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Slow-neutron scattering by molecular gases: A synthetic scattering function
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Motivated by the practical requirements of reactor-physics calculations as well as the necessity of
applying inelasticity corrections to the observed spectrum in neutron-diffraction work on molecular
gases and liquids, I have developed a synthetic scattering function T(Q, co;Eo) which allows a fast
and reliable evaluation of cross sections. Unlike the dynamic structure factor (or scattering func-
tion) S(g, ro) in thermal neutron-scattering theory, T(Q, co;Eo) does not contain a detailed descrip-
tion of the atomic motions in the molecular units nor correlation between pairs, but rather it is in-
tended to reproduce satisfactorily some integral properties of S(Q, co) (the self-component). Howev-
er, the main characteristics of the molecular dynamics are retained through the introduction of an
effective mass, and temperature and vibrational factors which depend on the incident neutron ener-

gy Eo. This is achieved by the use of the Krieger-Nelkin procedure for orientational averages and
by the introduction of "switching functions" P (Eo) which define the variation with Eo of the above
effective quantities. A very simple form is thus obtained for T(Q, co;Eo) which yields analytic ex-
pressions for the scattering kernel and the total cross section. To gauge the merits and limitations of
this prescription I compared its predictions with experiments and other theories in the foIlowing
cases involving hydrogen-containing molecules: (i) the total cross section of H20 and C6H6,' (ii) the
scattering cross sections (angular distributions) of H20 and D2O at several energies; and (iii) the
average of the cosine of the scattering angle in H20. It is concluded from the comparisons that the
model works in a very satisfactory way. It is anticipated that the present prescription could be a
useful tool for the evaluation of departures from elasticity in time-of-flight experiments, where a
wide range of neutron wavelengths may contribute at each channel in the observed diffraction spec-
trum.

I. INTRODUCTION

The interaction of thermal neutrons with molecular
gases has been the subject of very extensive investigations
for many years from both the theoretical and experimen-
tal sides. In going through this process we have learned
about the almost embarrassing richness of information
which is present in neutron-scattering data, as well as the
corresponding difficulties in trying to interpret it.

In fact a large portion of the relevant features in the co-

Q plane are revealed by measurements of the neutron
double-differential scattering cross section for a given sys-
tem. The knowledge of this magnitude makes possible the
derivation of a number of quantities of interest in pure
and applied research.

This is in general a very expensive procedure and, while
unavoidable in certain cases, one can safely assume that
experimental data will never cover exactly the material
and unique physical conditions of a particular problem.
Furthermore, it is not always necessary to have such de-
tailed information, but rather, to have what is needed,
usually an integral quantity.

To this end microscopic models capable of yielding dif-
ferential cross sections have been developed, most of them
based on the essentially exact formalism due to Zemach
and Cxlauber' which accounts for the quantum nature of
the scattering system and the temperature-dependent dis-
tribution of its energy states. Although the complete
dynamics of the system is built into the Zemach-Glauber

formalism, the resultant expressions are too complicated
and therefore not quite amenable for calculations. As a
consequence, several methods have been proposed to
describe the Van Hove scattering function ' S(Q,ro), not-
ably the phonon expansion, the Ciaussian approximation,
and the method of steepest descents. Furthermore, dif-
ferent approximations have been developed to simplify the
evaluation of S(Q,co) for molecular gases involving the
classical treatment of some of the internal degrees of free-
dom ' and the use of average values for the Euler angles
to represent the orientational average of the corresponding
correlation functions. These necessitate the introduction
of an "effective-mass" concept to describe the neutron-
molecule interaction.

Even though these early studies on slow-neutron inelas-
tic scattering were mainly motivated by fundamental in-
terest in the atomic motion in solids and liquids, a great
deal of effort was dedicated to hydrogenous materials due
to their importance as moderators in reactor physics. As
a result, large computer codes were written to calculate a
number of quantities which are relevant to the problem of
neutron thermalization. " Detailed calculations of scatter-
ing kernels and thermal neutron spectra in a moderating
media can then be performed, although they are always
computer-time consuming, even for a simple system con-
figuration. Less-detailed calculations involving group
constants nevertheless require a good computational basis.

A different kind of study, namely, structure determina-
tion of molecular liquids and gases using neutron-
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diffraction techniques, also requires some model describ-
ing the molecular (if not the whole condensed system)
dynamics in order to evaluate the unavoidable inelasticity
effects" which must be subtracted from the observed
scattering pattern. In this case the measured spectrum
represents a time average over all the configurations de-
fined by the system's atomic motion and therefore the
search for purely structural contributions demands a
proper accounting of all those processes in which energy
is exchanged between the neutron and the scattering sys-
tem. Here again a detailed knowledge of the shape of the
scattering function S(Q,to) over a large region of energy
and momentum transfer is unnecessary and, in fact, only
those interactions which are more operative at a given ex-
perimental condition have to be adequately accounted for
in order to obtain a reasonably accurate estimation of this
correction. From the pioneering papers by Placzek' and
Wick' much work has been done to improve and extend
the range of validity of this correction, ' ' although still
retaining in most cases the initial idea of an expansion in-
volving the moments of S(Q,co). Only recently, expres-
sions for the scattering law were written down in order to
analyze the case of diatomic molecules, ' ' but again, as
in the classic Nelkin model' for thermalization in water,
they emphasized the existence of different "regimes" as
the incident neutron energy becomes comparable to dif-
ferent portions of the system's excitations spectrum.

In this work I introduce a neutron-energy-dependent
function T(g, to;Eo) which incorporates the main dynam-
ical characteristics of the molecular unit, but still retains a
high degree of simplicity. Under these circumstances this
function cannot be expected to give a detailed description
of the actual scattering function, but rather, it is intended
to produce a good representation of some of the integral
properties of S(Q,c0). One can hope that this synthetic
model will be able to produce reliable differential-cross-
section predictions which can be used in reactor physics as
well as in neutron-diffraction work. I expect this work to
be especially applicable to time-of-flight experiments
where a wide range of neutron wavelengths characterize
the incident beam, thus causing a natural composition of
dynamic contributions at each time channel. Only the in-
coherent components of the neutron-scattering process are
considered in this work, the incoherent approximation be-
ing usually a good one as far as reactor calculations are
concerned. On the other hand, departures from elasticity
affecting the interference component in a measured dif-
fraction spectrum is a more delicate question as compared
to that related to the self-contribution. In any case, the
concepts of effective masses and temperatures are no
longer valid in their traditional sense when pairs of atoms
are involved in the interaction and, in my opinion, a full
calculation based on a proper scattering function is im-
perative in those cases.

II. FORMULATION OF THE PROBLEM

A. The initial hypothesis

In the next few paragraphs I enumerate the working
hypothesis on which the present model is formulated.

l. On the scattering system

I consider the scattering system to be an ideal molecular
gas. By this I mean that the translational motion of the
molecules' center of mass is that corresponding to a free
particle. This hypothesis is a priori rather unrealistic for
molecular liquids where the translation (and rotation) of a
molecular unit may be severely hindered by the presence
of its neighbors. ' However, this collisional regime should
become dominant at very low neutron energies where the
experimental time scale is comparable to that characteris-
tic of diffusive motion. Certainly this is not the energy
region of main interest in reactor-physics calculations, nor
is it a common situation in a neutron-diffraction experi-
ment intended to reveal the structure of the system.

2. On tlge dynamics of the molecular system

I will assume that the rotational and vibrational degrees
of freedom are not coupled. This hypothesis represents a
first approximation to the real situation and it will be
valid as long as the amplitude of atomic oscillations
around their equilibrium positions are small compared to
the (equilibrium) interatomic distances in the molecule.
Under these conditions, the system Hamiltonian can be
written as

H =H„+H...+H„b,
that is, the sum of the Hamiltonians corresponding to
translational, rotational, and vibrational motions, respec-
tively. H„, represents a rigid molecule with atoms at
their equilibrium positions and H„.b assumes a harmonic
potential function. Also, I will accept the common situa-
tion, in which vibrational frequencies are much higher
than the characteristic (band of) rotational frequencies, to
be generally valid.

3. The neutron energy range

As anticipated in Sec. IIA1, I will consider a low-
energy limit for the incident neutrons such that the time
scale is still sufficiently short as to ensure that departures
from a free-particle motion of the molecular mass M, ~

cannot be detected. This limit is of course dependent on
the particular system under investigation as well as on the
physical conditions in a given practical problem.
Nevertheless, for most real situations this implies neutron
energies about a few millielectron volts.

At the other limit, the model should reduce to the free-
atom expression of the scattering function involving the
atomic mass M and an effective temperature T. This sit-
uation is attained at neutron energies of the order of eV.

The ambitious project stated in the preceding paragraph
requires some additional comments in order to make clear
from the onset the spirit of the present model. The
molecular rotations and vibrations will be represented by
Einstein oscillators. Roughly speaking, I shall identify
three broad regions which dominate the scattering pro-
cess, depending on the incident neutron energy as com-
pared to the separation of energy levels of the internal
modes: (i) the "molecular" regime, (ii) the "Sachs-Teller"
regime, and (iii) the "atomic" regime.
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The temperature of the scatterer will affect this picture,
shifting and broadening the gap between the regions
where each of those regimes are in command. In Sec.
III A these topics are discussed in a more formal context.

B. Basic farmulas

The microscopic double-differential cross section for
the scattering of unpolarized neutrons is'

k V

N S'(Q, co), (2)
() 7T

where ko and k denote the (modulus of) incident and scat-
tered neutron wave vectors, respectively, and v runs over
the species of nuclide in the same environment, each with
a number N" of them and with a bound scattering cross
section cT". S (Q, co) is the corresponding scattering func-
tion (or scattering law) which in this case is taken as the
self-part only:

S"(Q,co) = f dt(exp[ —iQ.R (0)]exp[iQ R (t)])e

Here, X(Q, t)=(exp[ —iQ R (0)]exp[iQ.R„(t)])

and
where

4
=X'(Q, t)X (Q, t),

are the energy and momentum transferred from the neu-
tron to the system in the scattering process and ( )
denotes both a quantum-mechanical and statistical aver-
age. The instantaneous position of any nucleus belonging
to the species v can be written as

R (t)=r, (t)+d (t)+u (t),
where r, is the vector to the molecular center of mass, d
is from the center of mass to the equilibrium position, and
u„ is the displacement from the equilibrium configura-
tion.

The Fourier transform of the scattering function (usual-
ly called the "intermediate scattering function") X(Q, t) is

X'(Q, t) = (exp[ —iQ r, (0)]exp[iQ r, (t)])

=exp (it k~Tt /A—')AQ
2M 0)

is the intermediate function corresponding to the transla-
tional motion of the molecular unit. In writing the result
(7), valid for a particle which belongs to an ensemble in
statistical equilibrium at temperature T, I have already
made use of the assumption expressed by the hypothesis
considered in Sec. II A 1.

According to the hypothesis considered in Sec. II A 2, I
will assume that rotations and vibrations are not coupled
and then

X (Q, t) =X"(Q,t)X"(Q, t)

=(exp[ —iQ d„(0)]exp[iQ.d (t)])TR(exp[ —iQ u,(0)]exp[iQ.u„(t)])Tz .

The subscripts T and R have been made explicit to emphasize that the expectation value of the operators involved must
be averaged over both the thermal distribution and molecular orientations.

As was stated previously, we will make the approximation that the internal degrees of freedom of the molecule carry
out simple harmonic oscillations. The resultant expression for the intermediate scattering functions is'

X'(Q, t)=( Q exp — (2nx+()(Q C ) exp [(nx+))e +nxe
A,

2cog 2Q)g

x )(Q.cx)2
)

(
Milk~ T 1)— (10)

From the requirement that the free-atom cross section
be approached at high neutron energies (large compared
with k&T and the largest Icos), a normalization condition
for the amplitude vectors is obtained:

where the superscript Os stands for rotations and vibra-
tions and I, runs over all internal modes, each with angu-
lar frequency co~. I have omitted the subscript v that
characterizes the set of atoms located at equivalent molecen

ular positions. Also, n~ is the thermally averaged occupa-
tion number:

where M is the mass of the nucleus under consideration.
This result applies if an average in the manner of Krieger
and Nelkin is performed over molecular orientations (see
Sec. III A).

III. THE MODEL

In order to proceed in the search for a function
T(Q co Ep ) capable of yielding an adequate representation
of some integral properties of S(Q,co), I must introduce
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further approximations beyond those already made in the
preceding section. Historically, a number of models were
developed starting from the Zemach-Glauber formalism
to describe neutron scattering from molecules, with the
aim of making the expressions more tractable for calcula-
tions although a limitation of their range of applicability
was unavoidable. Those models have been extensively dis-
cussed in the literature ' ' ' and I can only add —using a
very simplified scheme —that most of them were devised
to operate in one of the regimes mentioned in Sec. IIA.
While they proved to be adequate aids for studying the
many problems that involve atomic motion in molecular
systems, there has been increasing interest in the search
for ways to cover the gaps between those regimes. ' ' '

Before entering into the details of the prescription used to
achieve this, we need to consider some previous results
which form the basis for the present formulation.

A. The starting approximations

So far, I have presented in Eqs. (7) and (9) expressions
of the intermediate scattering function for the free-
particle translation (of the molecular unit) and for a nu-
cleus in a harmonic-oscillator potential. An approximate
procedure to perform the average over molecular orienta-
tion was introduced by Krieger and Nelkin, which im-
'plies performing that average on the arguments of the ex-
ponential functions in Eq. (9). Then we obtain

f2Q2
X '(Q, t)=exp — y2

f dco S(Q,co) =X(Q,O) = 1,
whereas the first moment of the scattering function gives

A' J den AS(Q, co)= i— (Q, t)
QO . ~X

(17)

Now, from Eq. (7),

. ~X
i — (Q, t)

Bt

and from Eq. (12)

gyOs
i —(Q, t)

&=0

so that we finally obtain

A'Q

2M, (

2

~X ~X
at at

+

OO iiiQ
A' J dcocoS(Q, co)=

a result that validates the normalization condition (11)
through the definition (13).

It is instructive now to remember the asymptotic forms
of S(Q,co) for small and large energy transfer in the
scattering process.

(i) co&~co2 for all A,. In terms of the time-dependent
formalism this situation corresponds to long interaction
times, or more precisely, times which satisfy the condition
coi„t »1 (for all A, ). Then Eq. (12) reduces to the first ex-
ponential function and

fi Q M2 E COLS

Xexp g [(ni„+1)e
A' QS(Q,co)-SM, T(Q,co) exp — y (19)

+ni e ] (12) where

SM T(Q, co) =(2irfi Q M,'iks T)

where

M =((Q C')'),
and

(13)
Q exp

(fico —fi Q /2M~oi)

2iii Q M,'ikg T

(20)

Mgy= g (2ni+1) .

Also, from Eqs. (11) and (13)

+gM 0) ~ Mg
(15)

and therefore M~ represents an effective mass for the
atomic motion under the mode A, . Equation (12) has been
the starting point of several models of bound atoms in
molecules, including the pioneering work of Nelkin on wa-
ter."

By remembering that

S(Q,co)= I dt e '"'X'(Q, t)X '(Q, t),

is the scattering function for a free gas of particles of
mass M, ~

in equilibrium at a temperature T. The result
(19) for a quasirigid molecule has been used by Krieger
and Nelkin in the formulation of their quasiclassical ap-
proximation and discussed by several authors. ' ' ' '

(ii) co »cubi, for all A,. This case corresponds to the situa-
tion of short collision times in the time-dependent formal-
ism. Expanding the argument of the second exponential
in Eq. (12) up to second order in t we obtain

X '(Q, t)= exp g Mi it — (2ni + 1)t
AQ' 2

2
A.

2

(21)

Introducing the mean energy associated to the mode A, of
oscillation,

it is evident from Eqs. (7) and (12) that Ei„=fico~(n~+ —,
' ), (22)
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and combirung Eqs. (7) and (21), we obtain where T' is an effective temperature given by

X'(Q, i)X"(Q,i)

fiQ=exp .
2M

it— M M tksT+ g Ei.M o] Mg

(23)

kii T'=E„+ (kii T E—„)
Mmo]

(28)

with E„being the mean rotational energy and y„given by
(14) but including only vibrations.

where the normalization condition, Eq. (15), was used.
Defining an "effective temperature" T by

ks T=kii T + g (Ei„klan T)—,
M

Mg

we finally obtain

(25)

1 1 1

vibr

(26)

If both kii T and Eo are smaller than the lowest vibra-
tional level there cannot be exchange of vibrational quanta
in the collision and the scattering function becomes

S(Q,m) -S~ i.(Q,~) exp
fiQ

2 Xv

with S'(Q, co) given by Eq. (20). Thus the scattering func-
tion has a Gaussian shape with its maximum (in co scale)
located at fiQ /2M, indicating that in the collision the
atom recoils, presenting its real mass. However, the ap-
pearance of an effective temperature T instead of the sys-
tern temperature T as in the ideal gas case, reveals how
the atoms retain their condition of belonging to a molecu-
lar unit with internal degrees of freedom.

For illustrative purposes, let us consider the case of
neutron scattering by a molecule in the "Sachs-Teller re-
gime, " by which we mean a temperature T and incident
neutron energy Eo satisfying k&T»8 (rotational con-
stant) and Eo»&(8kii T)'~ (spacing between rotational
levels around the most probable one). These are the hy-
potheses required for the validity of the so-called "quasi-
classical approximation, "' ' according to which the
combined effect of translations and rotations is described
by the free motion of a particle with a mass equal to the

'(spherically averaged) tensorial mass ~ introduced by
Sachs and Teller. Then, Eq. (15) is rewritten as

B. The present prescription

In the preceding section we reviewed some results of the
theory of slow-neutron scattering by molecules with the
purpose of setting a reference frame for the development
of the present prescription. The different forms that the
scattering function takes in the cases considered above are
indicative of the main features that I want to retain in this
formulation, that is, the appearance of different effective
translational masses, temperatures, and vibrational factors
according to the energy exchanged in the interaction.
Along this line a synthetic function T(Q, co;Eo) is pro-
posed, which uses the incident neutron energy Eo as the
variation parameter to determine the values of those effec-
tive quantities across the three regimes (of Sec. IIA3).
The same idea is borne in the classic Nelkin model for wa-
ter, ' where different values of the constants and expres-
sions for the scattering function were introduced to evalu-
ate cross sections in separate energy regions.

The effect of individual quantum excitations of the
internal modes is not accounted for in a detailed manner,
but rather their combined effect is described by a kind of
envelope through the use of effective quantities. I start by
considering the mass and then, instead of (15), define

p M ~] ~ Mg M ~ Mg
(29)

The P~'s are "switching" functions which depend on the
incident neutron energy and on that part of the molecular
frequency spectrum associated to each mode A.. Every Pi„
tends to zero as the corresponding mode becomes fully ex-
cited from the point of view of the collision process, that
is when a quasiclassical treatment is applicable. On the
other hand, the value of P~ is 1, if the neutron does not
have sufficient energy to excite any of the A,-oscillator en-
ergy levels. At intermediate energies the variation of Pi
should depend on the shape of the frequency spectrum in
the vicinity of co~, but I have adopted the expression

exp I
——,

' [(Eo—
ficus' ) /A'oi ] J + (ir/2)(ficoi, /fiat, )(1+erf [(1/v 2) [(fioii —Eo ) /A'oi ] ] )

Pi.«o) =
exp[ —,' (ficoi„/fioi ) ]+(ir/2)(fico—i/fioi„) I 1+erf[(1/v 2)(Acoi„/fioi )] I

(30)

as a simple way to meet the above requirements. Its
derivation and supporting arguments as well as the mean-
ing of the quantities o.~ are given in Appendix A.

In a similar fashion I define an effective temperature ~

I

where kiiT is given by Eq. (24). Clearly i tends to T, the
system temperature, or T, the "free-atom temperature, "
according to whether all P~ are one or zero, respectively.

Finally, an effective vibrational factor I is defined by
by

kg~ AT 1 —Pg kgT Pg

(31)

Pi„2ni +1I =
Mi ficoi

With the quantities defined by Eqs. (29), (31), and (32),
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I am in a position to introduce a synthetic function
T(Q,co;Ep), which is

f2Q2
T(Q, co;Ep) =S& (Q, cp) exp —I + C& (Q, cp) .

(33)
I

In this expression S& (Q, cp) denotes the scattering
function of an ideal gas of particles of mass p at tempera-
ture r [see Eq. (20)] and C~ (Q, co) is a correction term
given by

fi Q
Cp, (Q, cp) = —, niA' Q+S„,(Q+,co+) exp —I +(1+ni„)A Q S„,(Q, cp ) exp —I

(34)

where Q+ is the (modulus of) scattering vector corresponding to an energy exchange fico+ fi(co+co——i.). This correction
term accounts for one-phonon processes which may be operative for those cases of thermal- or collision-induced excita-
tions but with a neutron energy not high enough to allow a quasiclassical treatment of the corresponding mode. The
derivation of Eqs. (33) and (34) is given in Appendix B.

It is useful to rewrite C„,(Q, cp) in a formally different way:

&'Q+
C„,(Q, cp) = —g ni.S„,(Q+,co+ ) exp —I, mm, ar

Then, with the notation

f2 2

S~ (Q, co) =Sp (Q, cp) exp —1

A' Q
+ (1+ni„)S„(Q,cp ) exp —I

(35)

(36)

we obtain, instead of Eq. (33),

T(Q, co;Ep) =Sp, (Q, cp) —g Mgkcog
ni„S~, (Q+,co~)+(1+ni„) S„,(Q, p~ )p~& +& + ar "' (37)

This is the central equation of the present work. The function Sz can be integrated over scattering angles and final
neutron energies, yielding analytical expressions for the scattering kernel cr(Ep, E) and the total cross section cr(Ep).

IV. CALCULATION OF CROSS SECTIONS

In this section I present results of calculations using the functions T(Q, co;Ep) for the evaluation of cross sections in a
few practical cases. As the incoherent approximation is used throughout this formulation, I consider examples of hydro-
gen containing molecules as a convenient test for its predictions. More extensive calculations involving the evaluation of
a number of quantities of interest in reactor physics as well as inelasticity effects in neutron-diffraction work will be
presented in subsequent papers.

A. Total cross sections

Krieger and Nelkin derived the formula

cr~N(E )= terf(z'~2) —(1—c)'~ exp( —zc)erf[z' (1—c)' ]I4rE0 (3&)

for the total cross section corresponding to the scattering function S~ (Q, co), with
—1

Ep (1+.p)z=p and c = I+
kg~ 4I pkgz

From Eq. (37) we obtain, after some algebra, the following expression for the total cross section:
1/2

Pg %cog %cog
~ (Ep)=~„(Ep)+ g fly 1+ A~,(Ep+fuoi)+(1+ni„) 1— A„,(Ep ficoi,)—E, Ep

where

b 1 1/2 1/2 —z 1/2 —zc 1/2 1/2 AA„,(Ep) = erf(z'~ ) —A (z jar)'~ e '—(1—c)'~ e "erf[z'~ (1—c)'~ ] +Az+
2(1 —c)

(40)

2 =pk~i[(1 —c)/(1+@)]2 .
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TABLE I. Values of the parameters for this model used in the calculations of Sec. IV. The eigenfrequencies fico~ correspond to
commonly accepted values, while the effective masses are deduced from the respective Sachs-Teller masses and the quantities (Cq)
according to Eqs. (11) and (13) (Refs. 28 and 29). Approximate values of the widths bio.~ were taken from the frequency spectra given
in Ref. 28. Energies are given in eV and masses in neutron mass units.

H20 (H atom)
(0 atom)

DqO (D atom)
(0 atom)

C6H6 (H atom)
(C atom)

0.07

0.05

0.02

0.202

0.15

0.12

0.48

0.31

0.38

0.015

0.015

0.006

2A'o.„
I

0.013

0.013

0.021

2fio.„

0.013

0.013

0.013

2.38
342

4.39
190.5
28.64
91.9

4.77
746.0

13.24
427

1.53
17.7

3.18
373.0

6.82
204.0

3.35
329.0

In some circumstances the assumption that an Einstein
oscillator represents the relevant part of the frequency
spectrum is rather poor and indeed this is usually the case
for rotations, where a fairly broad band of eigenfrequen-
cies shows up. This is accounted for in this simple
prescription through the width o~ (Appendix A) associat-
ed to each eigenfrequency co~, such that the phonon exci-
tations are evaluated at the effective frequencies
rod=co~ —o~. Of course, the phonon creation term, con-
taining A„,(Eo Rcoq—), only exists for Eo & Picots.

In what follows, I will show some results obtained by
using the formula (39) to evaluate total cross sections.
The values of the constants used for the calculations in-
volving 820, 020, and C686 molecules are summarized
in Table I. In these examples I have taken k&T=0.0253
eV, ob ——81.325 b, o-b ——7.6b oe=5.57 b»d oh=4.25 b
for the thermal energy and the required bound-atom cross
sections.

The calculated o(E&&) for HzO, together with experi-
mental data over the energy range 10 —1 eV, is shown
in Fig. 1. A 1/v absorption contribution has been added
to the calculated values, using the constant o.

bs (2200
m/s)=0. 332 b. The overall agreement is very good, ex-
cept at the lowest energies where the calculation overesti-
mates the total cross section. This disagreement is not
unexpected however, as the actual translational motion in
the liquid —which controls this regime —is far from the
assumed free-particle behavior. In the vicinity of 0.06 eV

another discrepancy is apparent, which is shown in
greater detail in Fig. 2, where the full experimental points
of Russell et al. have been drawn in that range. The ob-
served behavior around the "rotational" eigenfrequency
fico„=0.07 eV is characteristic of the model and occurs at
all %co~, particularly in those cases where the actual fre-
quency spectrum is a broad band. The hypothesis of an
isotropic Einstein oscillator is then a crude approximation
to the real situation and one can hardly expect that a sin-
gle phononlike term as expressed by Az, could properly
describe a feature which is due to a convolution of that
type of effect. In the "free-atom region" —at neutron en-
ergies higher than the highest vibrational energy —the
model reduces to the ideal gas form (atomic mass) with an
effective temperature (corresponding to two-thirds of the
average kinetic energy) k~ T=0.115 eV. For purposes of
comparison, the total cross section evaluated by the
GASKET-FLANGE computer codes is also shown in Fig.
2; this evaluation is based on a continuous frequency spec-
trum derived from measured double-differential cross sec-
tions according to the Egelstaff extrapolation m'ethod. s

In Fig. 3 we see the results of this model for the total
cross section of benzene together with the experimental
data of Sprevak et al. As in the case of water, a small
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FIG. 1. The total cross section of light water in the thermal
energy range. So1id circles are experimental data from Ref. 25.
The solid curve is the result of the present model [Eq. (39)].

F (eV)

FIG. 2. The total cross section of light water around 0.07 eV,
showing in an enlarged scale the behavior of this calculation
(solid line) over that region. Solid circles denote the full experi-
mental points of Russell et al. (Ref. 25}; the dashed curve is the
result of a GASKET-FLANGE calculation (see Ref. 28).
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FIG. 3. The total cross section of benzene at thermal ener-
gies. The solid line is the result of this model; solid circles are
experimental points from Ref. 29.

B. Angular distributions

I present in this section some examples of differential
cross sections evaluated according to the present model
and compare them with experimental data and other
theories. For reactor experiments the observed differen-
tial cross section is calculated as

discrepancy is observed at around 0.10 eV, which originat-
ed in an analogous reason already discussed. In spite of
this fact, the agreement is very satisfactory.

2
0

I I I I I

40 80 120 160
ANGLE (deg)

FIG. 4. Angular distribution of neutrons scattered from light
water at three different energies: (a) Eo ——0.0205 eV, (b)

Eo ——0.071 eV, and (c) Eo ——0.376 eV. The solid curves are the
predictions of this model, the dashed curve (a) is the result of
the Nelkin model. Experimental points are from Ref. 30 (solid
circles) and Ref. 31 (triangles).

(8;Eo)= g f d(~)(EIEo)'

X T(g,a);ED), (41)f(E)
Eo

where Eo is the energy of the incident neutrons and f ( E)
denotes the detector efficiency for an outcoming neutron
energy E.

In Fig. 4 I show the results for light water correspond-
ing to three well-separated energies. The evaluation at
Eo ——0.0205 eV is compared with Beyster's (Eo ——0.0205
eV) and Lemmel's ' (Eo——0.0225 eV) data in curve (a),
where a calculation based on the Nelkin model is also in-
cluded. The result of this model for Eo ——0.071 eV to-
gether with Beyster's (Eo ——0.0748 eV) and Lemmel's
(Eo 0.071 eV) data ——is shown in curve (b). Finally, in
curve (c) this calculation is shown compared to Beyster's
data at Eo ——0.376 eV. In these examples a black detector
(i.e., f= 1) has been assumed in Eq. (41) as the experi-
ments were done using high-efficiency lithium glass detec-
tors.

Although the present model underestimates the dif-
ferential cross sections at large scattering angles, one can
say that its results are intermediate between those ob-
tained from the Nelkin model and the more elaborate
GASKET-FLANGE system. It is also fair to note that
Beyster's experiment was done using a linear accelerator,
and a more complex integral than that of Eq. (41) must be
calculated in the case of a pulsed neutron source; this to-

o
~ 0.6—

0 80 120
ANGLE (deg)

FICx. 5. Angular distribution for neutron scattering from
heavy water at two neutron wavelengths available at instrument
D4 (ILL, Cxrenoble). The solid curves are the predictions of this
model. The dashed curves are the first-order Placzek expan-
sions used by Walford et al. (Ref. 32) to correct the self-
component in their observed diffraction spectra; the arrows de-
fine the range over which they fit the experimental data. Solid
circles correspond to an evaluation made by Powles (taken from
Fig. 2 of Ref. 33).
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FICx. 6. The average cosine of the scattering angle for light,

water at thermal energies. The solid line is the result of the
present model; the dashed line is a CASKET-FLANGE calcula-
tion (Ref. 28). The symbols indicate results from the Nelkin
(solid circles) and McMurry-Russell (triangles) models (Ref. 35).

pic will be fully discussed in a forthcoming paper.
Differential cross sections for D20 (the self-component)

are shown in Fig. 5, calculated at energies of 0.1648 eV
(Ap ——0.694 A) and 0.6794 eV (Ap ——0.347 A) which corre-
spond to the experiment performed by Walford et al. on
the instrument D4 at the High Flux Reactor [Institut
Laue-Langevin (ILL) Grenoble]. I used in this case an
"exponential" detector law:

f (A, ) = 1 —exp( —A, /Ad. )
0

with a characteristic detector wavelength A,d ——0.27 A for
the time the measurements were made. In this figure the
dashed lines represent the first-order Placzek correction
with best-fit parameters used by the experimentalists to
account for inelasticity effects, while the arrows indicate
the range over which the parameters fit was done. Al-
though the overall normalization constants C& given by
Walford et al. have been slightly changed (from 1.06 to
1 03 at Ao ——0 694 A and from 1 08 to 1 05 at Ap
=0.347 A), good agreement with this evaluation is ob-
served over the region in which they found the first-order
correction to be applicable. According to this model-
and as far as the "pedestal" is concerned —the C~ values
determined by Walford et al. imply a 3% error in the ab-
solute normalization of the observed scattering cross sec-
tions. I have also included in Fig. 5 some'points corre-
sponding to a calculation due to Powles, taken from Fig.
2 of his paper, in which the same data of Ref. 32 are rein-
terpreted.

C. Average cosine of scattering angle (H20)

Another integral property of the scattering kernel is the
average cosine of the scattering angle

cos8(Ep) = J d Q cos8 (8;Ep),
1 dc'

o(Ep) dQ
(42)

a quantity of interest in neutron and reactor-physics cal-
culations since it permits the derivation of several trans-
port magnitudes. As a further check of this model, I
have calculated this quantity for HzO and its results com-
pared to other theories are shown in Fig. 6. For the sake
of clarity, I did not include experimental points although
the best data ' ' are very well described by the
GASKET-FLANGE calculation. Both the Nelkin and
McMurry-Russell models give results significantly
higher than those from the former one at energies above
0.01 eV, while the present results are closer to the
GASKET-FLANGE calculation over most of the range, with
a maximum discrepancy of about 10% at the difficult re-
gion in the neighborhood of 0.07 eV.

V. SUMMARY AND CONCLUSIONS

The results presented in the preceding section are indi-
cative of what can be expected from this model in the ex-
treme cases of hydrogenous substances. Its merits and
limitations are revealed through those few examples
which then allow us to discuss its main features on a com-
parative basis.

The total cross-section calculations (Figs. 1—3) clearly
show the difficulty for this molecular-gas model to follow
the experimental curve at very low incident neutron ener-
gies, certainly an expected result for an energy region in
which the assumption of free molecular translation is far
from realistic. Still, the discrepancy with data taken on
liquid water and benzene is only 5% at 10 eV. If a spe-
cial interest exists for a better description at such low en-
ergies, this prescription can be modified to include a ker-
nel developed by Egelstaff and Schofield which reduces
to the simple diffusion form when collisions dominate.
At higher energies, the present model describes very close-
ly the observed behavior of the total cross sections, thus
indicating the adequacy of Eq. (39) and the correct varia-
tion of the effective quantities p, r, and I . Admittedly,
agreement with experimental o.(Ep) data is not sufficient
support for a bound-atom model, but nonetheless it is a
necessary condition.

The evaluated differential cross sections of H20 (Fig. 4)
shows a slightly more pronounced drop than the experi-
mental data, although the results are still similar or better
than those obtained from the Nelkin model. One can
therefore expect that in the less unfavorable case of D20
(Fig. 5) the results should be even more accurate, as the
comparison with the first-order Placzek correction found
by Walford et al. seems to indicate, at least over the
limited range where such a correction is applicable.

The average cosine of the scattering angle evaluated for
H20 (Fig. 6) emphasizes the discrepancy already men-
tioned in relation to the do. /dA results for this molecule,
as cosO strongly weighs the forward angles contribution.
Nevertheless, the present results are better than those
from the McMurry-Russell and Nelkin models, if the
standard is set by the GASKET-FLANGE calculation.

Finally, I must emphasize once again that the proposed
prescription does not pretend to be a scattering function
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model for molecules, insofar as the full dynamics of
atomic motion is not accounted for in a detailed manner
and also because only the self- or incoherent contribution
to the scattering process is considered. However, I believe
that this synthetic function is especially suited for
reactor-physics calculations, as it provides analytical ex-
pressions for the energy-transfer kernels and the total
cross sections. This has been achieved through a simple
formulation which still contains the basic dynamical
characteristic of the molecular unit. I hope that this
model can also offer a useful alternative for the evaluation
of self-components in neutron-diffraction work on mole-
cules, especially in time-of-flight experiments where a sig-
nificant part of the incident spectrum may contribute to
each time channel via processes involving a range of ener-

gy exchanges with the scattering system.
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APPENDIX A

The functions P~(Eo) introduced in Sec. IIIB are in-
tended to represent in a heuristic manner the effect of
quantum excitations of the molecule internal modes as the
incident neutron energy increases. According to this for-
mulation, those "switching" functions should provide a
plausible way of variation for the parameters p and ~
rather than representing a kind of envelope through the
total contribution of phononlike terms.

Let f~(co) be that part of the molecular frequency spec-
trum associated to the mode A, of oscillation. We define a
changeover function g~(Eo) by

Eo/h f~(co)
gg(Eo) = f dco (Al)

from which the function Pq(Eo) is written as

PA(Eo) = 1 —gx(Eo)/gz( ~ ) (A2)

Thus the value of P~ is one for neutron energies much
lower than those for which f~(co) is significant, whereas it
tends to zero at the other extreme.

The factor co
' in (Al) represents a first-order approxi-

mation to the thermal excitation distribution which is
mainly operative for low-frequency modes (as compared
with k~ T/A'). As the shape off~(co) is chosen in a some-
what arbitrary way I do not feel that the whole expression
for (2nt„+ 1) needs to be included in the definition of
g~(Eo), but only its limiting form as co~0. Within the
spirit of this simple prescription and according to the pre-
viously stated ideas, I adopted the form

ft, (co)-co exp
(co —cog)

2 (A3)

to represent the frequency distribution of a bound atomic
motion. The widths o.~ are directly taken from the ob-
served or calculated spectrum.

From (Al) and (A3), Eq. (30) is immediately obtained.
Clearly its dependence on the temperature of the system is
dictated by the shifting and broadening of the correspond-
ing part of the frequency spectrum.

APPENDIX B

In Sec. III B we have introduced some effective quanti-
ties (p, r, I ) as a simple way to describe the attainment of
a situation in which successive internal degrees of freedom
can be treated in a short collision time approximation, as
the incident neutron energy increases. Such a procedure
leads to a scattering function as that of Eq. (36), i.e., a
free-gas expression times a Debye-Wailer factor involving
the effective mass p, temperature ~, and vibrational factor
I . Admittedly, in this process we have associated large
energy transfers with high neutron energies (as compared
with the energy Picot„of each already included mode) and
this is certainly a necessary condition. To account —at
least partially —for the contribution to the cross section
due to processes involving small energy transfers, we
make a one-phonon approximation in Eq. (12):

I A QX+,(Q, t)=exp
2

Rg
2 ~ Mghcog

X [(ng+1)e +nge ]

(B1)

We have omitted the elastic term which gives rise to the
Debye-Wailer factor in the first term on the right-hand
side in Eq. (33), once the Fourier transform indicated in
Eq. (16) is performed. Also, the functions Pt„appear ex-
plicitly to "switch off' the inelastic contributions in (Bl)
as the neutron energy increases, because all the terms in
the phonon expansion are then accounted for through the
short collision time approximation.

The next steps are straightforward. The intermediate
scattering function (B1) is Fourier transformed, resulting
in a scattering function which contains 5(co+co~). The ex-
pression (34) is finally obtained as a convoluted form:

C„,(g, co) = f dco'S„,(Q,co')S+(g, co —co'), (B2)

where S„,(g, co) is the scattering law of a free gas of par-
ticles of mass p at temperature ~ and S+&(g,co) is the
scattering function derived from (Bl).
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