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Theory of inhomogeneous quantum systems. I. Static properties of Bose fluids
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We develop a variational theory for the determination of the ground-state properties of an inho-
mogeneous Bose fluid at zero temperature. Euler-Lagrange equations are derived for the one- and
two-body correlations, and systematic approximation methods are physically motivated. It is shown
that the optimized variational method provides a self-consistent approximate summation of ladder
and ring diagrams. Numerical applications are presented for the density profile, distribution func-
tions, energy, and chemical potential of films of He atoms. Both the bulk and surface energies are
calculated and found to be in fair agreement with experiments.

I. INTRODUCTION

Based on the success of variational methods within the
last decade we may regard the ground state of simple
quantum liquids such as the helium isotopes and the elec-
tran gas as well understood. Doubtless, the solution of
the many-body Schrodinger equation for these systems'
by means of the Green's-function Monte Carlo (GFMC)
method at present provides the best answer for the ground
state of these systems. Nevertheless, many-body methods
based on variational (Jastrow-type) wave functions, clus-
ter expansions, resummation techniques, and an optimiza-
tion procedure also belong to the indispensable repertoire
of modern microscopic many-body theory. Encouraged
by the qualitative successes of these methods in the theory
of bulk quantum liquids, we seek an extension to the more
complicated case of inhomogeneous systems. This paper
is the first in a series of papers in which we address our-
selves to the theoretical formulation and numerical appli-
catian of the variational theory of inhomogeneous sys-
tems. As the simplest species of physical interest, we will
present here the application of the theory to the static
properties of films of He atoms. This work is done not
only because of the interest in this physical system, but
also as a first step to explore the possibilities of an exten-
sion of variational theories for the surface of Fermi sys-
tems, in particular the electron gas in a metal surface.

A few points are worth mentioning to relate the varia-
tional approach to both conventional, perturbative
many-body theory and Monte Carlo methods, and to pro-
vide motivation for some of the further developments of
this paper.

(i) A satisfactory theory for a quantum system should
be able to decide whether at zero temperature a given
number A of interacting particles within a certain volume
V is in a homogeneous or in an inhomogeneous state. 1f
the particle number if large enough (to be specific we
think af a system of "He atoms) the volume will be filled
with a homogeneous liquid of positive pressure. As we
decrease the particle number we will first enter a metasta-
ble regime with negative pressure, and finally encounter a
local instability due to a vanishing compressibility. Such a

physical instability should also be reflected in a corre-
sponding instability of the theoretical description of the
system. This physically rather natural requirement is sa-
tisfied by the variational theory using hypernetted-chain
(HNC) methods and by the parquet-diagram theory.

(ii) Variational/integral-equation methods (to be specif-
ic, we refer here again to the HNC integral equations for
the summation of infinite series of cluster diagrams) con-
tain the two most prominent methods of conventional
many-body theory, the sum of the ring and ladder dia-
grams, as simple special cases.

(iii) Variational/integral-equation theories for homo
geneaus systems require very small computational effort.
They reflect the known physical instabilities of a quantum
liquid, at low densities against the above-mentioned for-
mation of droplets, and at high densities against solidifica-
tion.

(iv) Monte Carlo simulations usually start from a varia-
tional wave function of (generalized) Jastrow form, and
converge more quickly the more realistic the starting
functions are. A good choice of a starting function is usu-
ally quite easy in a bulk quantum liquid, but requires
more thought in an inhomogeneous system.

(v) Variational methods can be extended in a straight-
forward way to a theory of the low-lying excited states of
a quantum liquid. This theory is collectively known as
correlated-basis-functions theory and emerges today
essentially as a theory of effective interactions between
quasiparticles to be used in precisely those places, where
conventional (perturbative) many-body approaches be-
come entangled in insurmountable technical problems.

A few attempts have been made to derive a variational
theory of the surface of liquid He. Most notable is the
early work of Woo and collaborators, a similar study by
Chang and Cohen, and a somewhat more recent work by
Saarela et al. ' Common to these papers is that the
relevant two-body densities were considered to be isotro-
pic, and that local-density approximations were made for
these functions. Beyond this, Saarela et ai. ' have derived
a set of equations that should in principle also give access
to the study of anisotropies. These authors found, howev-
er, the fully self-consistent solutions of the hypernetted-
chain equations in an inhomogeneous system, and the op-
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timization of the Jastrow functions, to be numerically too
difficult to execute. This difficulty is in contrast to the
experience gained from variational theories for homogene-
ous quantum liquids, where HNC and optimization
methods provide presently the best tradeoff between the
accuracy of the prediction of physical quantities and the
numerical effort involved.

Local-density approximations have their well-known
problems in the low-density regime. But there is some in-
dication that, for very small separations, the correlations
in the surface of a quantum liquid are in fact isotropic.
Of course, the phrase "very-small separations" calls for
specification, which will be given along with the further
developments of our theory. On the other hand, there is
little reason to assume that the correlations at intermedi-
ate and large separations (i.e., those of the order of the
range of the surface thickness) are isotropic, though this
anisotropy cannot be easily detected in the simplest
ground-state properties such as the density distribution. "
It is one of the purposes of this paper to explore these an-
isotropies. In this sense, our work goes beyond compa-
rable earlier studies.

Our work provides the first successful fully consistent
application of variational and integral-. equation methods
to an inhomogeneous system. It is characterized by the
advantages of optimization procedures and the systemat-
ics of integral-equation theories known from studies of
bulk quantum liquids. We concentrate here on the sim-
plest acceptable' implementation of integral-equation
methods, which is collectively known as the hypernetted-
chain approximation.

For some of the bulk properties of inhomogeneous sys-
tems it is possible to perform variational and Green s-
function Monte Carlo calculations. " Our theory is to be
understood as being complementary, not in competition
with Monte Carlo methods. It is clear that the inclusion
of three-body factors and the automatic calculation of
"elementary" diagrams in a variational Monte Carlo cal-
culation will give, especially for high-density systems,
more accurate estimates for gross properties. The HNC
approximation in particular yields a too low value for the
saturation density, and, of course, our calculation cannot
improve this.

To what extent this drawback of the HNC is serious in
considerations that go beyond the ground state remains to
be seen. Generally, it is for the study of excited states
more important to have a carefully optimized ground-
state wave function than it is to have a slightly better esti-
mate for the ground-state energy. The study of excited
states on the background of a nonoptimized ground state
will inevitably give rise to spurious instabilities simply re-
flecting the fact that the energy expectation value can be
lowered by a better wave function. To give another exam-
ple: The optimization of the pair correlations in bulk He
yields only a small amount of additional binding energy.
Nevertheless, the optimization affects the long-wavelength
part of the static form factor, and hence the phonon spec-
trum, quite notably. This correction is comparable to,
and in most cases larger, than the effect of elementary di-
agrams and three-body correlations. We note also that the
hypernetted-chain approximation becomes increasingly

better as we approach the low-density regions of the sur-
face.

The above reservations about the general usefulness of
variational Monte Carlo calculations for problems which
go beyond static properties do not, of course, apply to the
GFMC aspect of Ref. 11. But it is questionable whether
the GFMC theory can be extended to excited states, ' and
one must also keep in mind that the computational effort
of the theory presented here is several orders of magnitude
smaller than the one of a GFMC calculation. Of course,
one may still legitimately question the usefulness of an
HNC/EL (HNC/Euler-Lagrange) theory for surface
problems if such a theory is restricted to the static proper-
ties already known from CrFMC calculations or accessible
by these techniques. We emphasized, therefore, from the
outset the possibility to study excited states as well ~

Another important point is worth mentioning: With
CrFMC data for the static properties (e.g. , the static form
factor) available one may work "backwards" through the
equations of the variational theory, obtain a particle-hole
interaction, and from that the dispersion relation for the
collective modes. This program has recently successfully
been carried through for the electron gas. '

The variational theory of anisotropic He is doubtlessly
numerically quite complicated compared with the theory
of bulk He. This complication is simply due to the
amount of data to be handled. To represent a quantity
like the two-body density in the homogeneous system re-
quires about 50 to 100 data points. Due to the broken
symmetry we need for the same quantity in the inhomo-
geneous case about 10 points. It is clear that the design
of a numerical method to determine such large numbers
of data requires some thought. A suitable strategy for
solving the equations of the variational theory for an in-
homogeneous system relies, therefore, even more on the
understanding of the physical processes described by the
formal quantities of the theory rather than in the bulk
system. We will, therefore, emphasize the discussion of
these points.

The main body of our paper consists of the formal
development of the variational theory of inhomogeneous
boson systems and the derivation of Euler-Lagrange equa-
tions for the optimization of the trial wave function. The
basic quantities and equations will be introduced in Sec.
II. Section III describes the optimization of the two-body
correlations, and Sec. IV gives the corresponding manipu-
lations for the one-body density. The proof that the ring
diagrams of the conventional random-phase approxima-
tion (RPA) are a proper subset of the optimized HNC
theory will be given in Sec. V.

Section VI is devoted to the description of the numeri-
cal optimization method used in our work. Section VII
presents results on the static properties of films of He.
The final section, VIII, gives an overview of possible ex-
tensions of the present work to excited states and to Fermi
systems.

The manipulations of this paper will occasionally be
algebraically quite lengthy. This is caused by the fact that
we are entering a rather unexplored field, reminiscent of
the early developments of the variational theories of
homogeneous systems.
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II. VARIATIONAL WAVE FUNCTIONS,
DISTRIBUTION FUNCTIONS,

AND THE ENERGY EXPECTATION VALUE

A variational theory for a boson liquid starts with an
ansatz for the many-body wave function of the Feenberg

A

0'o(r&, . . . , rz)=exp —,
' g u&(r;)+ —,

' g u2(r;, rj)

fected, though numerically complicated, by the possible
presence of a three-body factor.

With the wave function (2.1) given, we introduce as
usual the one- and two-body densities

fd'r2 . d'r~ q'0(r&, . . . , r, )
p)(r)) =A. . . (2.2)fd'ri . d'r„P0(r, , . . . , r, )

and

1+ p g u3(r;, rj, rk)+
i &j&k
i,j,k=1

fd r3 . d r„%'0(r&, . . . , r„)
p2(r&, r2) =A (A —1) fd r( . . d r„%' 0(r), . . . , r~)

and the two-body distribution function

(2,3)

The decomposition of the Feenberg function into one-,
two-, . . . , A-body correlations is made unique by requir-
ing that each of the u;(r&, . . . , r;), i =1,2, . . . , A, satis-
fies the cluster property, i.e., it vanishes whenever one or
more of the particles are sufficiently far away from the
others. Here we will be concerned only with the one- and
the two-body portions of the Feenberg function (2.1); most
of the developments of the theory will be formally unaf-

p2(rl r2)

pi«i)pi(r2)
(2.4)

Provided that we neglect three-body correlations, the
knowledge of the one- and two-body function u &(r), p~(r),
u2(r&, r2), and p2(r&, r2) is sufficient for a calculation of
the energy expectation value

fd r& d r~ %0(r„. . . , r~)H+0(r&, . . . , r~)

fd r t
' ' ' d ra 'P0(rt ~ - ~

(2.5)

of a system of identical particles in an external field
U,„,(r), interacting via the two-body interaction
v(~r; —rj )),

H = — g V;+ g U,„,(r;)+ g v(
~
r; —r~

~

) .
i=1 i=1 i &j

(2.6)

The optimal strategy for the determination of the correla-
tion factors u&(r~) and u2(r~, r2) is the minimization of
the energy expectation value H00, i.e., the solution of the
Euler-Lagrange equations

and

5H00[u (,uz] =0
5u, (r))

5H00[u (,u2] =0.
5u2(r&, r2)

(2.7)

(2.8)

Of course, the program outlined above —the determina-
tion of the distribution functions from the variational an-
satz (2.1) for the wave function and the solution of the
Euler-Lagrange equations (2.7) and (2.8) "annot be car-
ried out exactly. Ultimately, we will have to resort to ap-
proximation schemes to relate the trial functions u&(r),
u2(r&, r2) to the physical densities p&(r) and p2(r&, r2) in or-
der to cast the problem in a numerically tractable form.
As experience with the optimization in bulk "He has
taught us, ' care has to be exercised in the choice of ap-

proximation methods to relate the distribution functions
to the wave function. Similar care is necessary in the
treatment of the kinetic energy operator in order to main-
tain the boundedness of the approximate energy expecta-
tion value.

We can, . of course, take advantage of the experience
gained in the past for the bulk system. Following the
same formal route, ' we will avoid any premature approx-
imations in order to maintain the exact structure of the
equations until the point of numerical application is
reached. In this sense, the present study is the generaliza-
tion of earlier work' to inhomogeneous systems.

After these preliminary remarks let us now turn to the
formulation of the problem in a form which lends itself to
the manipulations necessary to formulate the Euler-
Lagrange equations (2.7) and (2.8) for the one- and two-
body functions u ~(r) and u2(r&, r2). Once unique relations
between these one- and two-body correlations and the cor-
responding distribution functions are given, we could re-
gard p&(r) and/or p2(r&, r2) ag the independent variables.
In fact, it will turn out that u ~(r&) can be totally eliminat-
ed in favor of p&(r~). The same elimination of u2(r&, r2) in
favor of p2(r~, rz) is also possible, ' but is of no technical
advantage.

%'e have chosen in this work to use the Born-Green-
Yvon (BGY) equation for the one-body function and the
hypernetted-chain equation for the two-body functions to
relate the wave function to the physical distribution func-
tions (2.2) and (2.3). The BCxY equation has, compared
with an HNC theory for one-body density, ' the advan-
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tage of being exact for a given two-body distribution func-
tion:

V]PI(rl)
V]u 1 (rl ) = d r2p](r2)g(r], r2)V]u2(r], r2) .

Pl(rl )

(2.9)

We use Eq. (2.9) to eliminate the explicit appearance of
the one-body correlation factor u 1 (r) in the energy expec-
tation value and consider instead pl(r) as the independent
one-body function. This elimination is an important
step' in the development of an optimization procedure:
In general, one cannot guarantee that the solution of the
two-body Euler-Lagrange equation (2.8) satisfies the
"cluster property" u2(r], r2)~0 for

I
rl —r2

I
oo for any

given u](r). We will see, however, that the solutions of
the two-body Euler-Lagrange equation are well behaved
for any given one-body density of pl(r).

The HNC equations are derived by diagrammatical
studies of the two-body distribution function, originally
performed in classical imperfect gases. ' They relate the
two-body correlation factor uz(r], r2) and the two-body
distribution function g (rl, r2) through auxiliary quantities
X(r],r2), X(rl, r2), and E(rl, r2) representing sets of nodal
(N), non-nodal (X), and elementary (E) diagrams:

g(rl r2)=exp[]]z(r] r2)+N(r], r2)+E(r], r2)] (2.10)

and the chain equation

We are now ready to formulate the energy-expectation
value (2.5) with respect to a trial wave function of the
form (2.1) with u3 ——u4, —— ——u~ ——0. As usual, the ex-
pectation value of the kinetic energy operator is
transformed using the Jackson-Feenberg (JF) identity

f d r] 'd pg Ppv. %p= 2 fd ]'] ''d pg lpv ln%p

(2.14)

and may hence be expressed in terms of the one- and the
two-body densities alone:

( T) = —fd r] p](r]) V]u](r])3

8m

3 3d r] d r2pp(r], r2) (V]+V2)u2(r], r2) .
8m

(2.15)

Finally, using the BGY equation (2.9), we eliminate the
one-body factor u](r) in favor of the physical one-body
density, and represent the total-energy expectation value
in a form which will be the starting point for our further
manipulations:

E= d ~1p1 r1 Uext r1 + V1lnp r1
8m

%(r],r2) = fd r3 pl(r3)[g(r„r3) —1]X(r3,r2), (2.11)

where

+ —,
' fd r] d r2 p](r])p](r2)g(r], r2)UJF(r], r&)

(1) ++(2) ' (2.16)

X(r],rz)—=g(rl, r2) —1 —X(r],r2) . (2.12)

[A eB](rl, r2) = fd r3 p](r3)A(r„r3)8(r3, r2) . (2.13)

The function E(rl, r2) can be represented diagrammati-
cally by an infinite series of elementary diagrams which
can be expressed as multidimensional integrals involving
pl(r) and g(rl, r2). [The level of HNC approximation is
defined by the choice of E(rl, r2); for example HNC/0
neglects the elementary diagrams altogether. ]

The HNC equations provide a prescription for calculat-
ing the pair-distribution function from a given two-body
correlation function u2(r], r2) in precisely the same way in
which the diagrammatic derivation of the HNC equation
is done. Starting from an initial guess
X(r],r2)=E(r], r2)=0, Eq. (2.10) yields a first approxi-
mation for g(rl, r2). With this g(rl, r2), a new guess for
X(r],r2) [Eq. (2.11)] is calculated. In addition, the ele-
mentary diagrams must be calculated according to the
level of HNC approximation in which one chooses to
work. With these new estimates for X(r],r2) and
E(rl, r2), the pair-distribution function g(rl, r2) is updated
via Eq. (2.10), and the procedure is repeated until conver-
gence is reached. Equivalently, one may use the HNC
equations to calculate the pair-correlation function
uq(r], r2) from a given pair-distribution function g(rl, r2).

It will occasionally be convenient to write convolution
integrals of the kind introduced in Eq. (2.11) in the abbre-
viated form

Here, UJF(rl, r2) is the generalized Jackson-Feenberg in-
teraction

UJF(r] r2)=U(
I
rl r

fi 1
V]P](rl) Vl

8Pl pl I'1

1+ V2p](rp) Vp u2(r], r2) .
pl r2

(2.17)

In the representation (2.16), the energy expectation
value is to be understood to be a functional of the one-
body density pl(r) and the two-body correlation factor
u2(r], r2). The pair distribution g(rl, r2) is then known
from the HNC equations (2.10) and (2.11). We could at
this point use these equations' to eliminate also the two-
body correlation function u2(r], r2), and to formulate the
theory entirely in terms of the (physically observable) one-
and two-body distribution functions. However, this addi-
tional elimination calls for the neglect of the elementary
diagrams at this early point and obscures somewhat the
physical content of the theory. Since the elimination of
the two-body correlation factor does not lead to a simpli-
fication of the further formal manipulations, we choose
here to regard the one-body density pl(r) and the two-
body correlation factor uz(r], r2) as independent variables.
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III. OPTIMIZATION OF THE TWO-BODY
CORRELATIONS

The energy expression (2.16) allows for a straightfor-
ward derivation of a variety of representations of the
Euler-Lagrange equation (2.8) to determine the pair-
correlation function and the two-body distribution func-
tion. Ultimately, the representation of the Euler-
Lagrange equation will depend on the optimization
strategy adopted for its numerical solution, i.e., an itera-
tive procedure to improve an initial guess for the two-
body function until convergence is reached. In order to
motivate the formal manipulations of this section, let us
briefly review the available optimization algorithms for
the two-body correlation function u2(r&, r2) and the relat-
ed pair-distribution function g(r~, rq) for bulk He. In the
bulk limit, all two-body functions depend only on the dis-
tance r =

~
r~ —r2

~

between two particles.
The historically first optimization route has been de-

rived by Campbell and Feenberg' in their paired-phonon
analysis (PPA). The PPA derives a set of equations for
the static form factor

S(k) =1+pfd r[g(r) —1]e' ', (3.1)

and a self-consistent particle-hole interaction. The PPA
equations are

S(k)=[1+(4mp/fi k )V~ «(k)] (3.2)

QZ V'+ U(r)+w, (r) v'g(r)=O.
m

(3.5)

The PPA and the LS formulations of the Euler-Lagrange
equation are algebraically equivalent. They merely sug-
gest different iteration paths for the determination of the
g(r) and u2(r). The distinctive difference between the
two formulations of the Euler-Lagrange equations is that
the PPA formulation allows for an iterative solution in
the sense that one may, starting from a given guess for
g (r), calculate a particle-hole interaction Vz «(r) and im-
prove upon the initial guess via Eq. (3.2) until convergence
is reached. One iteration of the PPA equations is 'hardly

Vz «(r) =g(r)U(r)+(fi /m)
~

Vv'g(r)
~

~+[g(r) —1]wz(r) .

(3.3)

(The three-dimensional Fourier transform is denoted by a
tilde. ) The "induced interaction"' wz(r) is, in the HNC
approximation E(r)=0, most conveniently represented in
Fourier space:

Ak
wz(k) = — [2S(k)+1][1—S '(k)) . (3.4)

4mp

We recover in Eq. (3.2) the RPA expression for the static
form factor. The HNC-EL theory supplements the RPA
with a microscopic theory of the particle-hole interaction
Vp «(r)

An alternative way to formulate the Euler-Lagrange
equations has been used by Lantto and Siemens (LS),'

who express the optimization condition in coordinate
space. They arrive in the HNC approximation at

fi [D(1)+D(2)]g(r), r2) =g'(r), r2),
8m

(3.6)

where we have abbreviated the derivative

D(i)=p~ '(r;)V;p~(r;). V; (3.7)

and introduced the generalized distribution function,

more time consuming than one iteration of the HNC
equations for a given, fixed pair-correlation function
u2(r). However, the procedure converges slowly if one
starts with a poor guess for the short-ranged part of the
pair-correlation function.

In contrast to the PPA, the LS formulation of (3.4) of
the Euler-Lagrange equation does not allow for an itera-
tive solutio'n in the sense that one may solve Eq. (3.5) for a
given induced interaction wz(r) and then improve upon
wq(r), using Eq. (3.4). Rather, one must linearize the
equation' and employ a Newton-Raphson procedure. If
this is done, the iterations usually converge rather fast,
especially for the short-ranged part of g (r).

It is clear that the linearization of the Euler-Lagrange
equation in the sense of Lantto and Siemens leads to a
forbidding numerical effort in inhomogeneous systems.
We are therefore naturally led to a generalization of the
paired-phonon analysis as a suggestive iterative procedure
for the solution of the Euler-Lagrange equations, and the
remainder of this section will be devoted to the algebraic
manipulations leading to the generalization of Eq. (3.2) to
inhomogeneous systems.

Some qualitative physical considerations give additional
support to the generalization of the PPA as the most
promising route by which a numerical solution of the
Euler-Lagrange equations can be found. The inhomo-
geneity of the system should mostly affect the
intermediate- and long-ranged correlations. The PPA is
especially efficient in precisely that regime, whereas one
has usually very good a priori estimates of the structure of
the short-ranged correlations. In fact, we expect that for
the otherwise more complicated problem of the electrons
in a metal surface, the "RPA approximation, " in which
the particle-hole interaction is replaced by the bare two-
body potential, may be sufficient for a semiquanitative
description of anisotropic correlations.

Let us now turn to the algebraic manipulations neces-
sary to derive the generalization of Eqs. (3.2) and (3.3) to
inhomogeneous systems. The remainder of this section is
of purely algebraic nature, and the reader who is less in-
terested in these technical details may proceed immediate-
ly to Sec. IV. The final form of our two-body Euler-
Lagrange equation will be repeated in Sec. VI.

The variational derivative (2.8) of the energy expecta-
tion value (2.16) consists of two structurally different
pieces: (i) the variation with respect to the exp/icit appear-
ance of the pair-correlation function uq(r&, r2) through the
Jackson-Feenberg interaction (2.17), and (ii) the variation
with respect to the implicit appearance through the two-
body density. Note that the one-body part of the energy
(2.16) does not contribute to the Euler-Lagrange equation
(2.8) due to our choice of the independent variables. The
Euler-Lagrange equation (2.8) takes the form
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g'(r„rz), through the definition

5P2(r3 14)
P1(r1)P2(rz)g'(r1, rz) —= d'r3 d'r4UIF {r„r4)

uz I1,12

(3.8)

with

V~ t, (r1,rz) =X'(r1,rz)+ [D(1)+D(2)]X(r1,rz) .
Sm

(3.13)

N'(r1, rz) =[g'*(g —N —1)](r1,rz)

+[(g 1)+(g N )](rl r2) {3.10)

The equations (3.9) and (3.10) are generally referred to as
the HNC' equations. graphically, each of the "primed"
functions g'(r1, rz), N'(r„rz), E'(r„rz), and X'(r1, rz):—g'(r1, rz) —N'(r1, rz) may be constructed from the corre-
sponding "unprimed" object by replacing, in turn, each
correlation factor hz(r1, rz)—:exp[uz(r1, rz)] —1 by a
"screened" interaction exp[uz(r1, rz)]uIF(r1, rz). Either by
the stated diagrarnrnatic analogy, or in a somewhat
lengthy algebraic manipulation by repeatedly using the
"chain equation" (2.11) one derives the connection

g (rl r2) =X'(r1,rz)+ [(g —1)*X']{r1,rz)

+ [X'e(g —1)](r1,rz)

+ [(g —1)4 X'4 (g —1)](r1,rz) . (3.11)

One may now reformulate the Euler-Lagrange equa-
tions (3.6) and {3.11) by repeated application of the chain
equation (2.11) and eventually arrive at

I [D (1)+D(2)]X(r1,rz) —[X4 DX](r1,rz) j4m

= V~ t, (r1,rz) (3.12)

This representation of g (r1,rz) is convenient since in-
tegral equations for g'(r„rz) may be derived from integral
equations (e.g. , HNC) for g(r1, rz) by "graphical differen-
tiation, " for example, of the diagrams summed by the
HNC equations (2.10) and (2.11):

g'{r1,rz) =g(r1, rz) [uIF(r1, rz)+N'(r1, rz)+E'(r1 rz)],

The appearance of the combination [D (1)
+D(2)]X(r1,rz) on both sides of Eq. (3.12) [cf. the defini-
tion (3.13) of the particle-hole interaction] might seem
strange to the initiated reader. We hasten, therefore, to
explain that the term [D(1)+D(2)]X(r1,rz) cancels the
longest-range contributions to X'(r1, rz) due to correla-
tions. To see this, we expand, for large particle distances,
the exponential (2.10) and find [cf. Eq. (2.12)]

uz(r1, rz) =X(r1 rz) (3.14)

Vt, t, (r) =g (r)u(r)+O(r '), r~ ~ . (3.15)

A few more manipulations may be performed, within
the HNC approximation E(r1,rz)=0, E'(r1rz)=0, in or-
der to represent the particle-hale interaction in a some-
what more closed form. The EL equation may be used to
eliminate X'(r1, rz) from the HNC' equations (3.9) and
(3.10) to yield

N'(r1, rz)= I[D(1)+D(2)]N(r1,rz)
Sm

+2[X*DX](r1,rz) j, (3.16)

and eliminating uz(r1, rz) by use of the HNC equations
leads to a useful form of the particle-hole interaction

Hence, the longest-ranged portion of the kinetic energy
term in the Jackson-Feenberg interaction (2.17) is canceled
exactly against the [D(1)+D(2)]X(r1,rz) term in the
particle-hole interaction (3.13). More is known in the
bulk system, where the particle-hole interaction behaves
asymptotically as

f2
VF-t, «1 rz)=g«1 rz»{ Ir1 —rzI)+ I I~1[g«1 rz)]'"I'+ I~z[g«1 r.)]'"I'j

2m

+ [g(r1, rz) —1]I[D(1)+D(2)]N(r„rz)+[X4DX](r1,rz) j . (3.17)

With the representation (3.12) of the Euler-Lagrange equation we have derived the generalization of the PPA equa-
tions (3.2)—(3.4) for inhomogeneous systems {note that S(k) =1/[1 —pX(k)]). These equations allow for an iterative nu-
merical solution which will be described in detail in Sec. V. The form (3.17) of the particle-hole interaction is used main-
ly for numerical convenience. To understand the physical significance of the distinct diagrammatic quantities, it is easier
to start from the form (3.13) of the particle-hole interaction. '

IV. ONE-BODY WAVE FUNCTIONS

We have so far considered the one-body density as a fixed function. The final step in our procedure to derive a closed
set of equations for the one- and two-body distribution functions is to determine the one-body density p1(r) by minimiza-
tion of the energy expectation value (2.16). To some extent, our derivations parallel those of Saarela et al. , but some re-
formulation of the theory is necessary in order to fit it into our emphasis of the PPA as the optimization procedure.

A convenient quantity to consider as the variable is Qp1(r). The particle number is kept constant, i.e., we consider
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5 3
2

fd rl pl(rl)[U, 1(rl) —p]+ I Vol(rl) I
+ 2 f«1«2 pl(rl)pl(r2)g(rl r2)"JF(rl r2)3 3

2m

(4.1)

We write (4.1) in a form reminiscent of the Hartree equation, i.e., as

0= — V +pl(r)+ [U,„1(r)—p+ Vsc(r)]1~ pl(r)
2&i

with

(4.2)

5E(2)
Vsc«1) =

2+pl(rl) 5+pl(rl)
~E(2) d'r2 pl(r2)g(rl, r2)UJF(rl r2)

5P1(r1 )

5g (r2 r3)
+ —,

' d r2 d r 2 pl(r2)pl(rJ)UJF(r2, rJ) + d r2 pl(r2)V1[g (rl, r2)pl(rl)Vlu2(rl, r2)] .
5p, r, gmp, (r, )

(4.3)

Note that Eq. (4.3) may be understood as the generalization of the Hartree equation for spatially correlated systems; it
reduces to the ordinary Hartree equation if we set the two-body correlation function u 2(rl, r2) to zero.

The only term appearing in Eq. (4.3) that requires further manipulations is the density derivative of the two-body dis-
tribution function. The easiest way to analyze this term is to recall the diagrammatic meaning of the variational deriva-
tive with respect to the one-body density, which leads to

3 2 5g(r2, r3)
d r2d r3pl(r2)pl( J) JF(r2 &)

5p rl

5E(r2, r3)
d r2d rJ [g(r, , r2) —I][g(rl, rJ) —I]X'(r2, rs)+ g'(r2, rJ) pl(r2)p, (rJ)

5P1(rl )

(4.4)

where X'(r2, rJ) and g'(r2, r3) are the diagrammatic quan-
tities introduced in Sec. III [cf. Eqs. (3.9) and (3.10)]. An
alternative derivation, straightforward though somewhat
tedious, may be performed by taking the variational
derivative with respect to the one-body density directly on
the HNC equations (2.10) and (2.11).

With Eqs. (4.2)—(4.4) we have arrived at a representa-
tion of the generalized Hartree potential Vsc(r) in a form
which does not rely on specific assumptions (e.g., optimi-
zation) of the two-body correlations. For example, one

may use Eqs. (4.2)—(4.4) to determine the one-body densi-

ty if one chooses to use some parametrized form for the
two-body correlation function. It is, so far, exact within
the Jastrow ansatz (2.1), though one will usually omit the
elementary diagrams in a numerical application.

Some additional simplifications are feasible if one
neglects the elementary diagrams and assumes that the
two-body correlations are optimized. The main point is
that the quantity X'(rl, r2) may be eliminated, using the

I

Vsc«1) = Vsc(rl)+ Vsc(rl) (4.5)

with

I

Euler-Lagrange equations (3.12) and (3.13), in favor of
derivatives of the two-body correlations. It is, however,
worth pointing out that the manipulations to follow are
legitimate only if the two body corre-lations are in fact op-
timized. For Schiff-Verlet correlation functions in bulk
He, for example, the optimization condition (3.12) is

violated typically by an amount comparable to each of the
sides of Eq. (3.12). The representation (4.2)—(4.4) is in
such a case preferable since it always has the correct rela-
tion to the bulk pressure.

The above-mentioned elimination of X'(r2, r3) in Eq.
(4.4), which eliminates the Jackson-Feenberg potential by
the particle-hole interaction, and the repeated use of the
chain equation (2.11), lead to our final representation of
the self-consistent one-body potential

sc( 1)=fd 2pl(r2) VJ J (rl, r2) —
I [g(rl, r2) —1][D(1)+D(2)]N(rl,r2)+N(rl, r2)D(2)X(r„r2)]

8m
(4.6)

and
g2

Vsc(rl) = — D(1)fd",pl(r2)[g(rl, r2) —1]N(rl, r2) .
16m

(4.7)

V. STATIC FORM FACTOR IN THE RPA

To conclude the formal parts of our analysis of the
variational theory of inhomogeneous Bose systems we
show that the static form factor obtained through the
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fluctuation-dissipation theorem from the density-density
response function is given by the Euler-Lagrange equation
(3.12). We assume a linear-response function of the usual
RPA form

X(ri, r2,'co) =X (r&, r2, co)+ fd'r, d r4X (ri, r3 co)

X V k(r3, r4)X(r4, r2, co), (5.1)

where X (r&, r2, co) is the linear-response function of a
noninteracting system, which is described in terms of the
eigenfunctions of a one-body Hamiltonian alone. We as-
sume that the single-particle wave functions are deter-
mined by a Hartree equation

The form (5.10) is suitable for performing the frequency
integral:

Im f X;j(co)
e; —~ 27T j

=(e; 5;i+2'; Vj~ej) (5.1 1)

The relation (5.11) is most easily shown by adopting a rep-
resentation in which the matrix (e;5;i+2'; V~j~ej) is
diagonal.

To make contact with the distribution functions intro-
duced in Sec. II, we introduce the static form factor

(5.2)

1 d(fico)S(r, r')=, Im X(r, r';co)
or or' 27T

(5.12)

where VJj(r) is a local (self-consistent) Hartree potential
which may depend implicitly on the eigenfunctions P;(r)
of the one-body equation (5.2). Since we need in the fol-
lowing only relative excitation energies e;=—E' —E'p, we
eliminate the local Hartree potential Vji(r) in favor of the
lowest eigenstate of Eq (5.2.). We find

H(1)P;(r) = — Vfo(r)'V
1 2 1

2m 00(r) iii'0(r)

and the corresponding matrix representation

Sij =Im f Xij(co)
d(fico)

(5.13)

To make the connection with the HNC equation (or, more
precisely, to the chain equation) we define

Sj——[{1—X) '];j . (5.14)

If we rewrite Eqs. (5.13) and (5.11) in terms of Xj, we
obtain finally

=e;P;(r) . (5.3)
Xikek eiXik+ QXijejXjk 2Vik

J
(5.15)

H{l)=gP;(r)e;P;(r'), (5.4)

i.e., X (r„r2', co) has the representation

It is convenient to work in a spectral representation in
terms of the eigenfunctions of this one-body Hamiltonian which is the structural equivalent to the Euler-Lagrange

equation (3.12). The final connection is made by identify-
ing the lowest eigenstate of the one-body Hamiltonian
H(1) with the square root of the physical one-body densi-
ty, i.e.,

2e'00(rI )A'{rl)y'{r2)4'0{r2)
X (r„r2;co)= (5.5)

1 1H(1)=- Vp, (r).V
2m +pi(r) V'pi(r)

(5.16)

In the corresponding matrix form,

P;(r) Pj(r')
X;j(co)=fd rd r' '

X(r, r';co)
d'or

' ' o(r'

P;(r) 0 Pi (r')
Xioj(co):fd rd r'—'

Xo(r, r';co)
Po(r)

' '
it 0(r')

2e;6;J.

'6 co —e

and

Vj=—fd rd r'$0(r)P;(r)V~ k(r, r')Pj(r')$0(r'),

we find

g [(fi co e; )5;k —2e; Vk—]Xki(co) =2e;5;j
k

or

X,j(co) =2[(fi co —e; )6;j —2~e; V;j~ei]J

(5.6)

(5.7)

(5.&)

(5.9)

(5.10)

With this identification, Eqs. (5.15) and (3.12) are identi-
cal, and we have thereby completed the proof that the
RPA is a proper subset of an optimized HNC. The HNC
goes beyond the RPA in the sense that it provides an
unambiguous prescription for the choice of the particle-
hole interaction and the single-particle Hamiltonian.

VI. NUMERICAL QPTIMIZATIGN

The HNC equations (2.10) and (2.11), the two-body
Euler-Lagrange equations (3.12) and (3.17), and the Har-
tree equation (4.2) with the self-consistent potentials
(4.5)—(4.7) form a closed set of equations in the sense that
they allow the determination of all quantities of interest
from the bare two-body interaction v(r), the external po-
tential U,„,(r), and the number of particles in the system.
For the sake of clarity, and to explain our iteration path,
we repeat here the relations between the two-body func-
tions X(r&,r2), N(r&, r2), and g(ri, r2), and the Euler-
Lagrange equation for these two-body quantities. The
two-body Euler-Lagrange equation has been formulated
for the set of "non-nodal" diagrams X(ri, r2), which can
be calculated from a given guess of the particle-hole in-
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teraction Vz z(r&, r2):

$2
{[D(1)+D(2)]X(r&,rz) —[X+DX](r„r2)j

= Vp J, (r(, r~) . (6.1)

We will see below that our algorithm of solving Eq. (6.1)
gives us simultaneously the two-body distribution func-
tion g(r(, r2), and hence the set of "nodal" diagrams
N(r(, r2) =g(r(, r2) —1 —X(r(,r2). With this information,
a next guess of the particle-hole interaction

'

$2
Vp-h(rl r3)=g«( r2»(

I
r( —rz

I
)+ { I ~(lg«( r2)]'"

I

'+ 1~2««( r2)j'"
I

'1
2m

2

[g (r&,r2) —1]{[D(1)+D(2)]N(r&,rq)+[X+DX](r(, r2) j4m
(6.2)

can be obtained. This formal statement is, of course,
empty unless a prescription is given for how such an itera-
tion path can be numerically verified. The amount of
data to be handled depends essentially on the symmetries
of the physical system under consideration. In a homo-
geneous liquid, all two-body quantities depend on only
one coordinate, i.e., the distance between two particles.
One needs typically 50 to 100 mesh points for a sufficient-
ly accurate representation. In the next more complicated
problem which allows for symmetry breaking in one
direction (i.e., either a plane surface or a system with
spherical symmetry), each two-body function depends
nontrivially on three coordinates. Using the remaining
symmetries and variable mesh sizes, we are still left with
the problem of determining the function under considera-
tion at about 10 points. An iterative procedure to deter-
mine such large numbers of data is clearly preferable to a
linearization of the Euler-Lagrange equations as would be
necessary in the representation of Ref. 10. Such a pro-
cedure would involve the inversion of a 10 &10 matrix
in each iteration, and one hesitates to undertake such an
effort even if today it may be numerically feasible.

Let us specialize now to the special geometry that was
used in our calculations. We consider a film of "He atoms
which is translationally invariant in the x and y direction,
and symmetric at z =0. In that geometry, all two-body
quantities are functions of the z coordinates z(,z2 of each
of the two particles, and their distance r(( parallel to the
surface. The quadratic term in X(r,r') is a convolution
integral. Fourier transforming parallel to the surface
decouples the equation for X(z(,z2, qi() for each momen-
tum

qadi
parallel to the surface. We will see that the solu-

tion of this decoupled equation involves just the dihgonali-
zation of an n )& n matrix, where n is the number of mesh
points in the direction orthogonal to the surface.

Simultaneously with a new guess for the next approxi-
mation X'"+"(r,r'), we obtain also a new guess for the
two-body functions g (r, r') and N(r, r'), and the associat-
ed changes

5X(r, r )=X(n+( (r,r ) —X(n)(r, r') (6.3)

5N(r, r') =N'"+ "(r,r') —N'"'(r, r') . (6.4)

However, the new pair-distribution function will not, dur-
ing most of the iterations, have an acceptable behavior for
small interparticle distances. The PPA uses therefore the
nth approximation to the pair-distribution function
g'"'(r, r') as a damping factor, in other words the
( n + 1)st approximation for g (r, r') is taken to be

g'"+ "(r,r') =g'"'(r, r')exp[5X(r, r')+5N(r, r')] . (6.5)

[Note that the linearization of Eq. (2.10) yields
5uz(r, r')=5X(r, r').j With these new guesses for the
two-body quantities we calculate via Eq. (6.2) a new
particle-hole interaction and repeat the procedure until
convergence is reached.

The key to a solution of the optimization problem lies
therefore in an efficient algorithm to solve the RPA equa-
tion (6.1). Our algorithm is intimately connected with the
study of the normal modes of the system and will be
described in detail in the next paper. ' lt suffices here to
state that one must solve the eigenvalue problem

H (1)g( '(r)+2 fd r'Qp (r) (Vz ~(r, r')Qp((r')H(1)1t'"(r') =A co(g' '(r) .

It is then easily shown that the sum of non-nodal diagrams can be constructed via

X(r,r') = 5(r —. r') —gAco(g'"(r)P'"(r')
p, (r) ', p((r')

(6.6)

(6 7)

The pair-distribution function can be constructed in a similar manner:

g(r, r') =1+ g [H(1)g( '(r)][H(1)g( '(r')] —5(r—r')
V'p&(r) p, (r')

(6.8)
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We see that we can avoid the explicit solution of the chain
equation (2.11) within the algorithm.

Compared with the solution of the two-body equation,
the treatment of the one-body equation is quite easy. It
helps to know that '

(6.9)

the two-body equation. Having obtained a solution at a
given particle number n, it takes six to ten iterations for a
neighboring particle number to obtain an agreement be-
tween successive estimates of the densities and the total
energy within three digits. The least stable quantity is the
chemical potential p which is therefore affected by the
largest numerical uncertainty.

This form suggests that we write the one-body potential
(4.5)—(4.7) as

Vsc(r)= fd r'
V~ p, (r, r')pr(r')+AVsc(r) (6.10)

where the decomposition (6.10) is obvious from the struc-
ture of the one-body potential (4.5)—(4.7). For a given ini-
tial guess of the one-body density and the expressions (6.2)
and (4.5)—(4.7) for that density, we solve the Hartree
equation

V'+ b, V,c(r) —p2m

(6.11)

Equation (6.11) is readily solved by a Newton-Raphson
procedure. It is advantageous to solve the one-body equa-
tion for a fixed particle number

n =f dzp&(z) . (6.12)

The chemical potential p is considered as an additional
unknown variable to be determined simultaneously with
the solution of the Hartree equation.

The most difficult part of the numerical optimization is
to find a suitable initial guess for the self-consistent Har-
tree potential. Using the solution of the optimization
problem for bulk He at the expected central density as a
first guess and a density profile from, e.g., Ref. 11, leads
generally to a repulsive single-particle potential which
does not support a self-bound system. In order to obtain
an attractive Hartree potential, we have to iterate the
two-body equation a few times on the fixed background of
an externally given density. After that, the density and
the Hartree potential were updated after each iteration of

VII. APPLICATION TO FILMS OF He

We have solved the optimization problem described in
this paper for the above outlined geometry of films of free
He atoms which are translationally invariant in the x-y

plane, and have a nontrivial spatial shape in the z direc-
tion. To judge the value of our results we recall that the
HNC approximation for bulk "He yields values for the sa-
turation energy and density, which are too low. The cal-
culated equilibrium density of bulk He, interacting via
the Aziz potential, is, in the HNC approximation,
po ——0.017 A; the corresponding binding energy is
—5.35 K. The equilibrium density falls short of the ex-
perimental value po"~'=0.0218 A by about 30%. There
is, of course, a great number of ways either to improve or
to manipulate the calculation in order to obtain better
agreement with experimental data. We have refrained in
this paper from such manipulations in order to keep the
computational effort small, and to keep the calculation as
clean as possible.

A collection of our results for the ground-state energy,
the chemical potential, and the central density for a set of
different particle numbers per unit surface area is given in
Table I. The central density and the chemical potential
for the largest particle numbers agree well with the equili-
brium properties found in bulk calculations. ' Slight de-
viations are due to some sacrifices that were made in our
calculation in order to keep the number of mesh points
small. It appears that we have used a sufficiently large
box which makes our results indistinguishable from the
bulk limit in the center of the film.

The energies collected in Table I are to a good approxi-
mation a linear function of the particle number. We can
therefore extract a surface energy o. using

(7.1)

TABLE I. The energy per surface area (column 2), the total energy per particle (column 3), the
chemical potential (column 4), and the central density of the film (column 5) are given for various parti-
cle numbers per surface area (column 1).

n(A )

0.13
0.14
0.15
0.16
0.18
0.20
0.22
0.24
0.26
0.28

E/I. (K A )

—0.408
—0.457
—0.507
—0.556
—0.659
—0.763
—0.870
—0.975
—1.080
—1.182

E/3 (K)

—3.14
—3.26
—3.38
—3.48
—3.66
—3.82
—3.95
—4.06
—4.15
—4.22

—4.97
—5.06
—5.11
—5.14
—5.16
—5.18
—5.20
—5.21
—5.21
—5.22

p, (A )

0.0140
0.0145
0.0149
0.0154
0.0158
0.0162
0.0165
0.0167
0.0168
0.0170
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FIG. 1. Energy of the film per surface area E/I. is shown
as a function of the number n of particles per surface area. The
circles represent calculated values, and the dashed line shows
the linear interpolation between films of the particle numbers
n =0.16 A and n =0.28 A

where p is the asymptotic chemical potential. The ener-

gy per unit surface area in the particle-number range
n =0.16 A and n =0.28 A, is, to good accuracy, a
linear function of the particle number n per surface area
(Fig. 1). A linear interpolation in that density
regime leads to the values p = —5.22 K and g.=0.14 8
A . The value of p is consistent with the chemical po
tentials shown in Table 1 for the larger particle numbers.
The surface energy o falls short of the experimental
values of a.,„~,=0.273 K A by roughly a factor of 2.
This difference is to be expected from the combined effect
of the too low saturation energy and density in the HNC
approximation. It should, of course, be recalled that we
have performed a "no-parameter" calculation, the only ex-
perimental input being the microscopic two-body poten-
tial. There has been no fit whatsoever to properties of
bulk He.

Figure 2 shows the density profiles obtained in the
presenresent work for a variety of total particle numbers. The
surface widths are comparable to those of Ref. 11; at the
largest particle number we are in a regime where the sys-
tem looks uniform in the middle of the film.

Figure 3 shows the pair-distribution function g(r, r')
for two particles having the same distance z from the

n=0.22 (A-2)

Q
J m

2
I

8
r„(A)

een««f th«iim, as a function of their distance r~~ paral-
lel to the surface. The five curves show g(r, r') for the
distances z = 1, 3, 5, 7, and 9 A from the center of the
film, corresponding to 99%, 95%, 80%, 45%, and 7% of
the central density. The distribution function at the
lowest density shows the typical shape of a pair-
distribution function in low density bulk He, with the
usual nearest-neighbor peak replaced by a broad max-
imum. Towards the center of the film, the solutions are
close to the bulk g(r) at the same density.

Figure 4 shows the pair-distribution function for two
particles at zero distance parallel to the surface for the
same values of the z coordinate of one of the particles as

n=0. 22 (A ~)

0
II

O4
N

I

~ 05—

FIG. 3. Pair-distribution function g (r, r') is shown as a func-
tion of the distance r~~ of the two particles parallel to the sur-
face. Both particles have the same distance z from the center of
the film. Open circles: z =9 A; filled circles: z =7 A; squares:
z =5 A; diamonds: z =3 A; triangles: z =1 A. The distribu-
tion function corresponds to the film with a particle number per

0
unit area of n =0.22 A

I

6 8
z, -z2(A)

0.00
5 z(A) 10

FIG. 2. Density profile of the "He films are shown for the
particle numbers n =0.14, 0.18, 0.26 A . The density profile
is symmetric at z=0.

FIG. 4. Pair-distribution function g(r, r'} is shown for two
particles with x =x',y =y'. The first particle is located at dis-
tances z&

——9 A (open circles), . zl ——7 A (filled circles), zl ——5 A
(squares), and z&

——3 A (diamonds). The second particle is locat-
ed at a distance z& —z& to the left of the first one. The distribu-
tion functions for zl ——1 A and zl ——3 A are indistinguishable.
The distribution functions correspond to the film with a particle

O

number per unit area of n =0.22 A
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tion is shown for a particle located at a distanceFIG. 5. (a) Pair-distribution function is s own
tion parallel to the surface (open circ es, a
spond to the film with a particle number per unit area o n =

I

8
2, r„(A)
z =9 A from the center of the film, in the direc-zi—
(filled circ es .l ) The distribution functions corre-
(a) for z~ ——6 A. (c) Same as (a) for zi ——0.

used above. e secon
' '

tion. Th d particle is located in the direction
towards the center o et f the film. We find essentially t e

b However, the nearest-neighborsame picture as a ove. o
~

1f h distribution function for the reference partic epeako t e isri u'
located at the lowest density is weaker an s i e s
what further away from the origin.

In view of frequency applied "local-density approxima-
tions, " it is a so o in1 f interest to study the anisotropy of the

done in Figs.two- o y isr-bod distribution function. This is done in igs.
ance of 9 and 6 A5(a)—5(c) for a particle located at a distance o

away from t e cen er oh t f the film, and a particle located in
the center. e cThe corresponding densities are o, o,

'
tribution func-100g of the central density. The distribution unc-

tion is shown in the direction parallel and perpend'endicular
inward) to the surface. We find a substantia egree of

anisotropy on y a e1 at the lowest density. From this one
~ ~

mi ht be led to the conclusion that local-density approxi-
le sirn lifications of thetions are essentially acceptab

'

p
' '

problem. The reader is, however, reminded fed of the fact

hl 60 fo of the calculated saturation density.
abilit of a low-This behavior reflects the physical insta i i y o

density fluid against droplet formation.

VIII. SUMMARY

We have in this paper developed systematically the
e li uid. To some extent ittheory of correlations in a Bose iqu' .

was necessary ot review earlier derivations, in particular
those of Saare a et a. ,1 I ' in order to bring them into a

~ ~form suitable for further manipulations and investtga-

Our formal derivations have produced the expected re-
sults: Et is possi e o'bl t formulate Euler-Lagrange equa-
tions to compu e opt timal correlations in an in ornogene-

. The e uations appear to be generalizations oous system. e equa i
the known representation of the Euler- agrange e
or omogen

tions (3.6), to which we devoted most of our wo, '
p

ticularly suite to s u y e
'

d t d the intermediate- and long-ranged
correlations.1

' It leads naturally to the paired-p onon
analysis' as the appropriate optimization route.

1 t important as the formal develop-
me w ichments is that we have designed a systematic scheme w ic

brief it is the under-ran e imb implemented numerically. In rie, i is
din of the physical processes described yb the dis-stan ing o e

uantities of HNCtinct compound-diagrammatica quan i
theory whic ea s o

'
h 1 d t the development of an efficient op-

timization route.
method, irn-Besides the numerical application of our met o, irn-

ortant new orma evef 1 d lopments are to be anticipated.
t

p
The most prominen rut th st of theoretical developmen

d the generalization of our theory to excitegoes towar e
s ' and to Fermi systems. The implementa

'states an o er
'

h modest formalFermi statistics seems to be possible with m
and numerica e or, w

'
1 ff t hich should lead to a quantita-
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tive theory of the surface of metals and liquid He. The
prospect of generalizing the theory to nuclear many-body
systems is somewhat less promising, since the
hypernetted-chain problem has not yet been solved for
state-dependent correlations. Nevertheless, one might ex-
pect to derive from a generalization of the present, state-
independent theory to simple Fermi systems a qualitative,
microscopic understanding of nuclear shell-model poten-
tials.

We have also shown in this paper that the numerical
solution of the coupled HNC-EL equations is a very prac-
tical approach: As soon as one decides to work with an-
isotropic correlations the amount of data to be handled is
comparable for optimized and nonoptimized calculations.
One iteration of the PPA equations is about a factor of 5

or 6 more time consuming than one iteration of the HNC
equations. The PPA iterations converge in fact faster
than the iterative determination of the one-body potential,
hence no advantage is gained by keeping a fixed pair
correlation during these iterations. We conclude therefore
that an optimized HNC treatment of an inhomogeneous
system is at most a factor of 5—10 more time consuming
than a single HNC calculation with a fixed pair-
correlation function. This estimate does not yet account
for possible parameter searches to minimize the energy in
a nonoptimized HNC calculation. We regard therefore
the assumption of isotropic pair-correlation functions as
an unnecessary oversimplification.

We have restricted ourselves here to the demonstration
of the general route by which optimized HNC calcula-
tions for inhomogeneous systems can be efficiently per-
formed. A few numerical sacrifices were made in order to
decrease the computational effort. In that sense, our work
is comparable to the pioneering work of Campbell and
Feenberg, ' who in their development of the PPA first
designed a general and efficient algorithm for the optimi-
zation of the pair correlations in bulk Bose liquids. This

work was ultimately led to the high-precision calculations
and stability studies of Castillejo et al. We anticipate a
similar development for the inhomogeneous case.

In the field of physical interest we anticipate a broad
array of application on thin films and their collective
modes. The case of a free surface is the most demanding
since there is no force to keep the particles in place. Im-
position of an external field over the particles should only
help the convergence. The next immediate goal is the ex-
tension of the present theory to collective states which we
pursue, in a slightly simplified model, in the next paper '

of this series.
Note added in proof. After this paper was finished we

became aware of some related work by Piper et al. , who
included, in a variational Monte Carlo calculation of
droplets of He, the three-body factor u3(r;, rj, rk) in the
Feenberg function. None of the correlation factors was
optimized by an Euler-Lagrangian equation, and the two-
body correlations were assumed to be spherically sym-
metric. Consequently, these authors arrive at a weaker
anisotropy of the pair-distribution function g(r&, rz). We
refer to the above discussion of Figs. 5(a)—5(c) for very
general physical arguments that the stronger anisotropy
found in our work is the expected behavior.
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