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This is the first in a series of papers concerning the electrical and thermal transport properties of
dense plasmas. Temperatures and densities considered range approximately from room temperature
to 10 eV and from 10 to 10 times compressed. In the present work we describe theoretical calcu-
lations of electrical conductivities using the t-matrix version of the Ziman theory with various self-
consistent ionic potential models and realistic structure factors. The theoretical basis is described,
and illustrative results are given.

I. INTRODUCTION

Since its inception over 20 years ago, the Ziman
theory' has received much attention as a promising
method for the calculation of electrical resistivities of
disordered systems. The theory has been applied widely
in numerical calculations of resistivities of liquid met-
als. ' Substantial effort has been made to understand
the forrnal properties of the theory, its limitations, and its
potential for extension beyond its original range of physi-
cal validity, '

In the present work, we are interested in the electrical
transport properties of plasmas. We have carried out an
extensive set of numerical calculations based upon the Zi-
man theory. Our approach is pragmatic in that we view
the models and parameters that appear as quantities that
are to be specified in a physical way, both in the sense of
agreeing with experimental data and in numerically ap-
proaching known asymptotic limits, and in satisfying re-
quirements of internal theoretical consistency. This ap-
proach has led us to various model formulations of the Zi-
man theory. We have obtained results for a number of
elements over temperatures ranging approximately from
room temperature to 10 eV and densities ranging from
10 to 10 times normal. The principal improvement
over previous work in this range of temperature and den-
sity is the elimination of errors due to the Born approxi-
mation, and the use of more realistic electron-ion poten-
tials and ion-ion structure factors.

This paper is divided into four sections. In Sec. II we
discuss the fundamental physical basis of the theory. Cal-
culational and physical details are discussed in Sec. III,
and selected numerical results are presented in Sec. IV.
Further technical details of the calculation are collected
elsewhere. ' Future papers will deal with more exten-
sive numerical results, comparisons with alternative ap-
proaches, and the closely related calculation of thermal
transport coefficients.

I

II. BASIC PHYSICAL CONSIDERATIONS

The present work depends entirely upon a particular ap-
plication of the so-called "average-atom" approximation:
that the material of interest consists of a homogeneous

medium into which is imbedded a static and statistically
distributed collection of identical, nonoverlapping, and
spherical scattering centers. The identical, nonoverlap-
ping, and spherical assumptions are made in order to
render the calculation tractable. By statistically distribut-
ed, we mean that the locations r~ and rz of any two
scattering centers are correlated by means of the usual
two-body (ionic) correlation function gq(r~, rq) —1, which
enters into the theory through its Fourier transform
S(q) —1. (Higher order correlations do not enter, for
reasons which will quickly become apparent. ) In princi-
ple, the homogeneous medium represents a region of con-
stant potential between scattering centers through which
electrons may propagate freely as plane waves. In prac-
tice, the homogeneous medium is a theoretical construct
that contains a multitude of physical effects arising from
the propagation of an electron through many scattering
centers rather than through free space.

It is assumed that there is a certain density Z;/00 of
free electrons, described by a density matrix p, (t), free to
propagate in the interstitial region. To calculate the resis-
tivity, one applies an external electric field E and uses the
linear response limit to express the perturbation in terms
of the average retarding force on the electrons
(F)=Tr[p, ( t)F]. This force is linearized in the electron
current J and set equal to —eZ;E. Only the lowest non-
trivial term in the multiple-scattering series for the elec-
tron propagator is considered (single-site scattering ap-
proximation). Classically, this may be viewed in the
mean-free-path approximation: an electron is accelerated
in the interstitial region by the external electric field until
it collides with a scattering center, is accelerated and scat-
tered again, and so on. The average distance traveled be-
tween scatterings, the magnitude and angular dependence
of the scattering cross section, and the initial electron
velocity all enter into a calculation of the resulting aver-
age electron current. In particular, the fact that the mean
free path is finite puts an upper limit on the momentum
that can be gained between scatterings, so that the con-
ductivity is proportional to some increasing function of
the mean free path. The mean free path depends upon the
length scale set by the ionic separation distance. In the
Ziman theory, the analog of this ionic separation is the
two-body ionic correlation function gq(r~, r2) —1, whose
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where g is the resistivity, Z; is the number of free elec-
trons per atom (ionization state), Qo is the atomic volume,
fp„(E) is the Fermi-Dirac distribution function

(2)

P (:—1/kT) is the inverse temperature, p is the chemical
potential, S(q) and o,(q) are the ionic structure factor and
the electron-ion cross section for momentum transfer
q=p' —p and incident energy e, and a=1/137.03604.
The momentum p is related to the energy e by means of
the usual relativistic dispersion relation

p =(E V, ) —M-
= (2M+ e)e, (3)

where M is the electron mass and V, is the constant po-
tential representing the homogeneous medium surround-
ing the ion sphere. In the above, we have written
E=e+M+ V„so that E is the total energy and e is the
kinetic energy. We refer to positive-energy states or con-
tinuum states with the understanding ghat we mean states
with e&0 or E ~M+ V, . Energy, momentum, and mass
are measured in units of inverse length. Conventional
units are resurrected by inserting the obvious factors of A

and c, where Ac =1.9732 858 && 10 eV cm.
Equation (1) differs from the original Ziman formula in

that the cross section o,(q) replaces the Fourier transform
of a weak pseudopotential; i.e., a partial-wave analysis re-
places the Born approximation for o.,(q). Thus the t-
matrix formulation removes this particular objection for
systems that scatter electrons strongly, such as transition
metals, where pseudopotential theory fails.

The mass M appearing in Eq. (3) is the mass of the free
electron in the original Ziman (single-site scattering) ap-
proximation, which is valid in the weak-scattering limit,
i.e., where the mean free path is large compared with the
ionic radius. For more strongly interacting systems, how-
ever, one must question the validity of the single-site ap-
proximation. One possible improvement is to at-
tempt to generalize explicitly the Ziman theory to higher
order terms in the multiple-scattering series. To our
knowledge, this has not been done successfully. Another
approach is to attempt to approximate the effects of
higher order scattering by renormalizing the electron

Fourier transform S(q) —1 enters directly into the expres-
sion for the resistivity. The average electron velocity
enters statistically through the Fermi-Dirac distribution
function. The cross section o,(q) and the density of free
electrons Z;/Qp are to be computed from some suitable
prescription appropriate for the material of interest.

Adopting the above physical assumptions and working
through a rather lengthy derivation, Evans et a7. ob-
tained what is known as the t-matrix formulation of the
Ziman theory:

1 o
3m' Z; Ap

mass (and possibly the external potential V, ). This rough-
ly amounts to expressing the additional scattering effects
by attributing a viscosity to the surrounding medium.
There are various procedures by which one might attempt
to calculate such an effective mass, but they all reduce to
evaluating the multiple-scattering series in some approxi-
mation. Alternatively, one could simply take the effective
electron mass and V, as parameters to be fitted. None of
these approaches is entirely satisfactory at present, howev-
er, so in the present work we simply take M to be the
free-electron mass and leave this question open.

It should also be noted at this point that we use relativ-
istic kinematics throughout our calculations. There is a
certain inconsistency in this in that Eq. (1) was derived us-
ing explicit nonrelativistic forms for the wave functions
and dispersion relation (3). We have not verified that a
relativistic derivation would lead to Eq. (1). We have
chosen relativistic kinematics, however, because (1) we are
thereby able to retain a valid and consistent kinematical
description of the electron motion at very high tempera-
tures; (2) we are able to make direct contact with some ex-
isting relativistic atomic and ionic computer codes; and (3)
the formulation is only slightly more complicated and the
numerical effort only slightly greater. The only serious
difficulty in such an approach is that the temptation ex-
ists to mix relativistic and nonrelativistic kinematics in an
inconsistent way, which can lead to spurious and unphysi-
cal effects. For the present calculations, we find that
this subject is not quantitatively important. In no case
considered so far have we found relativistic effects to alter
the resistivity by more than a few percent.

To evaluate Eq. (1) for a given temperature and density,
we need to specify (a) the free-electron density Z;/Qo, (b)
the chemical potential p, (c) the electron-ion scattering
cross section o-,(q) for energies within a few kT=P ' of
the chemical potential, and (d) an appropriate ion-ion
structure factors S(q). There is no formal reason that
these cannot be chosen independently of each other, as
there is no rigorous requirement in the theory that they be
internally consistent. In fact, the most notable quantita-
tive successes of the Ziman theory have occurred for
weak-scattering liquid metals at melting point, where ex-
periments have allowed the construction of accurately
parametrized pseudopotentials, structure factors, and ioni-
zation states. ' Attempts have been made to provide a
more formal basis for such calculations. However,
except for a rather limited temperature and density regime
around melting point, accurate psuedopotentials are not
available, and one must look for guidance to more theoret-
ical approaches. Ideally, one would like to have an ionic
model that yielded a reasonable density of states,
electron-ion scattering cross section, and two-body ion-ion
interaction so that one could calculate the electronic prop-
erties and the structure factor in an internally consistent
way. The best ionic models at present, however, depend
upon the mean-field approximation, which fails in some
important ways to reproduce known shell structure and
which does not necessarily yield good ionic structure fac-
tors.

We have chosen to model the system in the following
way (see Fig. 1). We construct a potential V(r) for r & r„
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boundary of the ion. Physically, the difference between
the number of continuum and free electrons reflects the
fact that in an attractive potential, some of the continuum
electrons remain in the vicinity of the ion and are not ac-
tually free to participate in conduction.

The principal virtue of the above approach is that it
leads to internally consistent calculations of the chemical
potential, free-electron density, and scattering cross sec-
tion. These quantities are all calculated using a full and
highly adaptive partial-wave analysis, as described in de-
tail elsewhere. '

III. MODEL DETAILS

A. Potentials

FIG. 1. Ionic model parameters.

the signer-Seitz radius

4 3 A
O.o= —,mr, =

Npp
(4)

This is sufficient to insure overall neutrality of the sys-
tem, although it is not the only procedure that could be
adopted. The number of free electrons per atom is then
computed from

dNf
Zg= E'

p~ 6

where the free-electron density of states is

deaf Qp
2 p(M+@} .

dE

This is not the same as the number of continuum elec-
trons (those with e & 0):

=Z —g 2
~

a-b
~ fPq(eb),

bound
states

since the true density of states dN, /de is not the same as
the free-electron density of states dNf /de This choice is.
made conventionally because if one sets V, in Eq. (3)
equal to the ionic potential at I"„ the electron density
given by Eq. (6) is equal to the electron density at the

and adopt a prescription for the parameter V, appearing
in Eq. (3). In the above, A is the atomic mass, No is
Avogadro's number, and p is the material density in
grams per unit volume. This is sufficient to determine the
electronic density of states dN, /de and cross section
o,(q) as a function of energy. ' From the density of
states, we determine the chemical potential JM so that the
total amount of charge within the ion sphere is zero:

In principle, we can choose any local potential to
represent the electron-ion interaction (explicitly nonlocal
potentials are beyond the scope of the present approach).
This potential need not be weak. It could be state depen-
dent and energy dependent, but so far we have not investi-
gated these complications seriously. We restrict con-
sideration to potentials which are fundamentally theoreti-
cal and avoid extensively parametrized interactions on the
grounds that ad hoc parametrizations are unlikely to be'
realistic very far from the regions in which the parameters
are fitted.

For the isolated atom, the most successful theory at
present which meets these criteria is based upon the self-
consistent, relativistic Hartree-Fock-Slater mean-field ap-
proximation (MFA). We require our ionic potentials to
approach this in the low-density, low-temperature limit.

For high temperatures and densities, the corresponding
limit is the temperature-dependent Thomas-Fermi-Dirac
(TFD) approximation. This method is also self-
consistent, but the true solutions of the Dirac equation are
replaced by plane waves for the appropriate r-dependent
local momentum. The states themselves are populated ac-
cording to the correct statistical weight Eq. (2}, and the
correct finite-volume boundary conditions at r, are ap-
plied.

For intermediate regions of temperature and density,
neither of these approximations is appropriate. A more
sophisticated model has been developed by I.iberman in
an attempt to incorporate the desirable features of both.
This is essentially a TFD calculation with an improved
(but still local) exchange approximation, with shell correc-
tions obtained by exact solution of the Dirac equation for
the important electronic states. Alternatively, one could
call it an MFA calculation corrected for finite-volume
boundary conditions and elevated-temperature statistical
populations. This model effectively provides a physical
interpolation between the MFA and TFD limits and will
be referred to as AIJ (atom in jellium).

Two questions of fundamental importance concerning
these potentials are the choice of a local approximation
for the true nonlocal exchange interaction, and the choice
of boundary condition as r~ oo. These are related. The
correct Hartree-Fock boundary condition for the neutral
isolated atom is V(r)-r ' as r~ 00. Any local exchange
approximation proportional to some power of the density,
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however, produces a potential which approaches a con-
stant exponentially because of the requirement of charge
neutrality and the fact that the wave-function tails decay
exponentially. This boundary condition is important in
the present context because it dictates the occupations of
the valence states and the positions of the shape reso-
nances.

Various schemes are used to overcome this difficulty
while retaining locality and state independence. They col-
lectively amount to attaching an inverse-r tail to the po-
tential at some appropriate radius. ' ' Figure 2 illus-
trates this process. The dot-dashed curve is the self-
consistent potential obtained for Fe using Kohn-Sham ex-
change. ' The dashed curve uses the same exchange
approximatI'on inside a certain radius ~& but sets the po-
tential to r ' beyond rj. Here r& is chosen as the radius
which encloses Z —I units of charge. The discontinuity
at r ~ arises from the exchange potential, as this prescrip-
tion would make a pure electrostatic potential continuous
by definition. The solid curve uses the same prescription
but further modifies the interior potential by adding a
constant to make it continuous at r&. This effectively
modifies the exchange so that it approaches zero at r

&
and

produces a result intermediate between the previous two.
One can imagine further ways to accomplish similar re-

sults. There appears to be no completely satisfactory al-
ternative, as the approaches discussed so far in the litera-
ture either give up the energy variational principle or pro-
duce unphysical results such as discontinuous potentials.
This later difficulty is more important in the present con-
text, as a potential discontinuity represents a rather pecu-
liar charge distribution shell (proportional to a 6 function
and its derivative), which produces anomalous, unphysi-
cal, and sometimes large contributions to the scattering
cross section. In contrast, we are not directly interested in
total binding energies or entropy, so that a variational
principle for the energy or free energy is not directly
relevant. We therefore adopt the uniform physical re-
,quirement that potentials must be continuous everywhere.

This is sufficient to define the isolated atom (MFA) po-
tential uniquely for a given electronic configuration, along
with the r ' boundary condition as r —+co, the above

O'
I I I

KOHN- SHAM
-0.2 — —L I BERMAN

MODIFIED LI BERMAN

prescription for r &, and specification of Kohn-Sham ex-
change otherwise for the interior potential. It further-
more defines the parameter V, when we adapt the MFA
potential to finite atomic volume by truncating it at r, .

A similar question arises when we consider the TFD
and AIJ models applied directly to nonzero temperatures
and densities. The TFD potential is continuous at r, by
construction and probably exhibits the highest degree of
internal consistency of those considered here. AIJ, how-
ever, does not share this virtue. As originally formulated,
AIJ is based upon a variational principle for the free ener-

gy, from which the thermodynamic properties are ob-
tained. This is optimum in the sense that these properties
are then insensitive to first-order errors in the wave func-
tion. This does not imply, however, that other quantities
(such as scattering amplitudes) obtained directly from the
wave function and not the free energy will exhibit the
same quality. One normally finds that the original ver-
sion of AIJ produces a small discontinuity in the potential
at r, (see Fig. 3). This is evidently unphysical and reflects
the constraints imposed by the approximate form assumed
for the wave function, from which the free energy is cal-
culated. It is not related to the discontinuity in the MFA
potential. We find that the low-energy scattering ampli-
tudes are rather sensitive to this discontinuity and that
our results are improved in general if AIJ is constrained
to produce a continuous potential. Such a modification is
inconsistent with the original variational principle, howev-
er, and we expect that any thermodynamic properties so
obtained would be less accurate than those from the origi-
nal. It may be possible to reformulate AIJ with a dif-
ferent variational principle so that the free energy is mini-
mized and the potential is naturally continuous, but we
have not pursued this question here.

In general, we expect that the best results of the three
are to be obtained from this model and have seen no seri-
ous numerical evidence to the contrary. However, we find
that over much of our range of interest, this model pro-
duces results which are indistinguishable from TFD or
MFA. For calculational simplicity, we have therefore
adopted for most of our routine calculations a procedure
which uses TFD potentials to provide the dependence
upon temperature and density, combined with an MFA or
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FIG. 2. Self-consistent atomic potential (MFA) for iron, with
the configuration 3d 4s'.

FIG. 3. Self-consistent finite-volume ionic potentials for iron,
at p =7.86 g/cm and T =0.1 eV.



ELECTRICAL CONDUCTIVITY OF A STRONGLY COUPLED PLASMA 4211

AIJ potential chosen to establish the low-temperature,
low-density limit. We adopt a numerical mixing formula

Vo(r)+ g Vz (r )
V(r)= 1+

where Vo(r) is the appropriate low-temperature, low-
density potential and Vz.(r) is the TFD potential comput-
ed for the temperature and density of interest. The mix-
ing parameter g is given by

g=(&/&o) '+(p'/pp) ', (10)

where To and po are parameters of order 100 eV and 100
g/cm, and the exponents g~ and gq are normally taken to
be unity. These choices are made so that the mixing is
done smoothly as a function of temperature and density
and the correct limits are obtained. The results are not
sensitive to these parameters.

The choice of Vo(r) is made separately for each element
based upon trial calculations, which are principally (but
not exclusively) comparisons with measured melting-point
resistivities. Our usual goal is to populate the known
conduction-band electron states and come within a factor
of 2 of the measured liquid resistivity, without sacrificing
theoretical sensibility. We use no adjustable parameters in
the AIJ calculations. For the MFA calculations, we are
free within limits to adjust occupations of the valence
states. We find occasionally that such adjustment is
necessary in order to reproduce the conduction-band
structure realistically.

In constructing the mixed potentials, a consistent set of
boundary conditions must be chosen. The only procedure
which is completely consistent with the criteria mentioned
previously is to set Vo(r, )=V@(rz)=V, . . This can be
done by adding a constant to Vo(r), which obviously does
not alter any physical results obtained from it. This pro-
cess is well defined for the atomic potential, truncated,
and made continuous. If we have chosen a melting-point
AIJ potential for Vo(r), however, we must extrapolate it
beyond r, (melt) if we are to use it for lower densities. As
long as we retain the continuity requirement and r

boundary condition as p~0, our choices reduce to adopt-
ing a scheme for attaching an inverse-r tail. A simple
procedure which we have used in some calculations is to
attach this tail at r, (melt). This seems to work reason-
ably well, but we regard this matter to be open to exper-
imentation and improvement.

Figure 4 shows some of these potentials for Fe at
p=7.86 g/cm and T=10 eV. The MFA (dashed curve)
is quite different from the others. The TFD and AIJ po-
tentials are virtually identical except for an additive con-
stant. The AIJ discontinuity at r, has nearly vanished be-
cause of the importance of relatively energetic electron
states. The dot-dashed curve illustrates the procedure of
attaching an inverse-r tail to the AIJ potential.

B. Structure factors

We have used various models for the structure factor,
which in our approach does not have an explicit connec-
tion to the electron-ion potentials. At melting point, it is
well known that the Percus-Yevick structure factor can
accurately be fit to neutron-diffraction data. For
high temperatures, however, this structure factor is inap-
propriate. We have also carried out calculations using the
Debye-Huckel structure factor

q r
S(q)=

(1+q rd)

where
2

rg
rd=

3I (12)

is the Debye radius, with the ion-ion coupling constant I,
given by

Z;aPr=
rt

A third choice is based on the correlation function

g(r)=0, r (r,
—r/rq=—e +1, r)r,r

(14)

-0.25—

MFA

where r, is a corp exclusion radius, taken as an adjustable
parameter, and B is the normalization constant required
to conserve probability. This yields the structure factor
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—
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3S(q) = 1 — [sin(qr, ) qr, cos(qr, )]-
qr,
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q&d(1+~, «d) 1+(q~, )'
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FIG. 4. Self-consistent potentials for iron, at p=7.86 g/cm
and T=10 eV. The mixed potential used in the tabulated cal-
culations is approximately 0.9 times the TFD potential shown

plus 0.1 times the AIJ potential {solid line) shown in Fig. 3.

This third structure factor Eq. (15) has the virtue that it
approaches the Debye-Huckel limit Eq. (11) as r, ~0, and
the simple hard-sphere limit

S(q) = 1 — [sin(qr, ) qr, cos(qr, )], —3

(qr, )

based on the correlation function
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g( r) =0, r & r,

r)r, (17)

Pg $ 2(
r, 0.766 I

(18)

serves this purpose, where 0.766 =0.45 is the T =0 ack-
ing raction, I is the ion-ion coupling constant given
above, and C is a dimensionless parameter of order unity.
Some numerical experimentation suggests a value C—2

as rd~ao. This third structure factor is close to the
Percus- Yevick solution on the average, although the
secondary structure is different. It is similar to what is

nown in the literature as the mean spherical approxima-
tion 677 68 We have also made calculations using one-

diff
component plasma structure factors ' W f'

erence in general, although some elements show sensi-
tivity near melting point.

Figure 5 compares the structure factors for Fe at melt-
ing point. We have also chosen a core exclusion radius
corresponding to a packing fraction 0.45 at T =0 for both
t e Percus-Yevick and third structure factors. This value
is known to give good results in general for Percus- Yevick
structure factors for liquid metals at melting point. We
adopt it for the third structure factor in order to retain
reasonable connection with Percus-Yevick at these tem-
pertures and densities. As noted above, the third structure
actor approximates Percus-Yevick on the average but

does not reproduce the oscillations.
Figure 6 compares these three structure factors at T= 1

eV and p=po/8192=9. 59&&10 g/cm . The transition
to the Debye-Hiickel form is evident. We have introduced
a temperature dependence into the core exclusion radius
for the third structure factor in the following way. We
assume that at high temperature, the repulsive interaction
energy Z; a/2r, between two ions at closest approach is
proportional to the temperature. At low temperature, we
wish to retain the T=O hard-sphere limit corresponding
to a packing fraction 0.45. The form
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FIG. 6. Structure factors for iron at p=9.59)&10 g. Cm

045
and T= 1 eV, with ionic charge Z = 1.73 dan packing fraction

~ ~

which we have used in most calculations so far. Calculat-
ed resistivities are fairly insensitive to this choice.

C. Calculational procedures

The rnmost serious technical problem concerns the calcu-
ation of the density of states dK, /de and the cross sec-

tion cr,(q) to the point of convergence in ~ and on an ener-

gy grid sufficient to carry out the integrals in Eqs. (1) and
( ) accurately enough. Most of the structure in these
sums and integrals comes from the bound states and
shape resonances that an ion will exhibit in general at a

these states near threshold is indicated in Fig. 7, where we
ave plotted the kinetic energy e of each high-lying state

as a unction of density for T=0. When an s state enters
t e continuum, it becomes a resonance which remains at
zero energy and quickly spreads out over all momenta,
thus disappearing as a recognizable entity and eventually
contributing a small increase to the free-electron-like

5.0

2.5—

C3—1.5 =
(A

0.5

I
lq

1

I
~ I

I

J i
l
I

I

I I
l

\

PERCUS YEVICK
DEBYE- HUCKEL
TH IRD IO—

IO—

2p

2s

IO l2

q

T=0.156
FIG. 5. Structure factors for iron at =7.05 /a p= . g cm and
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FIG. 7. Levvel energies of various electron stat

function of density
s a es in iron as a
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background. orFor 1&0, however, ionization of a bound
ich canstate invaria y pr
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then be followed high into the continuum as it broadens
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Figure 8 shows a calculated density of states for iron at
melting point. so p oAl 1 tted is the Fermi-statistical
weighting actor q.f r E . (2). These resonances (d wave) ac-

f ost of the charge in the continuum. For ironcount or mos o
a ist th density approximately 18 electrons go in o

comm odateTh ha d-wave resonances can accomstates. e s arp
in that the 8nearly 10 electrons, thereby guaranteeing a

remaining electrons will go mos y
'

ostl into these resonances
and pro uce a cd d chemical potential which lies within t e

nance. This corresponds to the well-known fact t aresonance. is co
h d band and scatterthe conduction electrons lie in t-e d an an s

strongly even in t e iquith 1 id phase. ' The number of free
electrons as calculated from Eq. & &

'. &6& is much smaller, as
expected. This quantity depends somewhat upon the po-
tential mode use, as a md 1 d model which shifts the resonance
energy jan t us e( d h th chemical potential) directly affects

5,(0)=n„ir, (19)

where n, is e numth number of bound states for angular
momentum ~. ur p ase0 h se shifts thus satisfy Levinson s
theorem with 5„(Oe ) =0, 5„(e)& 0 for all e ~ 0.. The figure
shows clearly the d-wave phase shift increasing rapi y
through n/2 .at the resonance energy. Figure 10 shows
the resistivity integrand

X(e)= J dqq S(q)oE(q).

along with the Fermi-factor derivative

(20)

(21)fp„(~) = Pfp„(&)—[1 fp~(E)]-
over which X(E) is to be integrated.

The sharpness of such resonances causes an inherent
problem of physical significance. In the first place, any
average-atom, single-particle model exaggerates what is

re are severaln
'

tural resonance structure. ere
toe ects which are not incorporated here which serve o

broaden such resonances. In t e iqui, oca uh li uid local fluctuations
in temperature, ensi y, e, U 't d formation, and ionization state
will all serve to produce broader effective resonances

ed over some statistical ensemble than are
calculated for one particular "average" ion.
istence o sucf such effects is clearly demonstrated by the
sharp c ange a ach (a factor of the order of 2) which is experi-

ntall observed in the resistivity upon melting. n a-
eIectron is in-dition, the momentum p of an incoming e e

determinate y md
'

te by means of the uncertainty principle to
h' -k ' where A, is the electron mean ree pawithin —,w er

ormall u onh ld em hasize that any approach based orma y p
the Ziman theory suffers from these hmitations,

'
ns since one

densities of statesultimately evaluates cross sections an d
for a single ion w ic ih' h 's taken in some sense to be

the number of free electrons throug q.hE . (6).
In Fig. 9 we have plotted phase shifts as a unction of

h t 1 momentum p for the first six spin-up states.the externa mome

cal for these energies. %'e have chosen the convention

DENSITY QF----- FERMI FACT 10

~wz
~+as

I l I I I

0.2 0.4 0.6 0.8 I.O I.2 I .4 l.6 I.8
P

FICs. 8. Density of states and fp&{e) (plotlotted as functions of
the momentum p) for iron at p=7.05 g,5 /cm and T=0.156 eV.
Plotted is the ratio o e cah f th calculated to the free-electron density
of states.

g g/Z 7/2~f
I I/2

~ ~ ~ ~~ ~ ~ ~ ~~ ee
~ ~ ~ ~ ~~P

~ ~ ~ —s
ee

~ ~
~ ~ ~ ~

~ ~ ~ ~
~I

~ ~ ~ ~ ~0

62 5 4 5

FICr. 9. Phase shifts for iron at p=7.0 g/=7.05 /cm and T=0.156
eV.
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IO
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Io

IO

temperature and density of interest. It is therefore neces-
sary to consider more approximate ways to make the reso-
nance structure of our model more realistic.

Table I illustrates the sensitivity of our calculations to
the position of the d-state resonances. Several different
self-consistent potentials are used, and although the chem-
ical potential falls within a few half-widths of the dz&2
resonance in every case, the calculated resistivity varies by
more than a factor of 10.

To ease these difficulties, we have adopted an artificial
procedure to broaden the resonance structure. We are in-
terested in the integrals

IO'
0

I I

0.2 0.4 0.6

FIG. 10. The functions
functions of the momentum
T=0.156 eV.

I I l

08 10 I2 I4 I6 I 8
P

X(e) and de„(e)/de (plotted as
p) for iron at p=7.05 g/cm and

and

I,= —f dE f&„(e)X(e) .

(22)

(23)

We write the convolution

representative of a statistical ensemble of ions. One
should instead compute the electron current separately for
a number of different ionic configurations and then take
an appropriate ensemble average. The reason that these
two approaches can yield different results is that the vari-
ous quantities (ionization state, chemical potential, cross
section) are highly nonlinear and erratic functions of the
variables over which one should average.

We furthermore recognize that any spherically sym-
metric, uncorrelated single-particle ionic model produces
an oversimplified and only approximately correct elec-
tronic level structure. It is well known, for example, that
the 3d single-particle states of the isolated iron atom are
fragmented into many levels distributed over a range in
energy of several electron volts. This fragmenting may be
attributed to the explicit electron-electron interaction
which is neglected in the mean-field approximation. Un-
fortunately, it is currently not feasible to use more sophis-
ticated theoretical models to produce more realistic level
structure. Nor is it possible to incorporate detailed experi-
mental level information in a systematic way, as this in-
formation is not available throughout most of the range of

and

dN, (e) ~ dN, (e')
de'h (e e')—

dE o dE

X(e)~f de'h„le —~')X(e') .

(24)

(25)

In these expressions, h„(e—e') is some suitable form fac-
tor of characteristic width w ', taken as a parameter to
represent a physical width which we expect the resonances
to have beyond what is predicted by our single-particle
model. The above prescription effectively broadens struc-
tures in dN, /de or X(e) which have widths narrower
than w ' so that they have widths of order w ' and does
not significantly affect structures which are already
broader than this.

If we let the lower limits in Eqs. (22)—(25) go to —ce,
with the understanding that dN, /de becomes a sum of
suitably weighted 5 functions at the bound state energies
for e & 0, it is easy to show ' that the result may be ap-
proximated by modification of the temperature P
Such a procedure is simple to implement and has been
used to calculate the resistivities in the last column in

TABLE I. Sensitivity to potential models. Energies are given in eV, resistivities q in pQ cm.

Model

AIJ No. 0
AIJ No. 1

MFA No. 0
MFA No. 1

MFA No. 2
MIX'
TFD

E(d~/2 )

7.41
8.43
5.66
4.29
2.36
5.71

27.06

—I(d, )

0.57
0.68
0.37
0.20
0.046
0.39
7.21

8.02
9.07
6.18
4.68
2.61
6.25

22.03

877
1081
350
176
78

365
130

7l

(broadened)

157
167
143
125
104
147
119

AIJ No. 0: discontinuous at r,
AIJ No. 1: continuous at r,
MFA No. 0: electron configuration 3d 4s
MFA No. 1: electron configuration 3d 4s'
MFA No. 2: electron configuration 3d 4s

'MIX: mixed potentials.
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IV. ILLUSTRATIVE RESULTS FOR Fe

0
&

2&1/2
Zg cx

(26)

which may be interpreted from these conductivities. To
estimate an average momentum, we write

dN), ~

deaf

&P'& J dP f'(~)= I dP P'f'(~) (27)

This average selects those momenta near the Fermi
momentum for the degenerate case, and approaches the
ideal gas limit for large kT. Plotted is the ratio A, /r„
which is greater than 1 for the most part. We take
A, /r, =2 to represent the metal-insulator transition at low
temperature and density.

In the regions where comparisons may be made, the
conductivities in Fig. 13 agree in general to within an ap-
proximate factor of 2 with those calculated by Lampe and
Hubbard. Other calculations appear in the litera-
ture. The differences are larger (as much as an order
of magnitude) at very low densities. This is apparently
due to the error in the Born and Fermi gas approxima-
tions, discussed in Sec. III. The calculations displayed use
the full partial-wave analysis for p) 7.86 g/cm . For
lower densities, only those bound states with

~

~
~

& 7 and
continuum states with

~

x
~

= 1 are included exactly.
Remaining states are treated in the Born and Fermi gas
approximations. This necessitates adding an empirical
correction to the approximate chemical potential to make
it continuous across the boundary p=7.86 g/cm . This
correction is necessarily a function of temperature. We
have chosen to make it independent of density. Similarly,
the resistivities are corrected by an overall empirical mul-
tiplicative factor depending upon temperature but in-
dependent of density. Some improvement could apparent-
ly be made by making this renormalization proportional

In this section we display some results for Fe using the
methods so far described. Figure 12 shows the ionization
state Z; for the range 0.03125 eV&T&8192 eV and
po/8192 &p & 8192po, with po ——7.86 g/cm . Figure 13
shows the corresponding conductivity o.=1/g, in inverse
seconds. The transition to insulator at p=1.5 g/cm is
clearly evident in the figures. The local maxima at low T
in Fig. 13 at p=1.5 g/cm is clearly evident in the figures.
The local maxima at low T in Fig. 13 at p=4 g/cm are
due to the ionization of the 3d and 4s levels, and the simi-
lar but less dramatic structure at higher density is due to
the successive ionization of the 3p, 3s, 2p, and 2s levels.

The value in Fig. 13 corresponding to p(melt)=7. 05
g/cm and T(melt) =0.156 eV gives g(melt) = c
X 10 /cr(melt)=117. 8 pQcm, to be compared with the
experimental value 138.6 pQ cm. This level of agreement
is somewhat better than we have a right to expect (note
that no parameters were fitted). In general, we find at
melting point that we obtain differences from experiment
which vary up to a factor of 2 for no obvious reason.
Differences larger than this can usually be attributed to a
qualitatively incorrect description of the conduction band,
implying that the melting-point potential used is wrong.

Figure 14 shows a classical mean free path:

to (p/po)'~, which is what one would expect if the error
in the Born approximation is proportional to the max-
imum allowed classical angular momentum l,„=pr, .
This trend in increasing error is suggested by the fact that
for high temperatures, the curves in Fig. 13 rise toward
lower density.

Table II shows a detailed comparison we have made
with calculations using the method of Hubbard and
Lampe for Fe at T=5)&10 eV and p=250po ——1965
g/cm . The initial difference between our results and
theirs is a factor 0.47 (their resistivity is smaller than ours
by 53%%uo). We have decomposed this discrepancy by con-
sidering separately the differences in assumptions made in
the two calculations. The difference in structure factor
(reflected in their ionic screening function) amounts to a
factor of 0.78. Using an exponentially screened Coulomb
potential with screening radius r, adjusted to approximate
our TFD potential gives an additional factor 0.97. Using
the Born approximation rather than a partial-wave
analysis gives a factor of 1.02. Nonrelativistic kinematics
gives a factor of 0.99. Using Lampe's potential screening
parameter r, rather than our fitted one gives a factor of
0.63. Finally, the ratio of our result to theirs using the
above assumptions of theirs gives a net unexplained
discrepancy of 0.97. This 3%%uo difference between a Ziman
calculation otherwise using their model and their result is
evidently due to the difference in the fundamental trans-
port equations that are solved, or simply to numerics. We
do not consider it significant. The important differences
are due to. the structure factor and to the potential model
used.

Figures 15 compares the present results with the electri-
cal conductivity calculations of Hubbard and Lampe, as a
function of temperature and density. Plotted is the ratio
of our result to theirs, assuming in both cases the ioniza-
tion states displayed in Fig. 14. In the regions of tempera-
ture and density where this ratio is set to 10, Hubbard
and Lampe do not consider their calculation to be valid.
The ratio varies between —, and 2 throughout most of the

C7

0~o0

e8
0 O

I

FIG. 15. Ratio of calculated electrical conductivity cr to that
of Hubbard and Lampe o.HL.
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I I I I III) I I I I IIIII I I I I I IIII I I I I IIIII I I I I III[ I I I tl IIII I I I lllllf I I I I I ill] I ! I Ill= through coherence effects arising from the periodic 'struc-
ture of the material. ' These effects are explicitly ig-
nored here through our assumption of a disordered sys-
tem. Additionally, the region Z; & 1 is suspect because of
the extreme sensitivity of the results to details of the
model potential, Throughout most of this latter region,
however, the ionization state and conductivity are so low
that they may be considered not significantly different
from zero. Also shown in Fig. 16 are the regions in which
Hubbard and Lampe consider their calculation to be valid.

IOi

02 ~ i i «ilail I I IIulll I I I Illlll I I I IIIIII I I ~ IIIIII I I IIIIIII I I IIIIIII I I IIIIIII I I IIIIII

I 0 I 0 IO lo I 0 I 0 IO 10 IO I 0
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FIG. 16. Physical regions iri the temperature-density plane.

region of high temperature and low density. The fact that
it is not uniformly 1 apparently arises from errors in the
Born approximation and differences in the structure fac-
tor.

Figure 16 shows the regions in the T-p plane bounded
by the values Z;=1, p=kT, I =125, and kT=Acuz.
Where I is large (i.e., I ) 125) or Rcoz )kT, one can ex-
pect collective effects (plasma oscillations, crystallization)
to interfere both through electron-phonon scattering and
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