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The existing criteria for the onset of percolation in the continuum are limited to systems of parallel-
aligned, equal-size, penetrable, convex objects. We present here criteria for the much more general case of
macroscopically isotropic or anisotropic systems in which the objects may also be of variable sizes and of
random orientations. It is found that the critical fractional occupied area (or the equivalent average critical
total excluded area (A.,)) as well as the critical fractional occupied volume (or the equivalent (V,,)) are
confined within two limits. The upper limit is that of the ‘‘parallel objects’ systems and the lower limit is
that of the (newly introduced) ‘‘horizontal-vertical’” system. These limits are 3.2< (4.,) <4.5 and

0.7< (V) <28.

In 1970 Scher and Zallen! presented criteria for the onset
of percolation in lattices in which the sites are occupied by
hard-core circles or hard-core spheres. It was later shown?3
that to a reasonable accuracy their criteria of critical frac-
tional occupied area or volume are valid for continuum sys-
tems. Similar criteria have also been found®* for soft-core
(interpenetrable) circles or spheres. The critical fractional
occupied area for the soft-core circles was found to be
s.=0.68 and the critical fractional occupied volume for
spheres was found to be 7,=0.29. In the many studies that
followed’-? it was shown that these values applied to sys-
tems of parallel aligned objects, such as parallel squares or
cubes. Recently, it was further demonstrated!® that within
the accuracy of available data? these values are also obtained
for systems of variable-radius circles or variable-radius
spheres.

The above results have not been presented only in terms
of s, or 7.. In some studies the critical radius r. was found
for a given ensemble of circles or spheres, while in others
the critical total area N.a or the critical total volume N.v
have been determined. In the latter cases the area of the
object, a, or the volume of the object, v, were given while
the critical concentration for the onset of percolation, N,
was obtained from the computations. In the most recent
works, 1011 the average critical total excluded area (A), or
the average critical total excluded volume ( V), has been
found. All the results were shown to be in agreement with
the above s, and 7. values. Since the one object geometri-
cal picture is easier to comprehend and since the most re-
cent data!®!! are given in terms of (A) and (V) we
shall use these quantities, rather than s, and 7., in our dis-
cussion. The relations between these two sets of quantities
were established>* !0 for parallel objects and thus one can
simply use the equations

se=1—exp(— (4ex)/4) ,
m
Te=1—exp(— (Ve)/8) ,

to relate the above quantities. The s.=0.68 and 7.=0.29
values correspond then to (Aey) =4.5 and (V) =2.8, as
was confirmed by the Monte Carlo studies.”'2 A further
discussion of the applicability of Eqs. (1) will be given else-
where.12

For many years the above s, and 7. values have been
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considered to be ‘‘dimensional invariants>*10 in the sense
that, independent of how and with what objects one fills the
continuum, those values are the ones which determine the
onset of percolation. Recent findings show, however, that
this invariance is not conserved if randomness in the orien-
tation of the objects is put into the system.!® For example,
in the macroscopically isotropic system of randomly oriented
capped rectangles (with length ten times the radius) it was
found!? that (A.) =4.1 and for a macroscopically isotropic
system of randomly aligned long capped cylinders it was
found!! that (V) =1.4. These lower values of (A4.) and
(Vex) have not been explained and no empirical rules that
can predict their dependence on system parameters have
been presented. Since we have shown!?-!2 that once values
for the isotropic system are known, the effects of macro-
scopic anisotropy (in an anisotropic system made of the
same objects) can be accounted for by the excluded volume
theory, we will concern ourselves in this Rapid Communica-
tion with isotropic systems. (See Table 1.)

Now that it is apparent that the values of (A.) =4.5 (or
5c=0.68) and (V) =2.8 (or 7.,=0.29) are restricted to the
class of systems in which all the objects are parallel aligned
and of equal size, the question arises whether or not one
can find a more general criterion for the onset of percola-
tion in the continuum. The criterion has to apply not only
to the above class but also to the many other systems for
which these two restrictions are removed. This extension is

TABLE 1. Monte Carlo values of (A4.,) and (V) for isotropic
systems of equal size objects. From the computations involved one
may conclude that the values given in this work have an accuracy of
+0.1. Hence, values the difference between which is larger than
0.2, should be considered different. The significance of the systems
listed here is explained in the text.

System (Aex) or (Vey)
Parallel objects (2D) ) 45
Horizontal-vertical (2D) 3.2
Capped-rectangles (randomly aligned) 4.1
Parallel objects (3D) 2.8
Horizontal-vertical (3D) 0.7
Capped-cylinders (randomly aligned) 1.4
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expected to be useful for a variety of systems in the contin-
uum, such as those encountered in porous medial® (e.g.,
cracks in rocks'*!%), polymers,!® composites,'”!® heavily
doped® or disordered'® semiconductors and even nuclear
matter.?’ As an illustration we shall discuss the “‘strange”’
low percolation threshold observed'’ in one of these sys-
tems.

In our search for a general criterion we started from the
well known?% macroscopically (or globally) isotropic system
of parallel squares and followed the variation of (A4e) as
this system was changed, in a controllable way, into a sys-
tem of variable size perpendicular rectangles. This was
done so that the system retained the macroscopic charac-
teristics of the parallel-squares system while its microscopic
characteristics changed considerably. Specifically, consider a
system of rectangles in which rectangle i has a side of length
L, (in the sample’s side length unit!l"2!) parallel to the x
axis, and a side of length L, parallel to the y axis. In the
original system of squares, L= L, = L= L,; for all iand J.
Now, introducing a given length distribution for both L,
and L, one gets that generally L= Ly, (i.e., a system of
rectangles). In order to maintain the macroscopic charac-
teristics of the squares system, such as the isotropy and the

(Ly) = (Ly) relation, one has to pick the values of L, and

L, independently but to use the same distribution function
for both L,; and L,. Microscopically this means that in a
large enough sample, for each rectangle / there is a rectangle
jsuch that Ly== Ly, and Ly = L,;.

The first distribution checked in our Monte Carlo compu-
tation!? was the uniform distribution!® 4 in the range

Ly—f<LulysLy+f . ¢)

where Ly, is the center of the distribution and f(=< Ly,) is
the half-width of the distribution. We have followed the
critical concentration of rectangles N, with increasing f and
have thus determined

<Aex> =4<Lxl)<Lyl>Nc ’ 3)

as a function of f. We found that (A.c) has decreased
from the squares value of 4.5 (for f=0) to a value of 3.6
(for f=L,). The samples used for this study!? consisted
of a few thousand rectangles each. For example, in the
f=1Ly case, the value of L, (which is equal to
(Ly) = (Ly)) was taken to be 0.015 and the onset of per-
colation was found at N, = 3930.

The questions to be answered in view of the above results
are the following: What changes have taken place in the
system upon the broadening of the distribution and how do
these changes bring about the decrease in the value of
(Ae)? Since the macroscopic characteristics were retained
we should examine the microscopic changes and their effect
on (Ae). The most noticeable transition is from a system
dominated by squares to a system dominated by long but
narrow rectangles. If this is an important reason then the
limiting isotropic system made of horizontal and vertical
widthless equal-length line segments (‘‘sticks”’!%) should
have a value of (A4.) which is lower than the above 3.6.
The isotropy of the latter system is achieved by implanting
randomly one horizontal stick for one vertical stick. Since
the excluded area is zero for parallel sticks and is L? for
perpendicular sticks of length L, the average excluded area
per stick in this system is L%/2. Carrying out a Monte Carlo
computation for such a system'? (L =0.046, N,=3000) we
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found that (Ae)=(L2N,)/2=3.2. Since this value is
lower than the above 3.6 value, the expected importance of
the large aspect ratio is confirmed.

This value of (Ae,) =3.2 has further significance if one
recalls that in the isotropic system of randomly aligned
widthless sticks the value of (Ae)=(2/w)L’N, was
found'®?! to be 3.57 (we use this accuracy!® here in order to
distinguish this value from the variable rectangles 3.6
value). This latter value, being smaller than the 4.1 value
found for the randomly aligned capped rectangles (see
above), reconfirms the importance of the large aspect ratio.
On the other hand, the fact that this 3.57 value is larger
than the 3.2 value of the horizontal-vertical system is prob-
ably associated with, what one may call, a higher degree of
““microscopic” or ‘“‘local”” orientational anisotropy in the
latter system. The rationale behind this is, that in all other
isotropic sticks systems each stick has components in both
the x and the y directions, while in the horizontal-vertical
system each stick is aligned only in one direction. Since it
appears from the above data that the large aspect ratio and
the “‘local” anisotropy determine the value (A4.,), we must
conclude that the corresponding (A4.) value is the lowest
for macroscopically isotropic systems. We expect also that
every distortion of given convex objects which will leave
them convex will render the microscopic characteristics of a
system intermediate between those of the ‘‘parallel objects”
system and those of the ‘‘horizontal-vertical’’ system.
Hence, we can have a general percolation-threshold criterion
for the continuum two-dimensional isotropic systems, made
of convex, soft-core, objects:

3.2< (Ay) <45 . @)

While the criterion (4) is consistent with the above value
of 3.6, obtained for variable-size rectangles, and while it is

_clear that the larger aspect ratio and the larger ‘‘local aniso-

tropy> are responsible for lowering this value with respect
to 4.5, there may be still one other factor which should be
considered as a potential contributor to the (A4.) value
lowering. The factor is the length and width distributions of
the rectangles which are not well accounted for by the above
widthless sticks systems. This is due to the fact that in the
widthless sticks system there is only one length parameter
(the length of the ith stick, L;) per object, rather than the
two parameters (Ly and Ly) which exist in the system of
variable rectangles. We have shown!® that when there is
only one such parameter (a length of a stick or a radius of a
circle) the value of (L?2) N, is an invariant under variations
in the distribution function, while here we have to consider
the rectangles quantity (Lg)2N. [see Eq. (3)]. From the
point of view of this difference the horizontal-vertical
widthless sticks system (and thus the value of 3.2) may not
be the limit of the system of variable rectangles. It is im-
portant to check then, for a given distribution, whether or
not the limits given by Eq. (4) are still maintained. In the
above example of the widest uniform distribution function
(f=Ly) we found that (A4.) =3.6 (which is larger than
3.2) and thus we conclude that the limits given by Eq. (4)
apply for all uniform distributions. Trying other distribution
functions (e.g., normal distribution) for which the mean of
the distribution (L,) equals the ‘‘center,” or the median,
of the distribution, L;;, we reached the same conclusion.
Hence, the effect of the width of such distributions seems
to be of little importance. This makes Eq. (4) a very gen-
eral criterion suitable for all practical purposes.
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However, another group of extremely wide distribution
functions has the property that (Ly) Ly and it may be
that for such functions the difference due to the different
(L?) and (Ly)? averages will show up by an (A4.) value
which is lower than 3.2. To check this possibility we have
applied a very wide log-normal distribution function!®2! to
the sides of the rectangles. The center of the distribution
was Ly =0.005 and its width was o =+1n(10). The per-
colation threshold found was N,=7762. For this distribu-
tion it can be easily shown!® that (L) = Lylexp(c?/2)]
and thus we find that (Ae) =4(Ly)2N,=2.9 which is
somewhat lower than our lower limit of 3.2. Hence, even
though the effect of the difference between the (Ly)? aver-
age and the (LJ) average {= L#[exp(202)] for the above
distribution} is relatively small for such a wide distribution a
correction of the 3.2 value may be required. The simplest
correction to consider is using the value of 3.2 times
((Ly)% (L3)) as the lower limit in Eq. (4). All we can say
at present is that the true lower limit is much larger than
this estimate. A finer determination of this lower limit for
such extremely wide distributions (in which the mean is not
equal to the median) will require further studies.

The latter finding sheds light on the ‘‘surprisingly’’ very
low critical fractional area (s,=0.4) found in the isotropic
system of metal islands produced by laser speckles.!” This
value, which ‘‘corresponds to” (A.x) =2.1, is lower than
the above 3.2 limit. This apparent disagreement with Eq.
(4) would suggest that either Eq. (4) is not good enough or
that this system of metal islands is different from the sys-
tems for which Eq. (4) was derived. Indeed, it has been
realized already'® that the metal islands tend to be concave
rather than convex, as assumed here. We note'? that if one
insists??> on describing the metal island system as made of
convex metal particles which are deposited randomly, one
has to assume that the metal islands are made of deposited
subparticles which are not only elongated but have also an

extremely wide size distribution.

Applying the above considerations to continuum systems
in three dimensions we have derived similar conclusions.
The ‘‘parallel-objects’’ limit, (V) = 2.8, was found previ-
ously for many such systems®!! while a horizontal-vertical
system was developed for the present work.!? The “‘sticks”’
used here were capped cylinders!® (length L radius ») which
were taken to be elongated (L/r=30) in order to approxi-
mate a ‘‘widthless’’ sticks system. For every stick put paral-
lel to the x axis and the y axis, n sticks were put parallel to
the z axis. As an example of the results for such a system
we give here the result of present interest, i.e., the one ob-
tained for the isotropic (n=1) case. For L =0.15 and
r=0.005 we found'? that N, =4330. This yields!? an aver-
age total critical excluded volume (V) of 0.7. The latter
volume is to be compared with (V,.) =1.4, found for the
capped cylinders which had their orientations distributed
randomly.’®!! As was the case for the two-dimensional
sticks systems, we see that the higher ‘‘local orientational
anisotropy”’ lowers the value of (V..). Following this we
conclude that the percolation threshold limits in three-
dimensional systems of convex objects will be

0.7<(Vy) <28 . )

For very wide object-size distributions we may further ex-
pect that the lower limit will be larger than

In conclusion, new percolation criteria are presented for
two- and three-dimensional systems in the continuum where
the percolation is obtained by a path of overlapping convex
objects. The lower limits of the criteria are determined by
the new, horizontal-vertical, sticks systems.
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