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Thermal conductivity of a strongly coupled plasma
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This is the second in a series of papers concerning the transport properties of dense plasmas. In
this work, we use the formalism of Lampe to extend our previous calculations of electrical conduc-
tivity to the calculation of thermal conductivity and thermoelectric coefficient. Quantitative results
are given for iron at temperatures ranging from 10 to 10 eV and for densities from 3 X 10 to
105 g/cm .

Lampe' has calculated electrical and thermal transport
coefficients for a weakly-coupled plasma with any degree
of electron degeneracy. His calculation is carried out by
solving the Lenard-Balescu equation by the Chapman-
Enskog method, using Fermi-statistical generalizations of
the first two Sonine polynomials.

The physical models he incorporates for the electron-
ion and electron-electron interactions are ultimately ex-
pressed by Coulomb logarithms. These are calculated us-
ing Born approximation with Debye-shielded potentials.
The requirement of weak coupling arises principally from
his use of Born approximation for the electron-ion scatter-
ing cross section, as well as the binary-collision (ring-
diagram) approximation used to derive the Lenard-
Balescu equation, and neglect of lattice structure at high
density.

In the preceding paper (referred to as I), we described a
method for the complete partial-wave analysis of the Zi-
man formula for the electrical resistivity, using self-
consistent ionic potentials, realistic structure factors, and
arbitrary electron degeneracy. Further details of these
calculations are given elsewhere. Our calculations
avoid the shortcomings of Born approximation and are
valid for much stronger electron-ion couplings. We use
an approximate scheme to compensate for some of the un-
physical predictions of the average-atom model. The va-
lidity of this scheme is unknown, but we have obtained
good agreement for liquid metals near the melting point.
In fact, our calculations generally do as well as theoretical
pseudopotential models and are surpassed only by those
pseudopotential calculations that are highly parametrized
to reproduce known conduction-band data.

Boercker et al. have shown that with appropriate
choices for the structure factor, the Ziman formula and
the Lenard-Balescu equation are equivalent in the weak-
coupling limit. This is related to the common physical
approximation of sequential binary collisions. In the
present work, we exploit this equivalence by combining
our electrical conductivity calculations with the formal re-
sults of Lampe to obtain improved thermal transport
coefficients. In our approach, we simply replace Lampe's
expression for the electron-ion Coulomb logarithm with a
numerical value that is adjusted to reproduce our calculat-
ed electrical conductivity. We do not modify his expres-
sion for the electron-electron Coulomb logarithm, as we

expect Born approximation to be valid in that case for vir-
tually all conditions. Thus, we obtain an internally con-
sistent set of calculations for the ionization state, electri-
cal conductivity, thermal conductivity, and thermoelectric
coefficient. We expect these calculations to have a wider
range of validity in temperature and density than previous
calculations because of their fundamental basis in the
partial-wave analysis of realistic electron-ion potentials.
High-density effects (three-body collisions, lattice struc-
ture) related to further correlations of the electron or ion
wave functions are not considered.

Lampe's coefficients are defined with respect to the
transport equations

VP VTJ=eS)) eE+ +eS)2
7l~ T

VPQ= —S2i eE+
+e

VT 5 J—S22 T 3 e

where

J=electric current,

—e =electron charge,

E=applied electric field,

=2 +e
P =

3 n, e+kT =pressure,Z

K= (S) ) S22 —Sn ) /( TS ) ) )

The quantity S~2 ——S2~ will be called the thermoelectric
coefficient.

n,,=electron number density,

T=temperature,

Q =heat flux,

@=mean kinetic energy per electron .

The electrical conductivity o. and thermal conductivity ~
(with the conventional constraint J=0) are

o.=e S)),2
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FKx. l. Ionization state Z; as a function of temperature and density.
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FIG. 2. Electrical conductivity o. (s ') as a function of temperature and density.
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TABLE I. Comparison of calculated electrical resistivity g, (pQ cm) and experimental resistivity g„
for solid and liquid iron.

Phase

Solid
Solid
Liquid

'Reference 14.
Reference 15.

p (g/cm )

7.86
7.36
7.05

T (K)

293
1810
1810

135
126
118

97'
127 5
138.6

1 d'gc

n. dT

1.3X10-'
1.1X10
1.0X 10

d'gx

dT

6.5 X 10-'

2.4X 10

IJ(z)-+zj g a;z ' as z~ co ,
i=0

(4)

Lampe's explicit expressions for S;J are rather lengthy
and wiH not be reproduced here. In addition to the
Coulomb logarithms, they involve generalized Fermi-
Dirac integrals, which account for the electron statistics.
Accurate expressions for these integrals have not been
available previously. For the present application, Fuller-
ton has obtained highly efficient 10-decimal Chebyshev
approximations. These approximations are effective ex-
cept in cases of extreme electron degeneracy (p/kT & 10,
where p is the chemical potential). The approximations
fail because Lampe's expressions contain combinations of
the functions that ultimately become numerically unsta-
ble. These combinations include terms with as many as
five factors of the integrals to be evaluated. Each integral
has an asymptotic expansion of the form

where z=p/kT is the degeneracy parameter. The insta-
bilities arise through cancellation of the leading terms in
z. In principle, the expansions and series manipulations
can be done analytically to extract the surviving terms.
Instead, we have chosen the easier and equivalent method
of simply evaluating Fullerton s approximations, combin-
ing them, and determining the asymptotic coefficients nu-
merically before instability sets in.

As an example of the application of this procedure, we
consider the computation of the remaining transport coef-
ficients from our previous results for the ionization state
and electrical conductivity of iron at various temperatures
and densities. Figures 1—6 show numerically computed
function values for temperatures and densities on a loga-
rithmic grid. Temperatures range from 10 to 10 eV,
and densities range from 3)&10 to 10 g/cm . Figure 1

(see Fig. 12 of I) shows the ionization state Z; as a con-
tour plot. At very low densities, the ionization state ap-
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FIG. 3. Thermal conductivity ~ (cm ' s ') as a function of temperature and density.
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TABLE EE. Comparison of calculated thermal conductivity
~, (erg s cm, ( K ' ' cm ') and experimental conductivity ~„ for solid
iron at zero pressure.

p (g/cm )

7.86
7.76
7.66
7.56
7.46

'Reference 16.

T (K)

300
600
900

1200
1500

Ice

0.55 ~ 10'
1.10)& 106

1.68)& 10
2.26 X 10
2.86 && 10

8.03 && 10'
5.47 X 10
3.80~ 10'
2.82 ~ 10'
3.18 )& 10

proaches zero as k T—+0 because sufficient bound states
are formed to accommodate all electrons. The onset o
thermal ionization as kT increases and of pressure ioniza-
tion as p increases is readily apparent. Surface irregulari-
ties arise from shell structure in the partial-wave ana ysis.
The transport coefficients are strongly coupled to these
ionization states in the present model.

Figure 2 (see Fig. 13 of I) shows the electrical conduc-
tivity o. in the units s '. The sharp peak near normal
density at small kT arises from the ionization of the 4s
and 3d states and the strong d-wave scattering, whic
makes iron a transition metal. In other regions of p and
kT, the behavior of its electrical conductivity is more
nearly normal.

Virtually no experimental conductivity data exist in the
regions of temperature and density for which our model is
strictly applicable. The only clear point of comparison is
the electrical resistivity of the liquid at melting point, as

(5)

where

~ ~

discussed in I. Here, our model gives the surprisingly
good result of 118 pQ cm, compared with the experimen-
tal value of 138.6. Table I gives additional comparisons
for the solid phase at room temperature and at the rnelt-
ing point. The inapplicability of the model for the solid
phase is readily apparent. The calculated temperature
dependence is negligible, whereas experimentally, the
resistivity decreases dramatically as the temperature is de-
creased. This presumably arises from additional transport
processes not considered here.

Figure 3 shows the thermal conductivity ~ in units
The transition-metal peak in the electrical con-crn s

of IJ 1sductivity (see Fig. 2 of this paper, and Fig. 13 o is
smaller in relative magnitude because of the additional

rocess of electron-electron scattering, which does not
contribute to the electrical conductivity. Table II gives
comparisons with experimental measurements for the
solid phase. As with the electrical conductivity, the agree-
ment is good near the melting point but deteriorates as the
temperature is lowered. The experimental values decrease
with temperature at first but then rise as additional trans-
port processes become active, whereas the calculated
values decrease monotonically. Experimental measure-
ments are not available for the liquid phase.

Figure 4 shows the thermoelectric coefficient S&2 in
cm ' s '. Figure 5 shows the conductive opacity ~, in
crn g '. This quantity is related simply to the thermal
conductivity by

16 osb T
3 k pv
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nsit n =Z;/Qo, where Qo is the ionic volume in cm .FIG. 13. Free-electron number density n, =; 0, w
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where r, is the Wigner-Seitz radius (see I). This parame-
ter becomes too small to be meaningful well inside the
solid-phase region. Figure 13 displays the free-electron
number density per unit volume in A

We expect the present results to be reliable throughout
the region I &200 (see Fig. 10). They should be particu-
larly useful because they extend the region of feasible cal-
culation well beyond the limits imposed by Born approxi-
mation (compare Figs. 10 and 15 of I; see also Refs. 9 and
10).

Difficulties are encountered near the metal-insulator
phase transition at low temperature. These difficulties
arise from the sensitivity of our results to ionic shell
structure. This shell structure can be adjusted within lim-
its by altering the potentials used, but great significance
cannot be attached to the results. In reality, the problem
in this region of temperature and density involves the in-
teraction of a great many degrees of freedom in the ab-

sence of long-range order and is so far not amenable to ac-
curate solution.

Further difficulties arise for I ~200. In this region,
crystallization occurs, and it is clear (see Tables I and II)
that our approach quickly becomes inadequate as the
crystal becomes more tightly bound in relation to the tem-
perature. Some efforts have been made to account for
these effects in a systematic way. " ' We have investi-

gated purely empirical adjustment schemes to force our
results to fit solid-state experimental data. It is not par-
ticularly difficult to produce accurate fits, but whether ex-
trapolation of these fits into experimentally unavailable
regions can be expected to make sense remains to be seen.
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