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Recently we reported a calculation of the binding energy of the 2pg-like level of hydrogenic donor associ-
ated with the first conduction subband in a GaAs-Ga;_,Al,As quantum-well structure. It was found that
the value of the binding energy of this level decreased as the well width was reduced, and became zero for
a well width of about 650 A. In this Brief Report we present results which demonstrate that this peculiar
behavior of the 2p, state is due to the fact that it is closely associated with the second electron subband,
and remains bound with respect to it (with increasing binding energy) as the well width is reduced.

I. INTRODUCTION

Epitaxial crystal-growth techniques such as molecular-
beam epitaxy (MBE) and metal-organic chemical vapor
deposition (MOCVD) have led to the creation of systems of
alternating layers of two different semiconductors with con-
trolled thicknesses and sharp interfaces. The effects of the
resulting quantum wells upon shallow impurity states have
become a subject of lively interest. GaAs-Ga;_,Al,As
quantum-well structures have been most commonly stu-
died.1-® As is well known, the discontinuity of the conduc-
tion and valence bands at the interfaces in these structures
results in the breaking of the bulk conduction and valence
bands into subbands. In Ref. 3 (hereafter referred to as I)
we presented binding energies with respect to the first con-
duction subband of a shallow donor at the center of a quan-
tum well. As in that paper, we refer to these states with
nomenclature taken from their hydrogenic (large well
width) limits (1s, 2s, 2p+, and 2py). The 2s and 2p +
states showed behavior qualitatively similar to the ground
state; that is, their binding energies increased with decreas-
ing well width (L) over the range of L studied. The 2p,
state showed remarkably different behavior, decreasing in
energy rapidly with decreasing L, becoming unbound (with
respect to the first electron subband) at a rather large value
of L (L=26.5a, where ao is the effective Bohr radius in
bulk GaAs, ap=100 A). In this Brief Report we present
results which demonstrate that this behavior of the 2p, state
is due to the fact that it is closely associated by symmetry
with the second electron subband, and remains bound with
respect to it (with increasing binding energy) as L is de-
creased.

II. THEORY

As noted in I, in the effective-mass approximation the
Hamiltonian for an electron bound to a shallow donor in a
quantum well is given by

1

H=—Llv-24ip,2) . @
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The quantum-well potential is given as

0, lzl<L/2 ,
s =1y 12> L2, @
where L is the width and V), the height of the quantum well.
The position of the impurity atom is assumed to be located
at the center of the well. Equations (1) and (2) are given in
dimensionless form, such that the unit of length is the ef-
fective Bohr radius, energy is given in terms of the effective
rydberg, and the effective mass is in terms of the bulk ef-
fective mass of the well material. For GaAs, these quanti-
ties are 98.7 A, 5.83 meV, and 0.067m,, respectively.
As before, we assume a variational wave function of the
form (in cylindrical coordinates p, z, and ¢)

V(p,z,0)=f(z2)G(p,z, ) . 3)

The function f(z) is a solution of the one-dimensional
square-well problem with the potential of Eq. (2), and
G(p,z,¢) is a function of electron-donor ion relative coor-
dinates, which we will examine presently. In I, the ground-
state solution for the square-well problem was approximated
by a series of Gaussians in z, with accuracy to within 0.005
effective rydbergs. This allowed us to obtain binding ener-
gies of the ground and several excited states with respect to
the first subband.

For this work we take f(z) to be the analytic solution for
the first excited state in the one-dimensional quantum well;
that is, the unnormalized expression is

—Be*: z< —LJ2,
F(2) = fo(z) =1{sin(kz), :2£<z<L/2 , 4)
Be=**, z>1L/2 .

The parameter k is determined by the first excited state en-
ergy of the one-dimensional square well. B and k are fixed
by the matching conditions used at the GaAs-Ga;_,Al,As
interfaces. These will be mentioned presently. For later
use we give the one-dimensional square-well ground-state
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solution here also:

cos(kz), lz|<L/2 ,

( )= ’
AR P lzt \zl>L/2 .

€))

For the relative coordinate function G(p,z ¢) we use a
series of Gaussians very similar to what we used in I. With
the donor at the center of the well, parity is a good quantum
number. Thus, we write G(p,z, ¢) as

G(p,z,6) = Guy(p,z,b)
=z9mlem 3 4, exp(—ap?—B,22) . (6)
iJ

The integer m is the component of the angular momentum
(in units of #) along the axis of symmetry, and m+gq
(where ¢=0,1), together with f(z), defines the parity of
the state. In I, the states that we labeled 1s, 25, 2p +, and
2po correspond to the following m, g pairs:

1s,2s m=qg=0 (even parity)
2p + m=+1,gq=0 (odd parity)
2po m=0,g=1 (odd parity)

Here, however, the function f,(z) is odd in z, which makes
the m = g =0 states odd-parity states. We will not consider
the other cases.

For the calculations of this paper we take the set of non-
linear variational parameters {«,} ={8,} from the work of
Huzinaga,” who did a systematic study of the use of Gauss-
ian basis sets in the calculations of atomic energy levels.
The set we used is given in Table I, they yield energies ac-
curate in the hydrogenic limit to within 0.001 effective ryd-
bergs. The linear variational parameters 4; are determined
from the solution of the usual matrix eigenvalue equation:

Hy=EUY . @)

The symbol ¢ represents a vector made up of the different
basis functions in which we have expanded ¥ (p,z,¢). The
basis function for a given i,j pair is
qulmle,’mbfz(z)e—alpze—ajz2

H and U are the Hamiltonian and overlap matrices between
the elements of . We restrict the size of H and U to
13x 13 by requiring 4;=0 for |i— j| > 1. This means that
the function Gp,(p,z ¢) in Eq. (6) has 13 terms. Note that
it is not separable in p and z even though the individual
terms are separable.

The choice of variational wave function given by Egs. (3),
(4), and (6) allows us to calculate accurate Coulomb bind-
ing energies by subtracting the eigenvalues of H from the
one-dimensional well energy. A similar wave function with
f2(z) replaced by f1(z) allows us to calculate binding ener-
gies with respect to the first subband edge.

For the results to be presented in Sec. III we have taken
the effective mass in the Ga;_,Al,As barrier to be depen-
dent upon x as> m*= (1+1.24x), in units of the bulk GaAs

TABLE 1. Values of the nonlinear variational parameters used
(Ref. 7).

a; 13.4 2.01 0.454 0.123 0.0267
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electron effective mass (0.067m,). The dielectric constant is
assumed to be equal to the bulk GaAs value for both semi-
conductors. The variational wave function ¥ (i.e., the ef-
fective mass envelope function) and its derivative we as-
sumed continuous at the interfaces. As noted by Zhu and
Kroemer,® these matching conditions should give good
results for GaAs-Ga; - ,Al,As systems. The probability den-
sity interpretation of |¥|? must be modified somewhat in
the barrier material,® but that does not concern us here.

III. RESULTS AND DISCUSSION

In this section we concentrate our attention on three par-
ticular odd-parity states, which we label by their quantum
numbers m: g

‘If(,(p,z,¢)=f2(z)EAUexp(—a,pz——ajz2) (8)
[¥)
and

¥ 4(p.z,d)=f1(z)e*® 3 Byexp(—ap’—a;z2) . (9)
i

Note that ¥, (which is odd in z) is associated with the
second subband and ¥ + (even in z) are associated with the
first subband, due to the functions f,(z) and fi(z). In
Fig. 1 we plot the total energies (solid curves) of these
states as a function of L, taking the bottom of the quantum
well (bulk GaAs band edge) as our zero energy reference.
Also plotted in the figure are the first and second subband
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FIG. 1. Variation of the total energies of the 2p 4+ and 2pg-like
states (solid lines) and of the first (n=1) and second (n=2) elec-
tron subband levels as a function of the GaAs well size (L). The
Al concentration x is 0.3. All energies are expressed in terms of an
effective rydberg (5.83 meV) and all distances in terms of Bohr
radius (98.7 A).
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edges (dashed curves). The Coulomb binding energies
mentioned earlier can be obtained by subtracting the ap-
propriate band-edge energy from the chosen total energy.

The energies of the states represented by Eqgs. (8) and (9)
lie below the corresponding subband edge for the range of L
shown in Fig. 1. Note that the odd-parity m =0 state also
lies below the first subband edge for L > 6.5. The crossing
point is virtually the same point that we found the 2p, state
of I to become unbound with respect to the first subband.
This suggests that the 2p, state of I, described by the varia-
tional wave function

‘If(',(p,z,d))=f1(z)zEAUexp(—a,pz—ajzz) , (10)
4]

is the same as the odd-parity m =0 state represented by Eq.
(8). This should not be surprising since f2(z) and zf;(z)
both vary linearly with z for z << L.

We have verified this expectation by directly comparing
the energies obtained from the variational wave functions of
Eqgs. (8) and (10). For L > 6.5 the energies are the same to
better than 1%. For L < 6.5, they begin to deviate signifi-
cantly, because ¥y of Eq. (8) is a much better variational
wave function than ¥g at small well widths. Our conclusion
is that the 2p, state in I that became ‘‘unbound” appeared
to do so because it is actually a bound state associated with
the second, rather than the first subband. The fact that the
variational trial functions of Egs. (8) and (10) give virtually
identical energies for L > 6.5 suggests that the function
Gme(p,z,¢) has sufficient flexibility to handle any subband
mixing that may occur in large quantum wells and, there-
fore, should give very good energy estimates.

However, for L < 6.5 there are continuum states of the
first subband which are resonant with bound states associat-
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ed with the second subband. In the ideal case with the

- donor at the center of the well these states are not mixed by

the Coulomb potential because of their different parities.
Nevertheless, in a real situation, where the donor is not ex-
actly at the center, there will be nonvanishing Coulomb ma-
trix elements between the second subband bound states and
the first subband continuum. This can significantly shorten
the lifetimes of the (quasi)bound states associated with the
second subband. This broadening effect, when combined
with the broadening due to the fact that the energy is
strongly dependent upon the position of the donor, may
make it difficult to observe the binding energy of the 2py-
like state in quantum wells with L < 6.5 effective Bohr ra-
dii.

IV. CONCLUSIONS

The odd-parity m =0 state (2py), whose binding energy
with respect to the first subband drops sharply with decreas-
ing L,3 behaves in that way because it is a bound state
closely associated with the second subband. Moreover, for
L > 6.5a, we obtain virtually identical energies for the 2pg
state, regardless of whether we factor the one-dimensional
square-well ground-state solution fi(z), or first excited
state solution f,(z), out of our variational trial function.
This indicates to us that the series of z Gaussians in our tri-
al wave function has sufficient flexibility to handle subband
mixing which may occur for large L values. For L < 6.5aq,
resonance between the continuum states of the first sub-
band and the quasibound states just below the second sub-
band may prevent the binding energy of the latter from be-
ing measured.
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