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Procedures are presented for solving eigenvalue-eigenvector problems for 338, 248, and more

complex many-spin systems with spins of 1 and 2. Tables of reduced matrix elements and spin set

energies are presented. The problem of the proper choice of sign (or phase) for reduced matrix ele-

ments is discussed. The symmetry of such systems is explored.

INTRODUCTION

In earlier publications [here labeled papers I (Ref. 1), II
(Ref. 2), III (Ref. 3), and IV (Ref. 4)] we described the
theoretical, computational, and symmetry aspects of
working with an angular-momentum basis applied to
problems of chemical and spectroscopic interest. Special
interest was directed toward the calculation of the
nuclear-magnetic-resonance (NMR) spectra of nuclei with
spins greater than —,'. However, developments along these
lines can also be useful in applications to any problem for
which an angular-momentum basis is used. For example,
the magnetic properties of clusters of transition-metal
ions constitute such a problem. '

The earlier publications were largely restricted to small
problems. For these smaller problems a spin-product
basis ' serves well enough and can be employed in a
direct, straightforward way. However, for even quite
modest problems the spin-product basis leads to some
very large computations that are inefficient and
computer-time consuming. In paper III it was shown that
computations are much more efficient when alternative,
many-body basis sets are used; therein the discussion was
restricted to A2B2 systems.

The present work is extended to computations on
homonuclear A3B, A48, and A3B3 systems with indivi-
dual spins of 1 or —', . The material developed here and in

earlier publications provides for a ready extension to more

complex homonuclear systems with the general label
A„zB„z—G„G, and also to heteronuclear systems.

This work is organized as follows: In Sec. II we discuss
the Hamiltonian; in Sec. III, the basis set; in Sec. IV, the
matrix-element "machine"; and in Sec. V, the coupling
symmetry; Appendixes A and 8 conclude the paper. Sec-
tion IV is composed of a number of subsections. As it
turns out, two subsidiary considerations require substan-
tial development, namely the factoring of the secular
determinants and the phase (or sign) of the reduced ma-
trix elements. These are discussed in Appendix A and 8,
respectively.

II. THE HAMILTONIAN

The Hamiltonian employed here is divided into two
components in the standard fashion. The first component
is the Zeeman term, the interactions of single particles or
sets of equivalent particles with the magnetic field. The
Zeeman contribution is straightforward and does not play
a significant part in the discussion below. Pairwise scalar
coupling constitutes the second component of the Hamil-
tonian and is the important component in the discussion
here. It is convenient to divide the coupling into two
parts: (1) coupling between particles within a set of
equivalent particles, and (2) coupling between sets of
equivalent particles. The Hamiltonian is written in unit-
tensor-operator notation.

The Hamiltonian can be written as

2I 2I
II = —+to(G)I&(G) —g g g g TGI "(i).I (j)—g g g TG;&&I (Gi).I "(Gj ),

G k=1 i j ()i) k=1 i j ()i)

where the first summation is the Zeeman term, and the
quadruple summation accounts for coupling within
equivalent sets. The TG are coupling constants within a

k kset. The scalar-operator products, I (i) I "(j), act on in-
dividual spins. The triple summation accounts for cou-
pling between sets of equivalent nuclei and the scalar
products, I "(Gi).I "(Gj), act between entire sets. For
A„&B systems, B would be regarded as a set, but the qua-
druple sum would not, of course, apply to the single B
spin.

III. THE BASIS SET

The basis employed here for A3 and A4 clusters is a
many-particle basis, the basis set D of paper III. The gen-
eral ket is

~
[A,]~,I~,M„). [A,]z is the irreducible repre-

sentation (irrep) in SU(3) for spin 1 or SU(4) for spin —,,

Iq is the irrep in R3, and Mz is the irrep in R2. The
general ket reflects the symmetry of the group-subgroup
chain SU(2j+ 1)DR3 DRq. For spin —,

' it has been

known for some time that the symplectic group Sp(2j+ 1)
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can profitably be included in the chain of nested groups
such as SV(2j+1)DSp(2j+1)DR3&R2. As will be
seen later, our studies substantiate these early findings and
even allocate a role to SU(4) that is enhanced over that
given it in the literature. However, we shall most often
leave the irrep in Sp(4), o.„,out of the basis ket descrip-
tion.

For convenience in later discussion we will refer to this
basis as the composite particle basis. This also is in keep-
ing with past practice.

IV. THE MATRIX-ELEMENT "MACHINE"

The matrix-element "machine" for the Zeeman term is
straightforward, as inferred from the literature and from
our earlier work. It is not discussed further here. Howev-
er, there is a necessary preliminary to the discussion of the
matrix-element machine for the rest of the Hamiltonian.

The necessary preliminary is that the secular deter-
minants for A3 and A4 clusters, spin 1 and spin —,, factor
completely into 1X1 determinants. (The details are dis-
cussed in Appendix A. ) This means that eigenvectors
from spin-product calculations can be associated with a

given ket,
I [k]~,I„,M& &, in a unique fashion. The

spin-product eigenvectors are symmetry-adapted linear
combinations (SALC's) of spin-product functions, each
adapted to a composite particle ket.

A. Coupling within a set

The quadruple sum in the Hamiltonian (1), the coupling
within a set, can be dealt with in a very direct way. For
spin 1 it is only necessary to make a calculation on a
spin-product basis twice, each time inputting different
coupling constants [ T'(A) and T (A)]. This provides the
necessary equations to solve for the coupling energy
within a set, for each composite-particle ket, as a function
of T'(A) and T (A). The same technique applies to spin

except that three spin-product calculations are needed

in order to express coupling energies within a set as a
function of T'(A), T (A), and T (A). This procedure
has been followed and the results are given as E(J,I) in
Tables I and II. The matrix-element machine for cou-
pling between sets is much more complicated and requires
most of the remaining text for discussion.

B. Matrix elements between sets

The central component for the matrix-element machine between sets is the Wigner-Eckart theorem. This can be writ-
ten, for present purposes, as

&[X]g Ig Mg [A]g Ig Mg
I
Iq(A)I q(B) I [A]g Ig Mg [A]g I~ Mg&

I

1) A™A k Ig
&[A],I„III"(A)II[A,]„,I' &—Mg q Mg

IB k IB
& [~]a,ra llr "(»ll[~]a,ra & .

B q B

For a complete calculation it would be necessary to sum Eq. (2) over all ranks of coupling k, and also over all sets of
equivalent spins. The 3j symbols (in large parentheses) can be calculated readily. The only difficulty lies in obtaining the
reduced matrix elements (RME's), between the angular brackets containing the double vertical bars.

Of the three ways known to us, ' ' we have chosen the most direct way as our primary way to calculate the reduced
matrix elements. This way is to invert the Wigner-Eckart theorem, as it is applied to one-particle or one-set interactions.
We have

I~ k Ig
& [~]~,4 M~

I I,'(A)
I
[~]~ I~ M~ & =( —» " "

M M & [~]~ I~ llr "II[~]~ I~ &,—Mg q Mg

which can be inverted to give

( —1) "
& [A, ]g,rg, Mg

I
I q(A)

I
[A,]„,rg, Mg &[x]„,r„

I

Ir""(A)
I I
[x]„,r„'

IA

—Mg q Mg

(3)

The 3j symbol is readily obtained, as is the matrix element
on the right-hand side of Eq. (3) (since the eigenvectors
from spin-product calculations are SALC's for the kets,
[A,]z,r&,M& &). For Iz equal to Iz, the phase (sign) for
the RME is also obtained. Phases of SALC's are arbi-
trary, but this makes no difference when 5z equals Iz.

The difficulty arises when Iz does not equal Iz. In that
event, Eq. (3), of itself, cannot predict the correct sign for
the RME. It is riecessary to turn to a phase convention or
to some computation of phase that it outside of Eq. (3).

As discussed in Appendix 8, we have been able to ob-
tain satisfactory signs for RME's with Iz not equal to Iz.
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TABLE I. Set energies and reduced matrix elements for
spin-1 systems. These are the reduced matrix elements as they

appear in the lower triangle of the spin-only magnetic Hamil-

tonian matrix.

A3 systems
E(1,3)'= —0.5A (1)"—0. 1A (2)'
E(2,2) =AJ (2)/5. 0
E(2, 1)=AJJ(1)/3. 0
E(1,1)=AJJ{1)/3.0—0.6AJJ(2)
E(3,0)=A (1)/2. 0+A {2)/2.0

~{1,2, 3, 1)"={2.0/5. 0)V 21.0
~{1, 1,3, 3)=V 14.0
~{1,2, 3, 3)= {3.0/5. 0)V'14.0
m{2, 1, 1, 1)=1.0
~(2, 2, 2, 1)=+3.0
~(2, 1,2, 2) =t/5. 0
~(1,1, 1, 1)=1.0
M(1,2, 1, 1)=1.8

A4 systems'
E (1,4)= —A Jg(1)—A JJ(2)/5. 0
E(1,2)=AJJ(1)/6. 0—9.0AJJ{2)/10.0
E(1,0)=2.0AJJ(1)/3. 0—6.0AJJ(2)/5. 0
E (2, 3)= —A JJ(1)/3.0+A JJ(2)/5. 0
E(2,2)=AJJ(1)/6. 0—AJJ(2)/10. 0
E(2, 1)=AJJ{1)/2. 0—3.0AJJ(2)/10. 0
E (3,2)=A JJ(1)/6.0+3.0AJJ(2}/10.0
E(3,0)=2.0AJJ(1}/3.0
E (4, 1)=A JJ(1)/2. 0+A JJ(2)/2. 0

Complete RME's for the As and A4 systems with spin 1

and spin —, are given in Tables I and II as ~(J,R,I,I').
The sign sets for I&I' were arbitrarily chosen from col-
lections of satisfactory sets (see Appendix B).

The coupling within a set of equivalent spins for ener-
gies and RME's has been tested for use in 338 and A4B
systems, and also for A3B3, by comparing the results that
were obtained from these with results from spin-product
calculations. Agreement was obtained to within round-off
error. Some of the RME's for A3 were also calculated us-
ing Rach s technique, via fractional parentage coeffi-
cients. " Complete agreement, as to magnitude, was ob-
tained. However, this technique also suffers from phase
difficulty, in that the phase is not determined by the cal-
culation but must be established by convention, when Iz
does not equal Iz.

The coupling energies, within a set of equivalent spins,
apply to any system A„zB„z—G„G with nG equal to 3 or
4. The procedures described in paper III are satisfactory
for nG equal to 2. Overall, these energies can be calculat-
ed for any system, homonuclear or heteronuclear, and for
all combinations of nG equal to 2, 3, or 4.

The RME's with Iz equal to Iz in the tables have an
equally broad application. The absolute values of RME's
with Iz pot equal to Iz are as broadly applicable. The
discussion in Appendix B leads to the conclusion that the
phases we have chosen for the tables also apply in the gen-
eral situation. However, it is not a practical matter for us
to test this conclusion by complete checking against spin-
product calculations.

~{1, 1,2, 2)= t/5. 0
~(1,2, 2, 2}=V 121.0/21. 0
~{1,1,4, 4) =V 30.0
~{1,2, 4, 4) = V 66.0/7. 0
~{2,1, 1, 1)= 1.0
m(2, 2, 1, 1)= —1.4
~{2,1,2, 2)=V 5.0
~{2,2, 2, 2) =V 7.0/3. 0
~{2,1,3,3)=t/14. 0
~(2,2, 3, 3)={1.0/5. 0)V 14.0
~(3, 1,2, 2)=V 5.0
M(3, 2, 2, 2) = —~(2,2, 2, 2}
M{4,1, 1, 1)=1.0
~(421 1)—10
~{2,2, 2, 1)= —2.0V 2.0/5. 0
~(2,2, 3,2}= —2.0V'14.0/15. 0
~{2,2, 3, 1)= —{2.0/5. 0)V 14.0
~{3,2, 2,0) = —2.0V 1.0/3. 0
~{1,2, 4, 2) = —6.0Y6.0/35. 0
~{1,2, 2,0)= —2.0V 14.0/15. 0

'The E(J,I) are the coupling energy within a set of spins in
terms of the coupling constants. The first index represents the
SU(3) label (1=[3],2=[2,1], 3=[1 ]). The second index is I~.
AJJ(1) is the first-rank coupling constant.

'AJJ(2) is the second-rank coupling constant.
The ~(J,R,I,I') are the reduced matrix elements. The first in-

dex represents the SU(3) label, the second is the rank of cou-
pling, and the third and fourth are I~ and Iz.
'For the four-spin system, the first index is now 1 = [4],
2=[3,1], 3=[2 ], and 4=[2, 1 ].

V. COUPLING SYMMETRY AND SOME
OF ITS CONSEQUENCES

Tables III and IV reproduce the correlations between
SU(3) and SU(4) and their R3 subgroup. For spin —,',
correlation with Sp(4) is also included. The R3 double
group (including integer and half-integer irreps) is actual-
ly used. [Strictly speaking, the correlation is with SU(2),
but discussion in terms of R3 is permissible since R3 is
locally isomorphic with SU(2).] These tables will be use-
ful in the discussion below. In that discussion, attention
is primarily focused on the symmetry within a set of
equivalent spins. Our investigation of the symmetry of
coupled spins is incomplete in several important respects.
The discussion that follows is in the nature of an interim
report.

This discussion is organized around the chain of nested
groups, SU(2j+1)DRs &Rz, with the possibility that
perhaps other groups should be inserted into the chain. It
should be noted that a set of equivalent spins also has per-
mutational symmetry. The head symmetry in the chain is
really SU(2j+1)[)&]S„,an inner product of SU(2j+1)
and S„, the symmetric group of degree n (or the group of
permutations on n identical objects). Functions that are
symmetry-adapted to SU(2j+1) are automatically adapt-
ed to S„. In addition, the irrep labels in S„serve equally
well as irrep labels in SU(2j+ 1). For these reasons there
is little need to refer explicitly to S„ for most of the dis-
cussion. However, one special aspect of S„which is very
important is discussed in the next paragraph.
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TABLE II. Set energies and reduced matrix elements for spin- z systems. These are the reduced matrix elements as they appear in

the lower triangle of the spin-only magnetic Hamiltonian matrix. The indexes are the same as in Table I, except that the I& are in

units of —, (i.e., 9 represents an I& of 9/2).

Aq systems
E(1,9)=(—9.0/20. 0)A (1}—(3.0/20. 0)A (2)

—(3.0/140. 0) A (3)'
E(2,7)=(—3.0/20. 0}AJJ(1)+3.0AJJ(2)/20. 0

+9.0AJJ(3)/140. 0
E(1,5)=AJJ(1)/12. 0—3.0AJJ(2)/20. 0—AJJ(3)/4. 0
E(2,5)=AJJ(1)/12. 0+3.0AJJ(2)/20. 0—AJJ(3)/28. 0
E(2, 3)=AJJ(1)/4. 0—(7.0/20. 0)AJJ(2)+AJJ(3)/4. 0
E(3,3)=A JJ(1)/4.0+AJJ(2)/4. 0+AJJ(3)/4. 0
E (1,3)=A JJ(1}/4.0—(3.0/20. 0)AJJ(2)—(9.0/28. 0)AJJ(3)
E(2, 1 }=7.0AJJ(1)/20.0+3.0AJJ(2)/20. 0 —(3.0/20. 0) AJJ(3)

~(1,1,9,9)=V33.0/2. 0
~(1,2, 9,9)=0.5/33. 0
~(1,3,9,9)= /429. 0/196. 0
m(1, 2, 9,5)=1.5
~(1,3,9,5)=1.5V 11.0/7. 0
~(1,3,9,3)=6.0V 3.0/7. 0
~(2, 1,7, 7)=V 42.0/5. 0
~(2, 2, 7, 7)=+6.0/7. 0
~(2, 3, 7, 7)= —V 66.0/245. 0
M(2, 2, 7, 5)= 12.0V 1.0/7. 0/5. 0
~(2,3, 7, 5)= (/5. 0(6.0/7. 0)
~(2,2, 7, 3)=4.0V 3.0/5. 0
~(2,3, 7, 1)=6.0V 1.0/35. 0
~(1,1, 5, 5) =V 7.0/2. 0
~(1,2, 5, 5)=V 21.0/10. 0
~(1,3, 5, 5}=1.5
~(1,2, 5, 3)=4.0V 6.0/5. 0
M/(1, 3, 5, 3)=2.0V 3.0/7. 0
~(2, 1,5, 5)=V 7.0/2. 0
~(2,2, 5, 5)= —V'3.0/175. 0
Mj(2, 3, 5, 5)= —3.0/7. 0
~(2,2, 5, 3)= 1.2
~(2,2, 5, 1)=V 42.0/10. 0
~(2, 3, 5, 1)=V 15.0/14. 0
m(1, 1,3, 3)=1.0
m(1, 2, 3,3)=O.6
m(1, 3,3,3)= —9.0/7. 0
WZ(3, 1,3,3)=1.0
m(3, 2, 3,3)= —1.0
m(3, 3, 3,3)=1.0
m(2, 1,3, 3)=1.0
m(2, 2, 3,3)=1.4
m(2, 3, 3, 3 }=1.0
~(2,2, 3, 1)=2.0V 3.0/5. 0
~(2, 1, 1, 1)=V 1.0/10. 0

A4 systems
E(1,6)= —0.9AJJ(1)—0.3AJJ(2) —(3.0/70. 0)AJJ(3)
E (1,4) = —(1.0/6. 0)AJJ(1)—0.3AJJ(2)

—(5.0/14. 0) A JJ(3)
E(1,3)=0.1AJJ(1)—0.3AJJ(2) —(33.0/70. 0)AJJ(3)
E (1,2) =Q. 3AJJ(1)—0.3AJJ(2)—(39.0/70. 0)AJJ(3)
E (1,0)=0.5AJJ(1)—0.3AJJ(2)—(9.0/14. 0)AJJ(3)
E (2,7)= —0.5AJJ(1)+0.1AJJ{2)+(1.0/14. 0)A JJ(3)
E(2,6)= —(1.0/6. 0)AJJ(1)+0.1AJJ(2) {10/14 0) A (3)

E(2,5)=0.1AJJ(1)—0.5AJJ{2)+(17.0/70. 0)AJJ{3)
E (2,4) =0.1AJJ(1)+0.3AJJ(2)+(17.0/70. 0)AJJ(3)
E (2, 3)=0.3AJJ(1)+0.1AJJ(2)—(19.0/70. 0)AJJ(3)
E(2,2) =(13.0/30. 0)AJJ(1)—0.5AJJ(2)+0. 1AJJ(3)
E (2, 1)= (13.0/30. 0)AJJ(1)+0. 1AJJ(2) —(23.0/70. 0) A JJ(3}
E (3,4) = —(1.0/6. 0)AJJ(1)+0.3A JJ(2) + (1.0/14. 0)A JJ(3)
E{33 }=0.3A»(1)+0.3A»(2) —(9.0/70. 0)A»(3)
E (3,2) =0.3AJJ(1)—0.3AJJ(2)+0.3A JJ(3)
E (3, 1)=0.5A JJ(1)—0.7A JJ(2)+0.5A JJ(3)
E(4,3}=0.1AJJ(1)+Q.3AJJ(2)+(17.0/70. 0)AJJ(3)
E (4,2) =0.3AJJ(1)+0.1AJJ(2)+0.3AJJ(3)
E(4 1)—(13.Q/3Q. Q)A JJ(1)+0.3A (2)+0.1AJJ(3)
E (5,0)=0.5A JJ(1)+0.5A JJ(2)+0.5A JJ(3)

~(1,1,6, 6)=V'182.0/5. 0
~(1,2, 6,6)=V)82.0/11.O

~(1,3, 6, 6)=V 13.0/55. 0/4. 0
~(1,1,4, 4) =2.0V 3.0
~{1,2, 4,4) =(/1.0/77. 0(27.0/2. 0)
~(1,3,4, 4) =V 2354.0/533. 0
~(1,1,3, 3)= V 35.0(2.0/5. 0)
~(1,2, 3, 3)=V 21.0/2. 0
~(1,3, 3, 3)=V 30.0/10. 0
~(1,1,2, 2) =V'2. 0
~(1,2, 2, 2) = —3.0V'2. 0/7. 0
~(1,3,2, 2) = —V 2.0(2.0/7. 0)
~(1,2, 6, 4) =3.0V 26.0/55. 0
~(1,3, 6, 4) =V 117.0/22. 0
~(1,3,6, 3)=3.0V 39.0/70. 0
~(1,2, 4, 3)= —3.0V 11.0/20. 0
~(1,3,4, 3)= —3.0V'1.0/14. 0
~(1,2, 4, 2) =3.0V 11.0/35. 0
~(1,3,4, 2) =3.0V 55.0/98. 0
M(1,2, 3,2) = 1.0
~{1,3, 3,2) =5.0V 3.0/14. 0
~(1,3, 3,0)=4.0+1.0/7. 0
~(1,2, 2,0)=V 10.0(2.0/5. 0)
~(2, 1,7, 7)=V 22. 0
~(2,2, 7,7)=V 286.0/75. 0
m(2, 3,7, 7)=0.0
~(2, 1,6,6)=2.0V 3.0
~(2,2, 6, 6)=V 11.0/7. 0(9.0/10. 0)
~(2,3, 6, 6)=3.0&11.0/98. 0
~(2, 1,5, 5)=P35.0(2.0/5. 0)
~(2,2, 5, 5) =V 7.0/3. 0(8.0/5. 0)
~(2, 3, 5, 5)=/30. 0/5. 0
~(2, 1,4,4) =V 35.0(2.0/5. 0)
~(2,2, 4,4) = —V 7.0/3. 0/2. 0
~(2,3,4,4) = —V 30.0(3.0/10. 0)
~(2, 1,3,3)=+2.0
~(2,2, 3, 3)=2.0V 2.0/7. 0
~(2,3, 3, 3)=V 2.0(3.0/7. 0)
~(2, 1,2, 2) =2.0V 1.0/10. 0
~(2,2, 2, 2)= —+2.0/3. 0(8.0/5. 0)
~(2, 1, 1, 1)=2.0+1.0/10. 0
~(2,2, 1, 1)=V'2. 0/3. 0
~(2,2, 7,6)=V 33.0/5. 0
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TABLE II. (Continued. )

m(2, 3, 7,6)=V 429.0/98. 0
m(2, 2, 7,5)= —2.0V 11.0/15. 0
m(2, 3,7,5)=0.0
~(2,2, 7,4) =V 11.0/15. 0
~(2,3,7,4)=3.OV'11.0/42. 0
~(2,3,7,3)= —V 33.0(2.0/7. 0)
~(2,2, 6, 5 )= —V'15.0(2.0/5. 0)
~(2,3,6, 5)=0.0
~(2,2, 6,4) =—V 15.0(3.0/10. 0)
~{2, 3,6,4)= —3.OV' l l.0/42. 0
~(2,2, 6,3)= —V'6. 0/7. 0
~(2,3,6,3)=V 3.0/7. 0
~(2,3,6,2)=0.0
~(2,3,6, 1)= —9.0V 3.0/98. 0
~(2,2, 5,4) =V 7.0/3. 0(2.0/5. 0)
m(2, 3, 5,4)=0.0
~(2,2, 5, 3)= —V 10.0/5. 0

(2,3, 5,3)=0.0
~(2,2, 5,2) =V 7.0/3. 0(4.0/5. 0)
~(2,3, 5, 2) =V 15.0(2.0/5. 0)
~(2,2, 5, 1)=V 2.0/3. 0{4.0/5. 0}
~(2,3,5, 1)=0.0
~(2,2, 4, 3)=V 10.0/5. 0
~(2,3,4, 3)= —V 15.0/7. 0
M(2, 2, 4, 2) = —V 7.0/3. 0(4.0/5. 0)
m(2, 3,4,2)=0.0
~(2,2,4, 1)=V 2.0/3. 0
~(2, 3,4, 1)=V 3.0/70. 0
~(2,2, 3,2}=V'14.0/15. 0
m(2, 3, 3,2) =0.0

~(2,2, 3, 1)=2.0V'1.0/15. 0
~(2,3,3, 1)=V30.0(2.0/7. Q)
~(2,2, 2, 1)=V'7.0/3. 0{2.0/5. 0)
~(3, 1,4, 4) =2.0V 3.0
~(3,2,4,4)=0.0
~(3,3,4,4)= —V 22.Q(3. Q/'7. Q)
~(3, 1,3,3)=V 2.0
~(3,2, 3,3)=0.0
~(3,3, 3,3)=V'2. 0(8.0/7. 0)
~(3,1,2, 2)=V 2.0
m(3, 2,2, 2) =0.0
~(3,3,2,2) = —V2.0
~(3,2, 4, 3)=0.0
~(3,3,4, 3)=V 5.0(6.0/7. 0)
~{3,2, 4,2) =V 10.0(3.0/5. 0)
m(3, 3,4,2) =0.0
~(3,2, 3,2)= —V 2.0
m(3, 2, 3, 1)=0.0
~(3,2, 2, 1)=V 15.0(2.0/5. 0)
~(4, 1,3,3)=V'35. 0(2.0/5. 0)
m(4, 2, 3,3)=0.0
~(4,3, 3,3)=V 30.0/5. 0
~(4, 1,2, 2) =V 2.0
m(4, 2, 2,2)=0.0
M(4, 3,2,2) = —V 2.0
~(4, 1, 1,1)=2.0V 1.0/10. 0
m(4, 2, 1, 1)=0.0
~(4,2, 3,2) =V 70.0/5. 0
~(4,3,3, 1)=V 15.0(2.0/5. 0)
~(4,2, 2, 1)=V30.0/5. 0

'A JJ(3) is the third-rank coupling constant.

TABLE III. Correlation table for spin-1 sets.

Number of
particles

in set
Irrep in

SU(3)

[2]
[1']

Irrep in
R 3(I)

0, 2
1

Since the basis here is spin angular momentum, stand-
ing alone, and not a combination of orbital and spin angu-
lar momentum, the Pauli principle does not apply, in the
usual sense. The permutation symmetry of state functions
is not constrained to the [1"]irrep, the antisymmetric ir-
rep in S„. Rather, all irreps of S„,and also of SU(2j+ 1),
that have 2j+1 or fewer rows in their label (Young dia-
gram), are appropriate. This considerably broadens the

TABLE IV. Correlation table for spin- 2 sets.

Number of
particles

in set
Irrep in

SU(4)

[3]
[21]

Irrep in
Sp(4)

&30&

(10)
(21)
(10)

Irrep in
R, (1)

3 5 9
27 27 2

3
2

1 5 7
27 27 2

3
2

range of the symmetry as well as that of the computa-
tions.

For spin —,, our investigations show that the symplectic
group Sp(2j + 1) plays a role and should be inserted into

[3]
[21]
[1'l

[4]
[31]
[2']

[212]

1, 3
1, 2
0

0, 2, 4
1, 2 3

0, 2
1

[4]
[31]

[21'1

(40)

(31&
(00)
(11)
&22&

(11&
&20&

&oo&

0, 2, 3, 4, 6
1 3

1, 2, 3, 4, 5
0
2

2, 4
2

1, 3
0



4158 T. H. SIDDALL III AND R. L. FLURRY, JR. 31

the chain of nested groups to give SU(4) D Sp(4)
D R 3 D R 2 Direct evidence for the need to include Sp(4)
is found in the complete factoring for A4, spin —,, into
1&&1 determinants. Table IV shows that the ket labels

~

[31],I),M~ ),
~
[31],Iq, Mg ), and [2 ],I2,M~ ) each

occur twice. If these kets contained irreps from the com-
plete chain of groups, then, out of necessity, we would be
dealing with three 2&&2 determinants and not with six
1)&1 determinants. There would be coupling matrix ele-
ments between kets with the same label, but when Sp(4) is
included the kets become unique with no repetition. It ap-
pears that basis kets that belong to different irreps in
Sp(4) are not connected by coupling. Sp(4) should be in-
cluded in the chain.

Preliminary investigations on five- and six-spin sets
suggests that Sp(4) plays the same role in larger sets.
There are also some unexpected zeros in the determinants
for spin- —, systems, but the inclusion of Sp(6) in the chain
of groups does not take care of the additional factoring, as
does Sp(4) for spin —,. These investigations have not re-
vealed any additional symmetry for integer spin. It might
be expected that R (2j + 1) would play a role analogous to
Sp(2j+1), but this does not seem to be the case. These
studies are being continued.

It should be pointed out that it is well known that if
only odd-rank tensor operators are included in the Hamil-
tonian, then the secular determinant should factor accord-
ing to irreps in Sp(2j+1).' Odd-rank tensor operators
are members of the algebra of Sp(2j + 1). However,
even-rank tensor operators are not members of this alge-
bra and should connect different irreps in Sp(2j + 1).
Since the Hamiltonian of Eq. (1) contains second-rank
operators, it is not obvious why Sp(4) should help factor
spin- —, problems.

For both spin 1 and spin —, there are no first-rank ma-
trix elements between kets, even for one-particle interac-
tions (not just for coupling, a two-body interaction). In
particular, this means that there can be no dipole-induced
transitions between states with different I& values or
states that belong to different irreps in SU(2j+1). For
spin —, this also holds for different irreps in Sp(4), the o z.

It follows that spectra for two, three, and four spin-1
and spin- —, systems will be split up into subspectra, or
blocks. The subspectra for spin-1 systems will carry [A, ]G
and IG labels as well as F, (the irrep in R2). For spin-3/2
systems the subspectra will also carry o.

G labels. These
arguments apply to all systems, Ana&nB —GnG.
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APPENDIX A: FACTORING BY COMPUTER

The procedure for detecting the factoring into 1)&1
determinants is as follows: Perform a computation with
only the coupling operators of the Hamiltonian (set the
Zeeman parameters, the chemical shifts, equal to zero).

Repeat the calculation, but with a different set of
coupling-constant values as input. If the coefficients of a
given eigenvector are invariant (up to a sign change, a
phase factor), then the eigenvector is from a 1&&1 deter-
minant.

The problem of associating a given eigenvector and the
reduced matrix elements with given [A]z,Iz,Mz ) labels
still remains. This is done by working very closely with
the relevant correlation table (see Tables III and IV). The
Mz value comes directly from the computer output. A
comparison of degeneracies seen in the computer output
with degeneracies predicted from these tables is one clue
to assigning the other quantum numbers in the label.
Another clue is found in the fact that the brackets are di-
agonal in [A,]z and az. Brackets with different Iz values
in the bra and ket vanish unless [A, ]z and oz are the same
in both the bra and the ket. Therefore, if two Iz values
are connected by off-diagonal matrix elements, they must
belong to a given [A,]z and oz.

In practice, it is tedious to examine the coefficient ma-
trix of the eigenvectors in detail for invariance. Instead, it
is easier to examine the apparent reduced matrix elements
for invariance. If the eigenvector is invariant to input,
then so will the apparent reduced matrix element that is
calculated from it. Invariant apparent reduced matrix ele-
ments imply invariant eigenvectors, and, hence, 1 & I
determinants. It is seen, then, that the calculation of re-
duced matrix elements and the detection of factoring into
1&1 determinants are intertwined. The factoring into
1 & 1 determinants also is directly connected to the deter-
mination of the symmetry of the system.

It is also possible, by an extension of these methods, to
find the submatrix structure of a matrix when the subma-
trices are 2&&2, 3)&3, . . . , m &(m determinants. For 2&&2
determinants and higher submatrices the individual coef-
ficients in the eigenvector are no longer invariant to the
coupling-parameter values that are input into the calcula-
tions. However, within the eigenvector matrix, the coeffi-
cient submatrix corresponding to a given set of quantum
labels has the sum of the squares of the coefficients in
each column as invariants. We have not needed to utilize
this fact in the present investigation, but computer pro-
grams to do so can easily be written.

These procedures open the way for a general approach
to computer-assisted investigation of symmetry. If a
problem can be programmed on some straightforward
basis, such as the spin-product basis, then the factoring
and degeneracies of the problem can be read from the
computer output. In turn, the factoring and degeneracies
of the problem provide vital clues as to the symmetry of
the problem. In turn, the symmetry of the problem points
the way to more efficient basis sets and calculations.

APPENDIX B: SIGNS OF REDUCED
MATRIX ELEMENTS

The signs (or phases) of off-diagonal reduced matrix
elements (I„~I~) are not provided by the calculations
described in the main text. The difficulty lies in the fact
that the phase is not known for the eigenvectors used in
the calculation. Spin-product calculations provide the
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correct magnitude for the eigenvectors, but the phase is
random and arbitrary. This follows from the fact that if
f is a satisfactory solution to an eigenvalue-eigenvector
problem, then —g serves equally well. The phase prob-
lem occurs, however, only for off-diagonal reduced matrix
elements. The phase of diagonal RME's (Iz Iz)——is in-
dependent of the phase of the eigenvector.

The phase problem was initially solved here by an
inelegant expedient. This involved looping calculations
made on a composite basis for A 38 and A 48 systems over
permutations of the signs of the off-diagonal RME's. A
set of signs was accepted as being correct when the eigen-
values obtained in that loop agreed with the eigenvalues
obtained with a spin-product basis.

While this process provides satisfactory phases for the
specific systems, A3B and A4B, it has serious shortcom-
ings. First, there is no assurance that the phases obtained
in this manner will serve for other cases. The absolute
values of the RME's are correct for the system
A„zB„z—G„G, but the question of phase is not answered
for the general case. Second, it is not a practical matter to
apply an unguided looping technique to individual sys-
tems in all possible combinations. For one thing, the cal-
culations become too large. Third, such a brute-force pro-
cess lacks esthetic appeal. In order to at least mitigate
these difficulties, we are attempting to develop a
mathematics for the phase of RME's.

The underpinning for this mathematics is the fact that
the eigenvalues of a characteristic determinant do not
change if the signs of matrix elements are changed for an
entire row and the corresponding column. This leaves the
diagonal matrix element unaffected, but changes the sign
for all off-diagonal matrix elements in the row and
column. The development is best continued by working
with an example. The chosen example is A3B, spin —', ,
[21]„irrep, with I', equal to —2.

Table V represents the lower triangle of the matrix of
reduced matrix elements for this situation. Whatever sign
changes that are made in this matrix will be reflected in
the complete secular matrix. Each entry is designated by
two numbers. The numbers stand for Iq andI&, in units
of —,

' . For example, 13 signifies that Iz equals —, , and Iz,
It is not necessary to state the rank of RME's. The

relative signs for different-rank RME's are fixed for a

given I~ and Iz. This follows, since whatever the phases
for eigenvectors may be, the same eigenvectors with the
same sign are used in calculating RME's for a given I&
and Iz, irrespective of rank.

It is very important to note that diagonal RME's
(I„=I&) do occur off the diagonal at certain positions
( A7, 10 A8, 10 A9, 10 A3, 2 A6, 4 A6, 5 A8, 7 A9, 7
A 9 8 ). The signs of diagonal RME's ( I„=I& ) are fixed
and must not be changed. The freedom to change sign is
restricted to off-diagonal RME's (Iq&Iq ). If, for exam-
ple, the signs for the second row (column) are changed,
then they must also be changed for the third row
(column). In this fashion, A32 has its sign changed, but
then it is changed back again to its original value. In a
similar manner, rows 4, 5, and 6 must all be changed to-
gether if any is changed. , Likewise, rows 7, 8, 9, and 10
must be changed together. Finally, there is freedom to
change in combinations of the fundamental changes: (1);
(2,3); (4,5,6); (7,8,9,10). These produce a total of seven
sign changes, starting from a given set. [Note that there
are redundancies. The combination (1); (2,3); (4,5,6) pro-
duces the same result as (7,8,9,10).] Including the starting
set, this gives a total of eight sets based on that set.

If any one correct set of signs (for I„&I&) is known,
then the seven other correct sign sets can be obtained.
The total set of correct sets is given in Table VI. It
should be noted that there is a possible total of 64 sets of
six signs each. These 64 are divided into eight sets of sets.
Given one set from any of these sets of sets, the remaining
seven sets are readily generated by the sign-change opera-
tors. However, only one of the eight sets of sets gives
correct eigenvalues and this set of sets is given in Table
VI. The identical set of sets was generated by the looping
technique.

The fundamental sign-change operators provide the
generators of a group. There are four fundamental sign-
change operators, but any one of them is redundant. It
follows that these operators generate a group that is iso-
morphic to S2(3S2(3S2, where S2 is the symmetric group
of degree 2. This group is isomorphic to the point group
D2

These studies were extended to other situations that
occur for A3B and A4B spin-1 and spin- —, systems. The
same sort of results were obtained. These considerations

TABLE V. Occurrence of reduced matrix elements in the matrix for A3B, spin 2 . Only the spin la-

bels for the lower triangle are listed. A given entry in the matrix gives the spin labels, in units of 2.
For example, the 15 in the 24~ position signifies that the reduced matrix element is

([21], 2 ~

I"
~
[21],T~). [)1,]g ——[21],I', = —2.

11
13
13
15
15
15
17
17
17
17

33
33
35
35
35
37
37
37
37

33
35
35
35
37
37
37
37

55
55
55
57
57
57
57

55
55
57
57
57
57

55
57
57
57
57

77
77
77
77

77
77
77

77
77 77
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TABLE VI. Correct sign sets for reduced matrix elements (Iz &I~ for A 3B spin z, [21], F,= —2. Note that

([A]z, Iz
~
~I ~~[A]z, Iz ) =(—1) ([A]z, Iz ~ I "~~[A]~, Iq ). There are eight signs in a set. However, there are only six independent

signs. Relative signs for different ranks of the otherwise same RME are fixed. Some RME s are not represented in the table. The
missing RME's all have zero value.

5 72 2 7 2
5 73 2 ~ 2

3 72 2 & 2

Rank, I&, I&
1 7 3 5

3 s 2 2 7 2
1 52 2 ~ 2

1 537 2 ~ 2
1 32—
2 7 2

can also be extended to the general A„zB„z—G„G situa-
tion.

It follows that since sign sets for each set of equivalent
nuclei occupy separate spaces (in the sense of linear alge-
bra), the spaces are independent of each other. The
overall group of the sign changes for the general system is
just group A &&group B group G. T—he correct set of sets
is just the product of the correct set of sets over the indi-
vidual sets of equivalent nuclei.

This finding was tested by computations on an A3B3,

spin- —', system with [A,]z ——[A,]tt ——[21], F, = —5,
F,„=F,tt ————', . All 64 sign sets (the set of sets from A

times the set of sets from B) gave the same, correct, set of
eigenvalues.

This development leads us to conclude that once a
correct set of signs is obtained for the RME's of a set of
equivalent spins, then this set of signs will be correct for
application to any system in which that set of spins occurs
and, if desired, all the remaining correct sets can be gen-
erated, at will, as outlined above.
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