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The rate at which nonlocal surface Bernstein modes decay into electron-hole pairs is calculated in the
high-magnetic-field quantum limit. The infinite-barrier model is used for the planar surface confining the
electrons of a degenerate semi-infinite plasma. In this model for a metal, semimetal, or semiconductor, a
uniform magnetic field is applied in the direction perpendicular to the surface. The dynamical properties of
the Landau quantized plasma are described in the random-phase approximation.

In 1958, Bernstein! showed that a classical gaseous bulk
plasma could have undamped nonlocal modes near each in-
teger multiple nw, (n =2) of the cyclotron frequency for
propagation perpendicular to an applied magnetic field. In
1965, Horing? demonstrated that the spectrum of a bulk
quantum plasma has branches analogous to Bernstein
modes near multiples -of the cyclotron frequency for prop-
agation nearly perpendicular to the magnetic field in a Lan-
dau quantized description, and for propagation perpendicu-
lar to the magnetic field these modes are also undamped.
This was exhibited in the random-phase approximation
(RPA) by examining the frequency- and wave-number-
dependent bulk dielectric function e(p, @) with real and im-
aginary parts egr and ¢€;, respectively. In the long-
wavelength limit, one may study the » =2 Bernstein-type
mode using the approximation®?
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The magnetic field is applied in the z direction and the wave
vector p has components p, and p), parallel and perpendicu-
lar to the magnetic field, respectively. , and w. are the
plasma frequency and the cyclotron frequency, respectively,
of an electron with effective mass m*. S,= ng/o g where ng
and op are the electron number and energy density, respec-
tively, in the bulk plasma. For a degenerate bulk plasma in
the high-field quantum limit (HFQL) with all electrons in
the lowest Landau state, we have*
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where A=#kpf/2m*w., n+ is the Heaviside unit step func-
tion, and ¢ the magnetic-field-dependent chemical potential.
Also, S, = 2/kw. in the HFQL. For propagation perpendic-
ular to the magnetic field, it is readily verified that there is
no damping. For propagation off the perpendicular direc-
tion to the magnetic field, the bulk Bernstein-like mode
near 2w, [given by a zero of ez in Eq. (1)] suffers natural
damping by its decay into electron-hole pairs. This decay
process is governed by the cutoff factors 5+ in Eq. (2).

In 1973, Horing and Yildiz® (to be referred to as HY)
predicted that in the presence of a uniform magnetic field in
the z direction perpendicular to the planar surface, a semi-
infinite plasma has surface Bernstein modes. Special attention
was given to the n» =2 nonlocal surface Bernstein mode and
HY calculated the frequency of this mode in the long-
wavelength limit. It is the purpose of this paper to calculate
the decay rate of the » =2 nonlocal surface Bernstein mode
into electron-hole pairs when a strong magnetic field is ap-
plied. Unlike the bulk Bernstein mode which is devoid of
natural damping for perpendicular propagation, the surface
Bernstein mode does in fact suffer decay into electron-hole
pairs for propagation along the surface and perpendicular to
the magnetic field.

For arbitrary magnetic field strengths, the decay rate is
given by>¢
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where the right-hand side of Eq. (3) is to be evaluated at
the surface Bernstein mode frequency . Dr and D; are
the real and imaginary parts of the surface mode ‘‘disper-
sion formula’’ in the RPA:
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Substituting Eq. (1) and Eq. (2) into Eq. (4) and assuming
that |e;| << |er |, we obtain
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where A=#p?/2m*w, and
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and (w — — o) signifies a term similar to the preceding one

with w replaced by —w. The range of integration in Eq. (5)

as delimited by the Heaviside unit step function is
(=) (+) £

i N w) < p, <pit(w) where for o > nw,
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Here the Fermi wave number is pp= (2{m*/£?)V2.
In the long-wavelength limit, the n =2 nonlocal surface
Bernstein mode of HY is given by
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so that C =0 for 4 <w?2/wl} =17, otherwise, C is negative.
In the HFQL when %Zw, > { and only the lowest Landau
eigenstate is populated, we find that p, H-Q)is complex
for n=0,1,2, ... so that the range of integration vanishes
for all the terms with w — —w in Eq. (5) at the low-wave-
number surface Bernstein mode frequency Q. The range of
integration also vanishes similarly in the HFQL for
n=3,4,5, ...: To see this one may set w=Q in Eq. (7)
and determine that p{*’(Q) is complex for n=3,4,5, . ..
for the HFQL. Therefore, in our calculation of D;(p, )
in the HFQL we only need to calculate the contributions
due to the first three terms n=0,1, and 2 in Eq. (5) for
positive ).

For w=Q, 4 and B in Eq. (6) are given approximately by
A=1-0}/d4w? and B=pt/A. In both cases C >0 and
C <0, we obtain the n=2 integration limits p{¥’(Q)
from Eq. (7) in the HFQL as p{*’ (Q) = 2pr and
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HFQL we have
In view of these

when n=0,1 in the
PAE(Q) =0 ((m*w/m)"*) = O (p).
results, we obtain from Eq. (5)7

However,
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In the long-wavelength limit we have A << 1, and since the
logarithmic term makes the dominant contribution in Eq.
(11), we obtain approximately
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since ;= 2/kw, in the HFQL for a degenerate plasma.’
Assuming that |e;| << |eg |, the real part of the RPA sur-
face ‘‘dispersion formula” is
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Substituting Eq. (1) into Eq. (13), the resulting integral is
elementary. For long-wavelength surface Bernstein modes
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of a degenerate plasma in the HFQL, we obtain
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Substituting Eq. (12) and Eq. (14) into Eq. (3), we obtain
the decay rate of the long-wavelength n =2 surface Bern-
stein mode of a degenerate semi-infinite magnetoplasma in
the HFQL.:

ipi
8m™*pr

y= (1)

2
A w: | 8171:0)‘-2C
C| wldol—w?) |p||wp2A

One could similarly obtain the damping of the higher modes
belonging to the surface Bernstein mode magnetoplasmon
spectrum.
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"In a straightforward way, we obtain
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When o is equal to the long-wavelength surface Bernstein
mode frequency , we find that B= pﬁ /A. Therefore, if
pfi/A%p} << 1, we find by expanding the logarithmic term above
that
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This approximation may be applied to the n =0 and n» =1 terms
in Eq. (5) as well as top,=pst) (Q). However it is not applica-
ble when p,=p{7)(Q) since p{~) =0(p}/pr), and here
p/A1p{7) ()1 is not small, so that in this case the logarith-
mic term may not be expanded as before, and it must be kept in-
tact.



