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Neutron Kossel effect
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Incoherently scattered neutrons undergoing subsequent Bragg scattering give rise to a line pattern, which
should be observable in crystals with pronounced coherent and incoherent scattering. The shape of these
lines is obtained from the elastic, incoherent differential cross section. Both Laue and Bragg cases are con-

sidered.

Line patterns produced by divergent radiation appear in
the scattering of x rays or electrons under a great variety of
experimental conditions. It is a somewhat surprising fact
that, for neutrons, these line patterns have been neither in-
vestigated thoroughly nor observed experimentally. Kossel
lines arise from x rays generated within the crystal, whereas
the to-some-extent similar Kikuchi lines are caused by in-
elastic scattering of electrons. In the past years, lines have
been detected in diffraction patterns of x rays which are be-
lieved to be caused by thermal diffuse scattering.!

In large, perfect crystals the neutrons are described by
Bloch waves rather than by plane waves.. Hence, the
dynamic structure factor is modified. Coherent neutron
scattering should be responsible for a diffraction pattern
analogous to the Kikuchi pattern of electrons,>® whereas
the line pattern of incoherent neturon scattering should look
more like the Kossel pattern of x rays. Following Cowley*

both types of lines are denoted as K lines. |
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The Hamiltonian for the Bloch neutron is given by
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where the first term on the right-hand side describes the
kinetic energy of the neutron and the second term the in-
teraction with the static lattice. b, is the coherent scattering

length and x;(¢) the actual position of the nucleus /. The
eigenfunctions
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are known from the dynamical theory of diffraction (see
Ref. 5). 4, (G) are the Bloch coefficients, where i labels the
wave fields which are excited by the incident wave k.

The incoherent scattering function is for Bravais lattices
defined as
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N is the number of unit cells and k and k’ the wave vectors of the incident and the scattered neutrons, respectively.
For the elastic part of the incoherent scattering function one obtains from Egs. (2) and (3)
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where W is the Debye-Waller factor, k;=K;—Kj, and a, is the equilibrium position of the nucleus /. If the thermal motion
is negligible, then Eq. (4) is given by the probability density of the incident and scattered neutrons at the lattice points /:
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If the incident and the scattered neutrons are far from any Bragg condition, Eq. (5) gives the familiar isotropic incoherent

scattering.

Now we assume that only the incident wave fulfills the Bragg condition. To evaluate the lattice sum in Eq. (4) it is neces-
sary to fix the boundary conditions. For a crystal slab (thickness D) and Laue arrangement one obtains
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y is the Selektionsfehler (deviation of k from the Bragg angle,
see Ref. 5), A=mD/A, is the thickness in units of the
Pendellésung length Ay, xk =k—Kk’ is the scattering vector,
and

B= (|cosy/cosygl)V2expl— Wk +G)+ W(k)] (7)

is a predominantly geometrical expression (see Fig. 1), de-
fined for b, >0 and centrosymmetrical reflections and
changes the sign for b, < 0. Neglecting the Pendellésung
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oscillations, the differential cross section is
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where o, is the total incoherent cross section for a single
nucleus. It should be kept in mind that the incoherent scat-
tered intensity is almost isotropic, but its value depends
strongly on the angle of incidence. The intensity profile
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shown in Fig. 1 is obtained by rotating the crystal through
the Bragg orientation. A similar profile arises, if one
measures—instead of the incoherently scattered intensity
—the transmitted Bragg intensity, attenutated by incoherent
scattering. Such measurements have been performed on
potassium diphosphate (KDP) by Sippel and Eichhorn.®

This suggests that the verification of primary dynamical
scattering is not beyond the experimental feasibility.

The scattering function is in the Bragg case
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where a=A4(y?—1)Y2 is imaginary for |y| < 1. By the

neglection of the terms with Ag/D, the differential cross
section is given by
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as shown in Fig. 1. © is the Heaviside step function. In the
range of total reflection only a layer of a thickness of the or-
der of the penetration depth A, contributes to the in-
coherent scattering. Therefore, the intensity [Eq. (9)]
remains nearly unchanged in the range of total reflection
and for D/Ag>2. If the crystals are thinner than
D/Ay< 0.2 the intensity variations are smoothed for Laue
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FIG. 1. Intensity of elastic, incoherent scattering in thick-crystal
slabs. Attenuation effects are not accounted for. At T=0 82 [see
Eq. (7] is given by the ratio of the direction Ccosines:
B%=|cosy/cosyg|. yis a parameter for the deviation of k from the
Bragg angle (order of seconds of arc, see Ref. 5). For primary
Bragg scattering y and B8 belong to the incident neutron, whereas for
secondary Bragg scattering they have to be replaced by y’ and 8’ of
the scattered neutron and determine then the shape of the K lines. -
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FIG. 2. Conditions for secondary Bragg scattering are fulfilled on
the intersecting curves of the scattering surface (Ewald sphere) with
the planes K P which are perpendicular to the plane of draw-

ing.

and Bragg cases. Attenuation effects, which will change the
results considerably, are not taken into account.

Now, let us consider the situation where only the scat-
tered neutron excites a Bragg reflection. The conditions for
secondary Bragg scattering are fulfilled on the intersecting
curves of the scattering surface (Ewald sphere) with planes
K 4G +r parallel to the excited Bragg plane, as explained in

Fig. 2. The characteristic distance is
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The K lines are the projections of these intersecting curves
onto the film. For the derivation of the shape of the K
lines the large formal analogy between primary and secon-
dary Bragg scattering enables us to take over the formulas
of primary Bragg scattering by replacing y,8,x,G by the
corresponding quantities y’, 8’, —k, G’ of the scattered neu-
tron. Now, the curves in Fig. 1 represent sharp lines with a
width of some seconds of arc. The intensity is enhanced or
reduced relative to the background whether B is larger or
smaller than one and, thus, gives rise to excess or defect
lines. For B8'=1 the profile is antisymmetic and may be re-
ferred to as K band.

Since primary and secondary Bragg scattering are of the
same order of magnitude, the confirmation of the effect of
primary Bragg scattering indicates the possibility of the veri-
fication of secondary Bragg scattering.

Generally, the effects of primary (or secondary) Bragg
scattering will be smoothed by the wavelength spread of the
incident beam. Thus, one may restrict the width of the in-
cident beam to the range of acceptance of dynamical diffrac-
tion or one may enlarge this range, i.e., by back scattering.’?
Analogous to x rays,* the strength of the K lines is enlarged
by a small mosaicity, but the lines become broad and can be
explained from kinematical considerations.

For x rays, the divergent radiation can be generated out-
side the crystal and the resulting lines are known as
pseudo-Kossel lines. Also for neutrons it seems to be pos-
sible to produce such a pseudo-Kossel pattern with incident
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divergent radiation. At least it may be mentioned that y
rays generated from neutrons in absorbing crystals are also
subject to effects of primary and secondary Bragg scattering.
Knowles’ observed the variation of the y-ray intensity from
primary Bragg scattering in a weakly absorbing calcite crys-
tal.

It has been shown that the Kossel lines should also ap-
pear in neutron scattering and their detection should be
easier than the detection of the Kikuchi lines from thermal
diffuse scattering. Under certain conditions they could give
rise to additional corrections to the neutron structure factor

and an. experimental test of enhanced incoherent scattering
under the Bragg peak would be interesting. As shown by
Zeilinger and Shull® the incoherent (and inelastic) scattered
neutrons can be measured in the Bragg case directly,
without the necessity of having to use computations involv-
ing the small differences between large numbers.
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