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A dislocation theory of dimer melting in two dimensions is presented in which the solid state is
considered as a random array of close-packed dimers on a triangular lattice. Possible application of
the model to phospholipid bilayer membranes is discussed, and comparison with the melting of
‘two-dimensional monatomic systems, as well as of layered paraffins, is made.

I. INTRODUCTION

The phase behavior of pure phospholipid bilayers has
been the subject of considerable investigation, both
theoretical and experimental.!=® The chemical structure
of a typical phospholipid molecule (DPPC) is shown in
Fig. 1(a). It consists of two hydrocarbon chains (R),
which range in length from 12 to 22 CH, units, joined to-
gether by a glyceride “backbone” at one end, and topped
by a polar head with the chemical group C—O—(PO;)"-
X. Owing to the hydrophilic quality of the choline sub-
unit X, as well as the hydrophobic nature of the CH,
chains, the molecules of the lipid membrane orient, as
shown in Fig. 1(b), in the solid state. The chains may be
perpendicular or at a tilt to the membrane surface and the
aqueous medium above it.

Hydrated lipid multibilayers exhibit a variety of phase
transitions, which include a solid-liquid transition at T,
(the main “gel”—to—liquid-crystal transition), and
- structural transitions within the crystalline gel phase, such
as the sub-transitions and pretransitions. Within the gel
phase the hydrocarbon chains are thought to be rather rig-
id with the glyceride backbones forming a close-packed
triangular structure within the membrane surfaces.
Within these surfaces the backbone axes are rotationally
disordered with respect to each other so as to preserve the
triangular symmetry, as shown in Fig. 1(c).

At T, two events occur simultaneously: (i) The two-
dimensional lattice melts into a dense fluid, and (ii) the
hydrocarbon chains become internally disordered through
transgauche isomerization (“‘chain melting”). This latter
effect causes a decrease in the thickness of the bilayer, al-
though the bilayer itself seems to persist above T, mak-
ing the high-temperature phase somewhat analogous to
the smectic 4 phase of some liquid crystals.

It is supposed, at least for the longer-chain homologs,
that the dominant contribution to the transition enthalpy
derives from chain melting. For this reason considerable
theoretical effort has been devoted to calculating the sta-
tistical mechanics of chain conformations. In this paper
we address ourselves to the following questions: How can
the constraint of chain pairing on a triangular lattice,
especially pronounced near the lipid membrane surfaces,
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be incorporated into a theory of dislocation-mediated
melting of quasi-two-dimensional systems, as developed,
for example, in the treatment of paraffin? Furthermore,
does such a theory explain the melting transition as one
which leads the system into a liquid-crystal phase above
Tp?

[
H,C— 0 — (PO3) ™= X
R = (CHZ)n CH3
Xz CHy— CH, —N(CHs)s
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FIG. 1. Schematic representation of phospholipid bilayer in
low-temperature gel phase. (a) Chemical formula of DPPC, a
typical lipid molecule. (b) Side view of membrane: [, polar
head; —, glyceride backbone; ~— hydrocarbon chain. (c) top
view of membrane: glyceride backbones are arranged at random
on a triangular lattice.
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To this end we consider the detailed mechanisms in-
volved in the melting of a two-dimensional dimer solid at
Ty, which may be construed as representing a lipid
monolayer with perfectly rigid CH, chains. In fact, this
limit may be important when the CH, chains are very
short, or at high lateral pressures, where interchain in-
teractions are expected to suppress the lateral degrees of
freedom of the chains.

In Sec. II we presént a detailed discussion of dislocation
pair dissociation in the dimer solid, paying particular at-
tention to the steric constraints on slip motion, and those
processes by which the barriers to slippage may be over-
come. Here the principal mechanisms are thought to be
cooperative rotational fluctuations and/or the creation of
additional dislocation pairs, which may assume various
configurations in the wake of an advancing slip line.

In Sec. III we consider in detail nonconservative pro-
cesses of barrier unlocking through intermediate-pair. pro-
duction. We show that five basic processes of barrier re-
moval exist, and proceed to ennumerate the various rem-
nant pair configurations associated with them. Owing to
the detailed nature of the descriptions presented here, we
suggest that the reader gloss briefly over this section in a
first reading.

In Sec. IV a dislocation theory of melting is presented
in which the mutual interactions of the intermediate pairs
associated with the slip line of a given widely separated
reference pair, are approximated by a screening (or an-
tiscreening) of the reference-pair interaction. Here
upper-bound melting temperatures, T3 and T}, are ob-
tained for the dimer solid with and without intermediate-
pair excitations, respectively. S

In Sec. V we describe a numerical calculation of the
mutual interaction energy of the dislocations involved in
randomly generated slips. The interaction energy of paths
of equal length are averaged over a limited ensemble of 30
paths of given length. The results are then used to suggest
a correction to the expression for Tj; obtained in Sec. IV.

In Sec. VI the results of the model are discussed and
compared with well-known qualitative limits of mona-
tomic chain melting of two-dimensional lattices. In Sec.
VII possible extensions of the dislocation melting theory
to account for chain flexibility are discussed. In particu-
lar, the similarity of the present system with that of paraf-
fin homologs is analyzed,!® and possible extensions of the
melting theory of paraffins to that of lipid membranes are
proposed. Furthermore, the general significance of the re-
sults obtained is discussed.

II. DISLOCATIONS AND SLIP
IN THE DIMER SOLID

A. General discussion

In a dislocation theory of monatomic melting in two di-
mensions, point dislocations, which exist mainly in tightly
bound pairs in the solid, become dissociated at the melting
temperature T)y.''~!* The dissociation is facilitated be-
cause thermally produced tightly bound dislocation di-
‘poles screen out the elastic interaction between the ele-
ments of a given widely separated reference pair.

In the dimer solid, however, a given thermally produced
pair is not free to separate through the production of a
straight slip line between its constituents. In fact, the
steric constraint of dimer pairing of the lattice points im-
pedes the slip. To see this we consider a completely or-
dered dimer solid as shown in Fig. 2. In Fig. 2(a) the slip
line (dashed line) lies between the two rows of dimers
shown, so that the upper rows of molecules can slip one
lattice spacing to the left or right, relative to the lower
row, whereas in Fig. 2(b) the slip line cuts through the
lower row of dimers, so that the upper row of endpoints
can slip one lattice spacing to the left, relative to the lower
row, but not to the right (the allowed slip, being affected
through a counterclockwise rotation of the molecules in

‘their plane).

In application to the lipid membrane problem we wish
to consider the dimers to be rotationally disordered with
respect to one another in their common plane, while main-
taining the triangular symmetry in the solid state. To sus-
tain such a state of disorder dynamically, if one does not
cconsider the dimers to be frozen in, requires a cooperative
rotational flipping motion of the dimers over rather large
clusters, in such a manner that the triangular symmetry in
a time average is globally preserved. Since these coherent
flipping motions may, in general, be viewed as density
fluctuations followed by the creation and annihilation of
tightly bound dislocation pairs with zero resultant
strength, one expects them to be thermally activated pro-
cesses. Although the counting problem of dimers on a
lattice has been solved, their statistical mechanics, incor-
porating transitions over activation barriers, remains to be
studied. Because the ground state of the dimer system is
infinitely degenerate it must be either a frozen-in state or
a dynamically disordered one. In this paper we assume
that the latter prevails.

Assuming that slip motion proceeds more rapidly than
the activated, cooperative rotational fluctuations, the slip
is most likely terminated after some lattice spacings (n)

LSS/

FIG. 2. Two possible slip lines (dashed lines) in a completely
ordered dimer solid.
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by a dimer which is unable to move in the appropriate
direction. We refer to such dimers as “blocking dimers.”
To estimate (7 ) one notes that the probability that a di-
mer does not impede slippage is p=-= and that it blocks
slippage, ¢ =, so that the probability of a slip segment
spacings in length is P(n)=p"q, and

(ny=3 nP(n)=pq(1—p)—2=5.

n=1

B. Conservative rotational processes

Once a blocking dimer has impeded the progress of a
dislocation, the barrier may be overcome by simply wait-
ing until a barrier-“unlocking” fluctuation rotates the
blocking dimer to a new position that is favorable to slip.
In Fig. 3 we have sketched some dimer configurations
which block the circled dislocation. We term such clus-
ters (n,m) locks since the barrier to dislocation motion
imposed by the blocking dimers may be ‘“‘unlocked”
through n counterclockwise and m clockwise rotational
flips of those dimers participating in the lock. It should
be noted that such correlated flips are necessarily accom-
panied by local-density and/or slip fluctuations in order
that the steric constraints of the lock may be relieved so as
to allow the flips. These fluctuations must be thermally
activated and hence must be specified for a complete
characterization of the lock. Therefore the partial specifi-
cation (n,m) will be termed the “signature” of the lock.

Figure 3(a) illustrates the opening of a (2,0) lock. The
initial positions of the dimers in the lock are characterized
by ellipses labeled i; the final, unlocked positions are la-
beled f. Obviously, steric constraints forbid the rotations
of 7 /3, as indicated in the figure by arrows, without a lo-
cal fluctuation, in this case represented by a diilocation
dipole of core separation 23, as shown. Here, +b are the
Burgers vectors of the iconstituents of the dipole. After
the /3 rotations the dimers relax to their final positions
through a local compression. Since the dipole pair may
annihilate at the end of this process, it is a conservative
process.

N
\(2,0) - Lock

.

FIG. 3. Dimer clusters which present barriers to the motion
of the circled dislocations. The dimers in initial (i) and final (f)
positions are represented as solid ellipses. Arrows indicate the
sense of rotation so as to “open the lock.” The signature (n, m)
of the lock indicates the number of (counterclockwise, clock-
wise) rotations involved. The activated fluctuations associated
with these motions are explained in the text.

Once ' the lock opens, the impeded dislocation may
proceed in the forward direction until it is again blocked.
In Figs. 3(b) and 3(c), locks of higher order are shown
which involve three and five dimers, respectively. The
(3,0) lock may be thermally activated simply through den-
sity fluctuations, whereas the (4,1) lock involves a com-
bination of density and dipole pair fluctuations. As is evi-
dent from Fig. 3, the rotational unlocking leaves the lat-
tice unstrained, and so all processes of this type are con-
servative.

Obviously, in a random distribution of dimers, locks of
all orders appear, and those with large signature values
are expected to have long opening times with respect to
slip motion. Thus, we do not expect these rotational
lock-opening processes to significantly affect the estimate
(n ) =5 for the mean free “slip” length.

It should be emphasized here that if the dimers are
frozen in below T)y, then a considerable heat of fusion is
expected to be absorbed at the transition. Since, however,
the cooperative rotational motions in the dimer system in-
volve dislocation dipoles of rather small extent, the preser-
vation of triangular symmetry, dynamically, should be
readily attained in the low-temperature phase, so that the
measured enthalpy change at T, should be smaller than
that predicted by the frozen-in model of disorder below
Tp. An analogous system, which is dynamically disor-
dered below T, is the rotator phase of paraffin, which
will be discussed at length in Sec. VII.

It should be noted that any theory of the rotational
motion of dimers which preserves the triangular lattice on
a time average must include the coupling of the dimer
motions to lattice vibrations and lattice shear defects.
The simplest models incorporating phonon couplings are
the compressible vertex models. These give rise to a
first-order transition if the incompressible model has a
critical heat-capacity exponent a>0. Although the
present problem is more complex, due to the presence of
shear defects we conclude that the transition, leading into
the disordered dimer phase, is discontinuous if a > 0 holds
for the dimer system with steric coupling only, as con-
sidered in this paper.

III. NONCONSERVATIVE SLIP PROCESSES

It should be noted that at least two dimers must be in-
volved in a rotational lock of the conservative type. The
simplest nonconservative rotational unlocking process is
shown in Fig. 4. In Fig. 4(a) the advancing dislocation 1+
is blocked by the dimer shown as an ellipse, i. A dipole
pair (2%,27) is created at P, and the barrier is removed
from the path of 17 by the motion of 2* through at least
one lattice spacing. The final unrelaxed position of the di-
mer is shown as the ellipse, f. In Fig. 4(b) the forward
motion of 1% proceeds to the right, intersecting the com-
mon slip lines of 2% and 2~. Owing to the torsion gen-
erated by this motion, the slip lines of 2+ and 2~ are dis-
placed with respect to each other by b, the Burgers vector
of 1*. Thus 2% and 2~ may no longer annihilate one
another. Instead, in their state of closest approach, they
form an interstitial dipole. Apparently, no symmetrical
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FIG. 4. Nonconservative rotational unlocking process for the
impinging dislocation 1*. The initial and final positions of the
dimer, which is involved in blocking, are shown as the ellipses i

.and f, respectively. (a) shows the removal of the barrier
through the creation of the dislocation dipole (2+,27) at P, and
its separation; (b) shows the torsion created by the passage of
1%+, producing an interstitial dipole in the ground state. Lattice
points are drawn in unrelaxed positions for the sake of simplici-

ty.

process exists which can produce vacancy dipoles for this
case.

In Fig. 5 we show the simplest barrier translation un-
locking processes. These are all nonconservative. In step
1 the intermediate dipole, (2%,27), is created at P, and 2+
or 2~ moves to its final position. In step 2 the torsion
generated by the advance of 17 displaces the slip lines of
2% and 27, as is the case in Fig. 4. Here, however, vacan-
cy dipoles are created in Figs. 5(a) and 5(c), whereas in
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FIG. 5. Nonconservative translational unlocking processes
for the impinging dislocation 1*. The rotation is the same as in
Fig. 4. (a) and (c) vacancy dipoles are created, whereas in (b)
and (d) interstitial dipoles are generated:

Figs. 5(b) and 5(d) interstitial dipoles are generated. In
these processes the minimum separation of (2%,27) is
about one lattice spacing.

Note that in Figs. 4, 5(c), and 5(d) there is no possibility
that another dimer moves into the blocking position upon
separation of (2+,27). In the processes of Figs. 5(a) and
5(b), however, simple counting gives a probability, g = 1—’2
that this occurs. Thus we neglect this possibility in the
following for the sake of simplicity.

There are roughly {n)? possible configurations of the
interstitial or vacancy dipoles for each of the processes
shown in Figs. 4 and 5. Neglecting the elastic energy and
assuming that the core energy for creation of the dipole is
2yub?, where p is the Lamé shear constant, b is the
Burgers vector, and ¥ is a constant factor less than 1, the
probability P(0) that a dislocation advances in the for-
ward direction after being blocked scales as

P(0) o 5(n y2e —2Brub® | 1)

Up to this point we have only considered the simple
picture where the dislocation 1% advances, leaving behind
a pair (2%,27), which may take on approximately (#n )?
configurations. If, however, we suppose, for instance, that
2% advances the slip and that one considers (27,1%) as
the remnant pair, then a more complex degeneracy of
states occurs. This is easy to see because the slip lines of
2~ and 1% are not parallel, so that their motions are not
independent, due to the torsion generated when one
crosses the slip line of the other. This effect is illustrated
in Fig. 6 for the unlocking process of Fig. 4. Figures 6(a)
and 6(b) are obtained as in Fig. 4. In Fig. 6(c), 2~ moves
to the lower right crossing the original slip path of 11 and
shifting it up as shown. Then in Fig. 6(d), 1* moves to
the left followed by the motion of 2~ to the upper left. In
Fig. 6(e), 1T moves to the right, and in Fig. 6(f), 2~
moves to the lower right. The result of these motions is
that the pair (1%,27) wanders away from the original
point of creation, so that an infinity of possible configura-
tions of the pair may be reached, provided a member of
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FIG. 6. Nonconservative rotational unlocking process for the
impinging dislocation 1*. (a) and (b) are the same as Fig. 4.
Here, 27 is assumed to advance the slip, and the remnant pair is
(1*,27). The noncommutative motions of 1+ and 2~ in (b)—(f)
(see text) produce an infinity of possible configurations for the
pair.
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the pair is not blocked. The configurations of Figs. 6(a),
6(b), and 6(c) may be surely realized and have the respec-
tive degeneracies (n )2, 2(n)? and (n )2 Assuming r is
the probability that a new configuration with degeneracy
(n )? is produced through torsional slip-line crossing, then
the average degeneracy for the pair (17,27) in the process
initiated in Fig. 6(a) is

(N)=4(n)2+(n)? S mrm(1—r)

m=1

44+—"— |(n)2. @)

1—r

Here we assume r =const, which should be true if
(1%,27) is sufficiently far from the original blocking di-
mer.

In Figs. 7(a), 7(b), 7(c), and 7(d) we show the transla-
tional unlocking processes corresponding to Figs. 5(a),
5(b), 5(c), and 5(d), assuming that 2% advances the slip at
angles 27 /3, —w/3, —2w/3, and 7 /3 to the original slip
line, respectively. Here, again, the remnant pair (1,27)
may take on an infinity of properly weighted configura-
tions due to the torsion generated by the slip-line crossing
effect. In Fig. 7 we show only the third step (to be taken
after steps 1 and 2 of Fig. 5). It is easily seen that for
each of these translational unlocking processes there are
(N ) possible configurations of the pair (17,27) on the
average, with (N) given in Eq. (2).

It should be noted that in the five nonconservative pro-
cesses considered, in which the slip advances through
kinks in the slip path with angles of +7/3 and +27/3, to
the forward direction, the remnant pair (17,27) has a
resultant Burgers vector which may be of magnitude b or
V/3b. In the former case the remnant pair may fuse with
the release of core energy ~yub 2 in the latter, an unsta-
ble fused state may be created with the absorption of core
energy ~yub?. In equilibrium both types of fused dislo-
cations may be present.

In Figs. 8(a), 8(b), 8(c), 8(d), and 8(e), we show the fused
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FIG. 7. Nonconservative translational unlocking processes in
which the slip is assumed to advance through 2%, and the rem-
nant pair is (1%,27). (a)—(d) represent the third step in a con-
tinuation of the processes shown in Figs. 5(a)—5(d), respectively.
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FIG. 8. Conservative barrier-bypassing processes through
(1*,27)-pair fusion. The fused dislocation is labeled 3, and its
slipline is the dotted-dashed line. The configurations (a), (b),
(c), (d); and (e) correspond to those shown in the first steps of
the processes illustrated in Figs. 5(a), 5(b), 5(c), 5(d), and 4,
respectively.

dislocations (labeled 3) corresponding to the remnant pairs
in Figs. 5(a), 5(b), 5(c), and 5(d), and 4, respectively. The
slip line of the fused dislocation is shown (dotted-dashed
line), the fused state being unstable in Fig. 8(d) only. In
fact, if we exchange the roles of 2% and 2~ in these fig-
ures, then only in Fig. 8(d) is the fused state stable.

It may be seen that 3 in Fig. 8 is not blocked by the bar-
rier which had impeded 1%, shown again as the ellipse f.
Thus 3 is free to move about (# ) lattice spacings from its
original position of fusion. Furthermore, the unstable
fused state will be essentially pinned since the probability
of encountering a blocking dimer at any point on its slip
line is ~ 7.

It may be seen from Fig. 8 that the combined motion of
2% and 3 produces branching of the original slip line in
any of the four symmetry directions lying obliquely to it.
Although such fusion-type barrier-bypassing processes are
simple and have the lowest activation energy of all the
processes we have considered, we believe that the entropy
generated in the pair configurations will contribute most
of the entropy necessary for melting. Furthermore, the
unstable fused state contributes essentially no entropy and
readily decays into its constituents.

In the following sections we consider a model of dimer
melting in which we neglect the effect of fusion and
branching. Furthermore, we neglect the differences, dis-
cussed at length above, in the configurational degeneracies
of the remnant pairs, associated with nonconservative slip
in the various crystallographic directions. Finally, we
neglect the intricate effects of torsional wandering.

In our model we consider the slip paths to be random
walks on a triangular lattice of equal step length {n )y, I,
being the lattice constant. Furthermore, we consider the
remnant pairs to be generated at, and to remain rather
close to, each step position on a given path, so that the
pairs may be labeled by these positions. Finally, we attri-
bute to every remnant pair a certain average configura-
tional degeneracy. In spite of the complicated nature of
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dislocation dissociation in a dimer solid, it is hoped that
our model contains the essential physical features of pro-
cesses discussed in this section.

IV. SCREENING THEORY OF DIMER MELTING

A. General discussion

In this section we assume that the energy of a slip line
in the dimer solid may be written as'? !4

E(?o,?N,fg)_lmb—f dS +pb[2m(1—v)]~!

- '’
| I'y— ol
X R’ [€as(r

0

r)rl]—ldrl ,

(3)

where [, is the lattice spacing, u and v the continuum
elastic Lamé constants, b the magnitude of the Burgers
vectors of a reference pair, whose elements lie at the end-
points of the slip path & at (Fy,Ty), (n) the average
length of a slip segment, R the core radius, and y the
core-energy parameter (0.01 <y <0.1),

The first term represents the core energy in which all
Burgers vectors are taken of equal magnitude, b. The
second term represents the elastic interaction energy of
the endpoints of &, where the only effect of the remnant
pairs which dress € is considered to be a screening or an-
tiscreening of this interaction energy. The usual logarith-
mic expression is obtained when the screening or an-
tiscreening function €,,(7’) is set equal to a constant. As
we shall see in the following section this expression for
the elastic energy should perhaps be modified because the
mutual interaction of all dislocation pairs may lead to an
additional line energy for the slip path which must be
combined with the core energy given in Eq. (3).

Since the usual melting criterion'? for two-dimensional
solids is based upon the dissociation of a widely separated
reference pair, melting will only occur, if the gain in en-
tropy more than compensates for the increase in energy
given in Eq. (3), as the path length N(l,) increases.
Here, N is the number of steps on the slip path connecting
the reference pair. The increase in entropy in our model
derives from (a) the increase in the possible number of slip
paths connecting the reference pair, and (b) the increase in
the total number of possible remnant-pair configurations.
In subsection B we obtain an upper bound T3; on the
melting temperature, based solely on the first entropy
source. In subsection C the configurational entropy of the

pairs is added to the model to obtain the upper bound
Tif-

B. Melting criterion without remnant-pair entropy

In this section, melting is considered to derive from the
increase in the number of slip paths available to a dissoci-
ating reference pair. For a path of length L, the number
of steps is roughly N =L /ly{n ). Taking this path to be
a random walk of N equal steps, the probability p(m) of
arrlvmg at m = | Ty —To| (lo(n »)=! steps from an origin
at T is

p(m)=(gN)~le=m*/N 4)

If, on the triangular lattice, z, is equal to the five possible
directions that may be taken at each step, the total num-
ber of paths of length L is z{, giving zp(r) paths
€ (ro,ry) of length L. Taking €,(r')=const in Eq. (3),
the partition function of the single random slip path may
be written approximately as

z=S > o PE T Ty, ) (5a)

Ty} (E(F0. Ty}

(1-3BTE)

~Ro [ dr 7{— I(r), (5b)

where

I()=rt [ 7dL L ~le=rE+rL™h

N2y 1

YKol2r(y") WK1[2"(7/')1/2]

+K,[2r(y")?]| for Rey’'>0, (5¢)

with y'=2B8yub*—Inzy, Ro=R§(1o{n )"}, and

kT3 =ub?[6m(1—v)e, ]~ ", : (5d)

where K;(z) is a Bessel function of ith order. The stabili-
ty of the solid phase requires that Z be finite, so that a
necessary condition for stability is Rey’ >0, or Ty < Ty
with
2 2
KpTh = 2YBE” ©)

an()

For Rey’' <0 the slip line grows in length without
bound. If, however, the elastic energy of the endpoints
greatly exceeds that of the core energy of the line, one ex-
pects that the endpoint separation may remain finite while
L — «. In the present context this limit is obtained when

Ty <<Tjy , ' @

where T7}7 is given by Eq. (5d). In such a case interaction
effects of slip-line crossing not considered in this paper
must be introduced into the theory, and the melting cri-
terion Ty < Ty will be altered. For instance, such cross-
ings may very well lead to a repulsive interaction of the
excluded-volume type, which requires a modlﬁcatlon of
Eq. 4).

It may be worthwhile to point out that for the mona-
tomic solid, one must use, instead of Eq. 5(c), I(r)

=p~lg—B2rub?) , since the slip is linear and thus conserva-
tive in that case This implies a reduction of the phase
space by a factor » ~!. For such a system the only entro-
py term arises from the configurations of the slip-line
endpoints, a quantity that is independent of the relative
separation of these points. Thus one obtains, from the
analog of Egs. (5), in the case of a monatomic solid, the
condition T; <37, where

kETl =[.Lb2[67T(1—V)€]_l . (8)
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Here, e(T)>1 is the dielastic constant of the monatomic
solid, derived from thermally produced dislocation di-
poles, which is as yet unconsidered in the derivation of
Eq. (6).

In most theories of monatomic melting, one uses the
finiteness of the polarizability, instead of Z, as the stabili-
ty criterion. This leads to the condition T, < T, which
may be more appropriate than T, <37, derived above.
Note that when the time scale of conservative lock-
opening processes, discussed in Sec. II, approaches that of
gliding motion, then T — T, from above, within the ap-
proximations made in this section. Such a limit may be
appropriate in the short-chain systems, where rotational
motion may be quick, and is again discussed in Sec. VII in
a tentative interpretation of the phase diagram of phos-
pholipid bilayers as suggested by Fig. 10.

Comparison of Egs. (8) and (6) clearly indicates the
difference within our model between monatomic and di-

mer dislocation melting in two dimensions. In the former

case the elastic energy competes with the configurational
entropy of the reference pair to produce the transition,
whereas in the latter it is the competition between a line
energy, associated with the cores of the remnant pairs,
and their configurational entropy which leads to a transi-
tion. We return to this point in Sec. V, where we argue
that the mutual elastic interaction of the dressed slip line
may provide a further line energy of elastic origin for
large N, leading to the definition of an effective line-
energy parameter Y.

C. Melting criterion including remnant-pair entropy

If Eq. (6) yields roughly the order of magnitude of T,
then the thermal energy near the melting transition is
roughly yp,b2, the core energy needed to dissociate any
stable fused pair. To estimate the effect on Ty of the de-
generacies expected for excited pairs, as discussed at
length in Secs. II and III, we assign to each pair a config-
urational degeneracy z*=const, which represents some
average value of the degeneracies enumerated in Sec. III.
In this approximation the partition function is of the
same form as that given in Egs. (5), with the simple re-
placement zy—zoz*. Thus the upper-bound melting tem-
perature becomes

2

T In(zez*)

V. MUTUAL INTERACTION ENERGY
OF A DRESSED SLIP LINE

The elastic interaction energy is represented in Sec. IV
as Wy(N)=constXInN for large N, where the effect of
the remnant pairs is expressed as a screening (or an-
tiscreening) of the elastic medium through the introduc-
tion of €,;. An alternative approach is to include the mu-
tual interaction of all the dislocations, associated with a
given slip line of N steps, !4

W(N)=—ub*[2m(1—v)]"!

M M
x 2 2 [COS(¢m —¢1)lnSmI

m=0Il>m

+sin(@,, — @ )Sip(¢1—9m1)] . 9

Here, m labels the M =2N dislocations, dressing the path
at the pos1tlons {Tm}. The Burgers vectors are taken to
be {b,,=bB,} with {B,=1}, and the core radius

R{ ~b. The relative positions are defined by
Sm=b"UT,,—1}), and (¢,,,6,,;) are the angles that

(_ﬁm ,§m1) makes with respect to the x axis of a coordinate
system, fixed in the lattice plane. Note that Eq. (9) does
not take the torsional and curvature effects produced by
the slip into account. This would require a rather diffi-
cult ‘calculation of the geometry of the lattice. This
neglect is probably most severe in the liquid phase, since
collective states of dislocations, like grain boundaries and
disclinations are only correctly calculated if torsion and
curvature is accounted for. In that case it is the second
term of Eq. (9) which apparently stabilizes orientational
order in the liquid.

For the numerical work discussed presently, random
walks were generated on a triangular lattice of lattice con-
stant 5b, and the average value of W () computed for 30
paths of given N, using Eq. (9). The reference pair is lo-
cated at (T, Ty) with Bo= —By=% Furthermore, we
have assumed that each remnant pair is well localized and
can be assigned to a particular lattice point {T);
1<p<N —1} along the path. This allows us to label
these dislocations with m =(p,0’), o being +1: The dislo-
cation (p,0) is located at T, on the slip segment
a(rm+,—rm) and as can be seen from the figures of
Sec. III, B (=)= —B(p —1,1). Furthermore, we take a ran-
dom choice for B( p1) between the two values

+(5b)~ Y rp+1—rp). In Fig. 9 the normalizing constant
is W,=ub?[2m(1—v)]~'. In computing W (N), we have
taken the const_guents of each remnant pair to have
Burgers vector b and a mutual separation of one lattice
spacing. At such small separations the elastic interactions

" within a pair are essentially of core type with energies

3yub? or yub?, depending on the relative orientation of
the constituent Burgers vectors. Therefore, on the aver-
age, for a sufficiently long random walk, the core energy
is 2yu} per pair or yub? per dislocation. Consistent with
this fact we drop all terms in W (N) which involve in-
teractions within a pair.

Although we obtain considerable scatter in W (N), as
shown by the error bars in Fig. 9, it is evident that the as-
sumption of a constant €, is invalid. In fact, it seems
that in no region of N is the logarithmic law applicable as
representing the mutual interaction energy of the slip line.
Above N =120 this interaction energy appears to become
linear with increasing N, implying €,(r)~+r"'o(n)S
+ const, where S is the slope of the curve plotted in Fig.
9 for large N. However, other dependencies are also pos-
sible, such as an oscillatory behavior of €,(r), leading
eventually to a constant envelope €,,.
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FIG. 9. Normalized elastic mutual interaction energy of a
dislocation-dressed random slip path versus number of steps on
the path, averaged over 30 paths of given length (solid curve).
Error bars indicate root-mean-square deviations from the aver-
age values shown as solid circles.

Note that €,; does not have the same physical signifi-
cance as the dielastic function €,;(T)>1, because this
would imply that each pair formed at a kink of the slip
path is relaxed in such a way as to minimize the overall
strain energy. Furthermore, no thermal average was
made, due to computer-time restrictions, so that ¢, is
temperature independent.

If we accept the linearity of W(N) for large N, then,
since we have calculated W (N) assuming the presence of
a single dressed slip line, one must account for the pres-
ence of additional thermally ?roduced dipole pairs
through the replacement S—Se; (T). Thus the calcula-
tions of Sec. IV would then be altered by the replacement

y—>yer=v+Seg (T)[2m(1—w)]!, (10)

so that the upper-bound melting temperature [see Eq. (6')]
would become, in that case,

kg Thr=2ub*{y +[2m(1—v)es(T)]~ 1S} [In(zoz*)] ! .
(11)

VI. COMPARISON OF DIMER AND MONATOMIC
MELTING IN TWO DIMENSIONS

Clearly, the steric constraints on the dimer solid make
this system more reluctant to melt than its monatomic
counterpart. As discussed in Sec. IV the monatomic solid
will melt, according to Eq. (7), below

kT =ub*[6m(1—v)e, (T,

where the dielastic constant €, characterizes the elastic
polarizations, without the constraint of dimerization. On
the other hand, if one construes a fictitious monatomic
solid in which the dimers are replaced by large atoms with
diameters corresponding to the dimer length, the lattice
constant increases by a factor V2 over that of the dimer
lattice. This implies an upper-bound melting temperature
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kpT,=2ub’[6m(1—v)e,5,(T,)] "

Obviously, T, > Ty, since the entropy-producing degrees
of rotational freedom are supressed. Therefore, the condi-
tion Ty < T3; may be explicitly written as

1< A4 <[26,(T1)/€,/35,(T2)], (12a)
with
A= 3eb(T1)[4Tr(1—v)‘y+Sed_1(TM)][ln(zoz -1
(12b)

For a rough estimate we take €,/;, =€, =€;=1, v=0.5,
S =1.30, zo=>5, and 0.01<y <0.1. Taking z*=(n)?
with (n)=35, we obtain 0.85 < 4 <1.20, which violates
Eq. (12a) only slightly at the lower limit. Note that in
writing Egs. (12) we have assumed that the Lamé con-
stants are the same for the three systems considered. This
may hold since long-wavelength properties should not be
sensitive to the atomic structure.

In the case of a small core-energy parameter ¥, the di-
mer barriers are easily overcome, and near T, this leads
to a large thermal production of vacancy and interstitial
remnant pairs. Once a sufficient number of these is avail-
able, the blocking dimers may be avoided through climb
processes, which have not been considered in this paper.
Thus, for small y, the constraint of dimerization is re-
laxed, and we expect that the upper-bound melting tem-
perature of the dimer solid approaches that of its mona-
tomic counterpart: 4—1 as y—0. In that case one ob-
tains T3 — T, as was discussed in the context of Eq. (7).
Such a limit is not very realistic since a vanishing core en-
ergy ¥ —0 also implies p—0.

On the other hand, if the core-energy parameter be-
comes exceptionally large so that 4 > 2, we attribute the
breakdown of our model to the fact that the cooperative
lock-opening mechanisms discussed in Sec. II become im-
portant and determine the time scale of the dislocation
glide motion. For the parameters used, this will occur for
v >0.5.

Our final remarks in this section are addressed to the
order of the melting transition. Within the model of ran-
dom slip paths a continuous transition will be predicted,
even if excluded-volume effects are incorporated. In addi-
tion to the lattice-coupling effects discussed above, there
is an additional effect which can drive the transition first
order: From the qualitative discussion in Secs. II and III,
one sees that there is an inherent source of instability of
the slip line with respect to branching. Although we have
only begun to study this problem analytically, we intui-
tively feel that this branching instability could be the prin-
cipal driving mechanism for the observed discontinuous
transition at T,

VII. THREE-DIMENSIONAL EXTENSIONS
OF THE MODEL: CHAIN FLEXIBILITY

So far we have confined ourselves to the purely two-
dimensional aspects of the melting of a lipid monolayer.
If one assumes that the CH, chains remain rigid during
the melting process, the finite thickness d of the layer
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(roughly the length of the extended chains, if we neglect
the tilting angle of the molecules) may be taken into ac-
count by writing Ty, =Tyd /dy, where T, is the melting
temperature of the two-dimensional system, and d <d,.
Here, d, is the monolayer thickness where deviations
from two-dimensional behavior are observed. This is a
consequence of the fact that the dislocation cores pierce
straight through the layer due to the assumed rigidity of
the chains for d <d,.

Thus, in the approximation of rigid chains, we expect
the internal energy of the dislocation system to be propor-
tional to d, and the entropy change upon melting,
ASys=AS,,, assumes its two-dimensional value. Then the
latent heat of melting is expected to be proportional to d:

AQ=TyASy =(TyASy)d.

* The experimental melting curve and latent heat of melt-
ing is shown in Fig. 10 as a function of CH,-chain length.
Clearly, the rigid-chain behavior is observed for the
short-chain homologs. For short chains we expect the
constraint of dimerization to be strongly felt, so that the
two-dimensional aspects of melting should be dominant.
(We address ourselves to the apparent instability of the
short-chain limit, suggested by the dashed line in Fig. 10,
in the following paragraphs.)

With increasing d, however, jogging of the CH, chains
as a result of the trans-gauche isomerizations occurs with
increasing ease at the free ends of the chains. This leads
to the production of screw-type dislocation cores within
the layer, running parallel to the layer surface. Therefore,
as the chains become more flexible, dislocation loops are
generated. The vertical portions of these loops (segments
parallel to the chain axis) are of the edge type, represent-
ing the extensions of the point dislocations discussed
above. This leads to a convex shape for the melting curve
as a function of d, as has been shown for the case of
paraffin.!®!® Paraffin is a multilayered system in which
the lamellae are composed of CH, chains, orientated rela-
tive to the lamellar surfaces in a fashion similar to that
found in lipid bilayer systems.

Note that the rotator phase observed in paraffin,!® a
consequence of the anisotropic shape of the polymer
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FIG. 10. Melting temperature and latent heat versus CHj-
chain length for lecithin-water mixtures, a lipid monolayer sys-
tem (see Ref. 2). The dashed line is an interpolation of the AQ
data.

chains, precedes melting and is analogous to the low-
temperature dynamically disordered state of the dimers
considered in this paper. As pointed out earlier, in both
cases a triangular lattice structure is maintained.

The CH, chains in paraffin, however, are not subject to
dimerization. For the thicker lipid membranes, this con-
straint is expected to decrease in importance. In fact, the
experimental melting curve seems to indicate convexity
for CH, chains of more than 20 units, although more ex-
perimental data are needed to make a conclusive state-
ment.

The reason for the convexity of Ty (d) is simple to
understand: The dislocation loops, which can form when
the chains become flexible, increase the entropy of the
dislocation system, decreasing Tj,(d) from the value ex-
pected on the basis of rigid chains and straight edge dislo-
cations. Assuming for simplicity that the departure from
linearity beginning at d, may be expressed as

where §=(d —dy)/dy << 1, and that AS;; =AS),(1+a,8)
in the same range of d, one obtains

AQ=TyASydi'd[1+(ay—a))b—a;a,8?] . (13)

Since AQ(d) in Fig. 10 appears linear, even beyond the
point where Tj,(d) becomes convex, we conclude that
a;~a,. It remains for experiment to verify the predicted
convex shape of AQ(d) for larger values of d, which
should have a considerably weaker curvature than that of
Ty (d). .

Extrapolating the AQ curve of Fig. 10 linearly to the
left (see dashed line) shows that, below Ny=8 CH, units,
AQ <0 is obtained. Such behavior cannot be explained by
our present model. It is possible that for N > Ng, where
Nj§ is some chain length greater than N, the dynamical
disordering of the dimers and melting occurs simultane-
ously. In paraffins there is evidence that the rotator phase
becomes unstable below T, for sufficiently large N,!°©
giving support to the above conjecture.

Another explanation of the unphysical instability for
N <Ny is that the melting transition becomes continuous
for such short chains. This possibility arises if the rota-
tional fluctuations of the dimers are so rapid that the con-
servative lock-opening processes discussed in Sec. II allow
the formation of straight slip paths. Under the assump-
tion that only conservative glide processes contribute to
the dissociation of dislocation pairs, a continuous transi-
tion is possible for two-dimensional systems.

Finally, the problem may also be connected with the
fact that for increasing N, screw dislocations form
through chain jogging which are not contained in the
present two-dimensional dimer model. Since these are in-
timately related to the liquid-state properties of the sys-
tem above T, for systems consisting of long-chain mole-
cules,' the anomaly at N =N, may signify a transition
driven by screw dislocations at larger N.

We would like to emphasize that the dislocation-
loop—dissociation viewpoint of melting, applied to lipid
membranes, would offer a unified approach for treating
the simultaneous loss of triangular symmetry in the mem-
brane surface and the “chain melting” within the mem-
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brane bulk. This approach is very advantageous when
considering the transition between short- and long-chain
behavior, as has been amply demonstrated in the theory of
paraffin melting. In fact, as can be concluded from the
smoothness of Tjs(d) in Fig. 10, and the fact that chain
order and triangular order disappear simultaneously at
Ty, the melting mechanism cannot be separated into a
chain-disordering process and a surface-dimer-disordering
process.

With regard to the paraffin analogy, it has been conjec-
tured!®!6 that liquid paraffin may be describable as a
smectic-4 liquid crystal. In order that curvature-type
elastic laws of a general nature be obeyed in lamellae con-
sisting of long molecules, screw dislocations must be
present with Burgers vectors parallel to the molecular

axis.!® Thus, surface roughening must occur in such sys-
tems. In fact, drilling motions of the long molecules
through the layer surfaces has been discussed at length for
the case of paraffin.!® Whether or not such effects are
important for lipid membranes depends on the stabilizing
effect of the polar heads, which so far have not been in-
cluded in the model developed here.
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