Fisher and Sarbach' are being
studied in the context of the model introduced in this pa-
per and will be reported later.
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