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Protonic diffusion in hydrogen-bonded networks, ionic conduction in polymeric solid electrolytes,
and other processes in which the carrier transport mechanism involves motion of the host medium
on a time scale comparable to that of the carrier motion itself require generalization of the usual
models based on carrier hopping in a static medium. Under the assumption that this concurrent
motion of the host can be modeled by a random reassignment (or "renewal" ) of hopping probabili-
ties, with a constant probability X per unit time for renewal to occur, the effects of host motion on
the frequency-dependent diffusion coefficient D(co) are now considered. We consider both the
dynamic bond-percolation model (in which the site-to-site hopping probability is randomly assigned
either the value m or the value 0) and the more general model based on a possibly continuous distri-
bution of hopping rates randomly assigned between different pairs of sites. Under these assump-
tions, the diffusion coefficient D(co) with renewal is shown to be obtainable from D(co) without
renewal through the formal substitution ico~k+ico. For the co=0 limit, an expression is obtained
for the time-dependent mean-square displacement with renewal in terms of the mean-square dis-

placement without renewal. These general formal results are applied to the one-dimensional dynam-
ic percolation model, for which specific exact analytic results are thereby obtained, and D(co) is cal-
culated and studied for this case.

I. INTRODUCTION

Hopping models have proved extremely useful in study-
ing and understanding diffusion or conduction in a
variety of systems, including some involving charge trans-
port by carriers of small mass (such as electrons in a nar-
row conduction band') and many in which the carriers are
massive (e.g., ionic conduction in framework lattices, and
in polymeric and glassy ceramic solid electrolytes). One
limitation of most hopping models is the assumption that
the hops between sites (on some assumed lattice structure)
are instantaneous; a second is that the probability function
describing the likelihood of a new hop at a time t after the
previous hop is assigned permanently to each pair of sites
(corresponding to static disorder if different probability
functions are assigned randomly to different pairs of sites
for each system in some ensemble). Relaxation of the
instantaneous-hop assumption alone leads to kinetic equa-
tions with memory effects. The systems of physical in-
terest to us ' however are those, such as the polymeric
solid electrolytes, " in which ongoing dynamical
changes alter the preferred pathways through the host
medium on a time scale often comparable to that of the
carrier motion itself, thereby corresponding to dynamic,
rather than static, disorder; In a polymer complexed non-
stoichiometrically with an ionic salt, such as
polyethylene-oxide NaSCN (PEO NaSCN) for example,
the PEO backbone (at temperatures greater than the glass
transition temperature Ts) undergoes large-amplitude

motion as the Na+ ions diffuse through it. ' '" Other
systems that appear to be characterized by the kind of
dynamic disorder considered here include electrons or po-
larons moving within a liquid medium, and protons mov-
ing by means of a Grotthus mechanism. ' ' All of these
cases involve two characteristic time scales, the first
describing a typical waiting time between the (instantane-
ous) hops, and the second describing a typical time for the
host medium to reorganize (or renew) and thereby to pro-
vide a new set of preferred pathways for hopping. We
denote the representative rates determined by these two
times as m for the mean hopping rate and X for the mean
renewal 'rate, respectively.

It appears reasonable to model the charge transport
dynamics in such systems by assuming the carrier dif-
fusion to be described by random-walk hopping between
available sites, with the hopping probabilities randomly
assigned according to some (possibly continuous) distribu-
tion and reassigned (or renewed) according to the same
distribution as time passes; it is also useful to assume in
this model that the carrier resides between hops on points
of a periodic lattice. This general picture based on a ran-
dom walk with renewal might be called a dynamic disor-
der hopping (DDH) model. A somewhat more restrictive
version of the DDH model is based on considering hops
only between nearest-neighbor sites with the hopping
probability per unit time having either the value tv (for a
fraction f of bonds, or pathways, between nearest-
neighbor sites) or else 0 (for a fraction 1 f of bonds) ——
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the same as in the ordinary static bond percolation theory
except for the added feature once again that at certain in-
stants the hopping probabilities are randomly reassigned,
corresponding therefore to a dynamic bond percolation
(DBP) theory.

We have already examined some of the implications of
this DBP model. Among the results we have obtained are
the following.

(1) Exact expressions for the mean-square displacement
(r )o(t) in one dimension without renewal.

(2a) An equation for the occupation probability of any
site at any time during the ¹hrenewal epoch (after pre-
cisely X renewals of a specific sequence of renewal times
have already occurred) in terms of the occupation proba-
bilities calculated for all times without renewal, applicable
for any number of dimensions. (2b) A corresponding ex-
pression for (r )(t) in terms of (r )0(t) (i.e., obtained
without renewal) for any sequence of renewals in any
number of dimensions.

(3) A general proof of diffusive motion over times
which are long compared with the average renewal time,
and a general expression for the corresponding diffusion
coefficient.

Results (2)—(3) can be seen not to require the specific
bond-percolation assumptions, and actually apply also for
the continuous distribution of possible hopping probabili-
ties involved in the dynamic disorder hopping model pro-
vided merely that the bond reassignments are still instan-
taneous and are each uncorrelated to the previous assign-
ment. Nevertheless, limiting the hopping probabilities to
the values to and 0 allows result (1) to be obtained in ana-
lytic form in one dimension, so that it can be combined
with results (2)—(3) to study the behavior of (r )(t) and
the static diffusion coefficient D as a function of renewal
rate, hopping rate, and available bond fraction. The
analysis published thus far suggests the importance of
bond renewal in controlling the behavior of the static dif-
fusion coefficient (and therefore, by virtue of the Nernst-
Einstein relation, the behavior of the conductivity a)
under many conditions.

Much of the experimental data whose theoretical
analysis could shed light on the conduction dynamics of
polymer electrolytes is, ' ' ' however, obtained at
nonzero frequency of the applied field; this situation has
yet to be considered for either dynamic bond-percolation
or the more general dynamic hopping model. In extend-
ing our theory to this case, it becomes essential to make
reasonable assumptions about the distribution of random
renewal times rather than, for example, assuming a fixed
sequence of renewal times, since the range over which
D(co) is to be studied includes values of co

' comparable
to the average renewal time itself, and D (co) is sensitive to
the distribution of renewal times near this average value
(as can be seen from the results derived in Sec. II). This is
in contrast to the static diffusion coefficient, for which we
have already obtained a general expression [applicable to
both the dynamic disorder hopping (DDH) and DBP
models] in terms of only the average renewal time and the
average (r ) attained from one renewal to the next. The
measurement and theoretical study of o(to), in
the case of systems best modeled by a static lattice, has

been of great value in correlating conductivity with
phase-transition behavior, in determining attempt frequen-
cies ' for hopping, and in characterizing the effective
damping of the carriers. Extending theoretical study of
cr(co) to the case of dynamic disorder should allow impor-
tant conclusions to be drawn concerning the mechanism
of ionic conduction in systems such as polymer electro-
lytes for which experimental data are now becoming avail-
able.

Linear-response theory provides a relation between the
frequency-dependent conductivity and the mean-square
displacement (r )(t) of the carrier. We show in the
next section how, for a specific random distribution of
possible diffusion times, the linear response result can be
converted into an expression for cr(to) in terms of the
renewal rate A, and (r )0(t), the mean-square displace-
ment attained by the carrier over time t in the absence of
renewal. The equivalence of these two expressions leads
to a prescription for determining (r )(t) with renewal
from (r )0(t) without renewal; it also leads to a simple
method for obtaining D(co) with renewal from any D(to)
expression for the corresponding system without renewal
merely by the replacement of ice by I,+in. Limiting
cases for the results of Sec. II are considered in Sec. III,
leading mostly to conclusions consistent with intuition but
also to some limits on the range of applicability of our
model assumptions. Section IV applies our results to the
special case of the one-dimensional (1D) dynamic bond-
percolation model, leading to exact solutions for (r )
and D (co) obtained from our previously published expres-
sions for (r )o(t), and illustrating how the results of Sec.
III can be used to generalize the static percolation results
of Odagaki and Lax to a dynamic percolation model.
The application to the 1D DBP case concludes with the
presentation and discussion of numerical calculations
based on the analytic results of this section. Finally, Sec.
V contains a brief discussion of our results, with some
comments on their applicability to polymeric and protonic
electrolytes.

II. THEORY OF THE FREQUENCY-DEPENDENT
RESPONSE

We consider the average behavior evaluated over an en-
semble of systems in which a carrier moving on a periodic
lattice undergoes various possible sequences of hops, with
various intervals between renewals, and with each renewal
producing a random reassignment of hopping probabili-
ties. The hops are assumed instantaneous in the sense
that at any given time the carrier is located on one of the
lattice sites. Each renewal is also assumed to occur in-
stantaneously, and to produce new hopping probability as-
signments uncorrelated with the previous assignment and
unaffected by the location of the carrier at the instant of
renewal. ' Finally, we assume that the probability for a
renewal to occur in any small time interval dt is A, dt (for
constant renewal rate A, ) regardless of when the previous
renewal occurred, thereby restricting the present results to
a specific (exponential) renewal-time distribution.

Beyond the assumption of instantaneous hops, we make
no specific assumptions about the hopping process, nor is
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D(co)= lim (iso) f e ' 'e "&r )(t)dt
nd g~o+

(2)

with nd a constant depending on the dimensionahty of the
lattice and n and e the density and charge of the carriers,
respectively. We first examine some properties of the as-
sumed renewal distribution, then derive an equation of
motion governing the ensemble probability to be used in
calculating ( r )o( t), which is ( r ) evaluated over an en-
semble of systems that do not renew.

Suppose that the time scale has been discretized, so that
any hop or renewal occurring in the interval (t„&,t„] of
length b, t is regarded as having occurred at the end point
t„. (Eventually, we assume b,t~0, thereby attaining a
continuous-time limit in which the assignment described
in the previous sentence has no effect on the final results
obtained). Within the large but finite time interval
T=M b, t, the probability of a renewal at any one given t;
is then

it necessary to assume that the hopping probabilities are
limited to the values m and 0. Furthermore, the results
presented here apply equally in any number of dimen-
sions.

For notational convenience, the origin for each system
is defined as whatever lattice site the carrier is on at time
t =0. The general linear-response theory expression for
the conductivity cr(co) in terms of the mean-square dis-
placement from the origin (r )(t) is

cr(co) = D(to)
ne

kT

where

For the exponential waiting-time function [Eq. (8)], this is
also the probability for no renewal during a time T start-
ing from the previous renewal, so that the present theory is
not subject to the difficulty pointed out by Tunaley
which, in our case, might otherwise arise from the distinc-
tion between the waiting-time distribution starting from a
random time and that starting from the last previous
renewal.

Now consider the hopping motion together with
renewal by defining W~(s, t) as the joint probability that
there are X renewals between 0 and t and that the hopper
occupies site s at time t No. te that Wz is defined
without regard for when each of the renewals prior to t
has occurred. For the discretized-time case, W~+&(s, t) is
the sum (over all sites m and discrete intermediate times
t; prior to t) of the joint probability for all of the follow-
ing:

(1) The hopper is on site m at t; with N renewals hav-
ing already occurred [probability W~(m, t;)].

(2) The ( N +.1)th renewal then occurs at exactly t; [i.e.,
renewal in the interval (t; ~, t;], with probability A, b, t I .

(3) The hopper then moves from m to s without
renewal [probability Wo(s —m, t —t;)].

Under our assumptions these three events are indepen-
dent, and so the required joint probability is a product of
their individual probabilities. This then implies

Wz+ &(s, t) =g g W~(m, t; )(Aht) Wo(s —m, t t; ) . (9)—
In the continuous-time limit, (9) becomes

(3)

The number of different ways to distribute N ( &&M)
renewals among the M different times in this interval is

M!
N!(M —N)!

(4)

The probability for N renewals to occur before time T is
therefore

P (N, T)= P(1—g)(M —N)!N!
(5)

But as ht is allowed to approach zero, M becomes large
compared with 1, and use of Stirling's expansion and the
appropriate limiting values of the g-dependent factors in
(5) leads to a Poisson probability function

P(N, T)= e
gN

(6)
N~

with

/=AT (7)

for the probability of exactly K renewals between time 0
and T. In particular, the result actually used in the
derivation that follows is the probability for zero renewals
to have occurred in time T after an arbitrary time 0, and
is given by

P(O, T)=e

t
W~+~(s, t)=A+ I W~(m, t')Wo(s —m, t t')dt' . —(10)

A generating function method similar to that employed
by Scher and Lax can now be combined with these re-
sults to yield the desired expression for D(cg) in ter~s of
(r )0(t), where now

(r ) (t)=ps p (s, t) . (12)

Readers uninterested in the detailed derivation of the
D (co) expression can skip to (31), where this final result is
obtained.

Define the generating function,

G(s, t;z)= g z W~(s, t),
N=0

so that

The evolution equation (10) for the joint probability W&
is analogous to the evolution equation (16) derived in Ref.
7 for a specific sequence of renewals rather than the
present random distribution of renewals. In particular,
the relation of the joint probability Wo(s, t) (for occupa-
tion of s at t and with no renewal having yet occurred) to
the conditional probability po(s, t) (for occupation of s at
time t given that a renewal has not occurred) is simply

Wo(s, t)=e ~po(s, t) .
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G(s, t;1)= g W„(s,t) —= W(s, t)
%=0

(14)

= W()(s, t) . (15)

The Laplace transform of (15) (in terms of the Laplace
variable u) is then

is the probability for the carrier to be on site s at time t.
Next, multiply the evolution equation (10) by z +' and
sum over N to obtain, using (13),

G(s, t;z) —Azg f Wp(s —m, t t')G—(m, t';z)dt'
m

so that U(k, u;z) is given by

V(k, u)
1 —A,zV(k, u)

(18)

Now the linear-response result for D (io), Eq. (2), can be
written as

and, by inverse Fourier summation over the % sites on
which the periodic boundary conditions are imposed,

G(s, u;z) =—g ' e'"' .
1 V(k u)
X „1—MV(k, u)

G(s, u;z) —Azg Wp(s —m;u)G(m, u;z) = Wp(s, u) . (16)

To obtain a formal solution to this equation, multiply by
e '"' and sum over s, where k has any value consistent
with the imposition of periodic boundary conditions on
the lattice. Then with

U(k, u;z) =g e '"'G(s, u;z),

oo

n& 'D(co)=(iso) lim g s f e "e '"'W(s, t)dt
P—+0+ s

J

=(ice) gs W(s, iso), (21)

and

V(k, u) =ge '"'Wp(s, u),

(17) where W is the sum over W)v [Eq. (14)], and has as its
Laplace transform W(s, iso) =G(s,iso, 1). Therefore, we
have

Eq. (16) becomes

U(k, u;z) —AzV(k, u) U(k, u;z) = V(k, u),

nq 'D(to)=(ice) gs G(s, ice;1) .

To evaluate (22), use

(22)

I

g s G(s, iso;1)= —V'k QG(s, ice, 1)e
S S k=0

~2 1 ~~ V(k, )co) (k. k)
1 —k(k', iso) k=0

(24)

The s summation gives a 5(, k, and Eq. (1'7) for V(k, u)
leads to

Vk V(k, u) =l. —its Wp(s, t) =0 (25)
S

/

by inversion symmetry, where L, denotes the Laplace
transform operation. We then obtain from (22)—(25)

happ(s, t) =1,

Eq. (27) reduces to (I,+ice) ', and D(co) reduces to

ne 'D(to)=(A, +iso) gs Wp(s, iso)
S

= (A+iso) J, e '"'gs ze 'p()(s, t)dt,

(28)

(30)

But we also have

le
1 AV(O, i co)—,

gs Wp(s, iso)
S

or

1 00

D(co)=(A, +iso) e ' +'""(r )()(t)dt,
ny

(31)

with

Wp(s, t) =e 'pp(s, t) .

So with the normalization condition

00

V(O, iso)= lim e "e '"'g Wp(s, t)dt,
e—+0+ 0

S

(27)
where we have used the definition (12) of (r )p(t) in
terms of the conditional probability pp(s, t) defined by the
corresponding ensemble of systems that suffer no renewal.

Equation (31) is the desired expression for D(co) in
terms of the renewal rate A, and the mean-square displace-
ment (r )p(t) calculated without renewal, and is the cen-
tral result of this paper. It should be compared with the
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formally similar Eq. (2) expressing D(co) in terms of the
(r )(t) that results from all dynamical processes involved
in the carrier motion and which includes a (then unspeci-
fied and unevaluated) average over renewal sequences. It
is also seen that D (co) without renewal is given by (2) with
(r )p(t) appearing instead of (r )(t), and differs from
Eq. (31) for D(co) with renewal only in that ico replaces

+i, co T. herefore, existing expressions for D(co) evaluat-
ed without renewal can be converted to expressions for the
corresponding system with a Poisson distribution of
renewal events simply through the ico~A, +i~ replace-
ment or, equivalently,

D (co, A, ) =Dp(co i k)—, (32)

d(„2) d(r')p
dt g 0

(34)

When the two expressions (2) and (31) are equated for
all co, and the initial conditions (32) and (33) are employed
in integrating by parts twice, the result

f e '"' (r')(t)dt = e '"'e ~' (r'), (t)dt

is obtained for all m. Therefore, in the absence of any
pathological functional behavior, ( r ) (t) satisfies the
second order differential equation

d d2
(r )(t)=e ' (r )p(t) (for t ~0),

dt dt
(35)

which, together with the two initial conditions (33) and
(34), fully determines (r )(t) (for co=0 diffusion with
renewal) once (r )p(t) is known. It is then easily verified
that

where D(co, A, ) denotes the diffusion coefficient with
renewal, and Dp(co) denotes the diffusion coefficient in
the absence of renewal. Because of the widespread inten-
sive efforts in studying diffusion on a static (nonrenewing)
percolation lattice as well as in studying continuous-time
random walk problems, ' this simple formula for obtain-
ing formal results with renewal from available results
without renewal should be of considerable value.

The formal results of this section are now completed by
showing how Eq. (31) leads to the determination of
(r )(t) from (r )p(t). Note first that at t=0,

(33)

Furthermore, at sufficiently short times the overwhelming
majority of systems in the ensemble used to calculate
(r )(t) have not undergone renewal, and the rates of in-
crease of (r )(t) and of (r )p(t) are the same. [For the
DBP model, in particular, with a fraction f of the bonds
having hopping probability w and (1 f) having hopp—ing
probability 0, the rates of increase of ( r ) and ( r ) p

would initially be n, fwd, with d the lattice spacing and
n, the coordination number. ] In general, therefore,

is the unique solution to (35) that also satisfies the initial
conditions (33) and (34).

III. LIMITING CASES

D (co, X)=nd n, wd (37)

which is then independent of A, and co (for sufficiently
large A.). For the dynamic bond-percolation model,

(38)

with f the probability for a bond to be available (hopping
probability w rather than 0).

This result appears physically acceptable in the limit
A, ~co at finite m. It is intuitively fully expected for
co~0 because, for rapid-enough renewal, the hop occurs
after many renewals, and the hopper in each system of the
ensemble gets to choose an averaged hopping probability
from the entire hopping-probability distribution. But the
limiting behavior (37) is physically inconsistent with the
expectation that, for carriers of nonzero mass, the dynam-
ic response [proportional to D (co)] ultimately must go to
zero as the frequency of the applied field becomes infinite.
Furthermore, the present model predicts the unacceptable
limiting behavior (37) for sufficiently large co at all values
of A, , because the rapid oscillations of exp(icot) in this lim-
it also restrict the contributions of ( r )p(t) to small values
of t in Eq. (31).

This unsatisfactory behavior apparently results from
the assumption of instantaneous hops, ' which ignores
the microscopic inertial dynamics of the particle motion
and leads to (r )p(t) increasing linearly with t even for
very short times (corresponding to large co). It might be
expected on physical grounds, however, that as the time
interval decreases sufficiently the carrier suffers fewer col-
lisions able to destroy the coherence of its motion, so that
classically ([r(t)—r(0)] ) should ultimately increase ap-
proximately as t for very short time. A t dependence of

In certain limits the (A, +ico) formula (31) leads to ex-
plicit conclusions about the functional form of D( col, ).
Examination of these limits provides information about
the range of applicability of our model assumptions. We
consider first the limits of either A, or co as being large
compared with a typical hopping rate w, and second of A,

and co both small compared with w. Third, we show that
our expression for D (co, A, ) in the limit co~0 (for any fin-
ite A, ) reduces to the same expression for the static dif-
fusion coefficient previously derived for a general se-
quence or distribution of renewal times.

A. Limit of large A. or of large co

For large A, , the exp( —A, t) factor allows (r )p(t) to con-
tribute significantly only for small values b, t of t. During
this very brief time period, only single hops to a nearest
neighbor contribute, and do so with probability mAt. The
probability of two hops is of order (At) . Hence,

( r') p(t) =n, wtd',

with w now defined as the average rate for such hops, n,
the coordination number, and d the lattice spacing. This
leads to
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(r )o(t) at sufficiently small times gives a D(co) for v& 1

that ultimately approaches zero with increasing co (once
co

' is sufficiently small to be comparable to the time
over which the t' behavior occurs).

For large A, , only the short-time behavior of (r )0 given
by Ct (with C some positive constant) contributes, and
evaluation of (42) in the large-A, limit leads to

B. Limit of small A, and co [max(A, , co) « w]

Our consideration of this limit will be restricted to the
dynamic bond-percolation case (nearest-neighbor hopping
probabilities restricted to the values 0 and w) well below
the percolation threshold, i.e., for f&f, (with f, =1 in
one dimension). The main contribution to the integral for
sufficiently small A, and co then comes from the saturation
value of (r )o(t), which we take to be some value C/nd.
We then obtain from Eq. (31)

D( cd, ) =(A+ic,o)C .

As expected intuitively, the co=0 static diffusion is com-
pletely renewal controlled, each carrier moving about and
sampling each site within a cluster, and allowed to move
out of the cluster only when one of the infrequent
renewals occurs.

C. General limiting case of co=0

For zero co and any nonzero A, , Eq. (37) gives, for the
static diffusion coefficient,

D(O, A)=ndkfe , '(r )0(t)dt, (39)

which can be rewritten as

(40)

where ~„„=X ' for the exponential renewal-time distribu-
tion considered here, and where

Therefore, under the present assumptions, D (0) increases
monotonically with I, for sufficiently large A, , all other pa-
rameters being held fixed, but eventually approaches some
constant saturation value, in agreement with the behavior
discussed in subsection A. We assume, of course, A, not to
be so large that the assumption of (r )o(t) linear in t
breaks down.

IV. APPLICATION TO THE ONE-DIMENSIONAL
DYNAMIC BOND-PERCOLATION MODEL

The dynamic bond-percolation model, in which a frac-
tion f of bonds are available with hopping probability w

and a fraction 1 f unav—ailable, is a useful special case to
which the formal results of the previous sections apply.
Furthermore, in the one-dimensional DBP model we have
already reported an exact analytic solution for (r )o(t),
while Odagaki and Lax have obtained solutions for
Do(co) for the corresponding 1D static percolation model
(without renewal). We show here how the results of Sec.
II can be combined with the two sets of solutions for the
static percolation problem in order to study D( cd, ) and
(r )(t) for the corresponding DBP problem.

A. D(co, A, ) in terms of the solution for (r )o(t)

In the one-dimensional continuous-time limit, the ex-
pression we have obtained for (r )0(t) is

(41) =2d (1—f) gl g gf"+Joe 'I((2wt),
1=0 k =0j=1 Il'I

(43)

is the average value attained by (r )o(t) at the instant
when renewal occurs in each ensemble system, e '(A, dt)
being the joint probability that time t elapses without
renewal followed by renewal in the subsequent interval dt.

Equations (39)—(41) are in exact agreement with our
previously derived general expression for the static dif-
fusion coefficient characterizing the average carrier
motion after many renewals have occurred. It is less gen-
eral, however, than the earlier result, having been derived
here for a specific renewal-time distribution.

Similar conclusions follow also from Eq. (36), which
describes the behavior of (r )(t) in terms of (r2)o(t).
Both above and below the percolation threshold, the only
unbounded contribution to (36) as t~ ao is the part of the
integrand linear in t. The factor multiplying t in this con-
tribution which, for t~ oo, gives the static diffusion coef-
ficient, reduces in that limit to precisely Eq. (39).

A significant conclusion follows, for the present model,
by considering BD(O, A, )/M, , given by

=2k, J e '(r )o(t)dt A, J te —'(r )o(t)dt .

where d is the lattice spacing, Il is the modified Bessel
function of order /, l' denotes the various replicas of lat-
tice site l given, for a given k and j, by

I+2vM,
I'= (2j+1)—l+2vM,

—(2k + 1)—I —2vM,

(44)

An analytic expression for (44) given by Qradshteyn
and Ryzhik leads to

2d (I,+i )(c1o—f)
A (A, ,co, w)

with M = (j+k + 1) and v any non-negative integer.
When (43) and (31) are combined, the resulting expression
for D(co, A, ) involves the integral

(~+2~+'")'I (2 t)dt
0

1'

(42) where



GENERALIZED HOPPING MODEL FOR FREQUENCY-. . . 3945

A =[(A,+2w+ico) —(2w) ]'~ fusion coefficient for various possible M for the DBP
model,

8=(A,+2w+iIo)+A .

Equations (45)—(46) are easily evaluated numerically.

B. (r~)(t) in terms of the solution for (r2)0(t)

(46b) (50)

2. Behavior ofD in the
~

A+.ice
~

&&co limit

The behavior of D in the
~

A+,iso
~

&&co limit is given

Equation (43) expresses (r )0(t) as a linear combination
of e 'II(wt) terms. Precisely because of this linearity
and the relation (36) between (r )(t) and (r )0(t), it is
seen immediately that (r )(t) is given by precisely the
summation in (43) but with each e 'It(2wt) replaced by
the corresponding

—(A, +2m)II (2

+Xf (2+A, t —A,g)e ' + '&I~(2wg)dg . (47)

It should be noted, however, that although e "'II(2wt) is
an occupation probability for site I in the 1D connected-
chain random-walk problem, Ft often has values far
larger than 1, and cannot be interpreted as a probability.

C. D (co, A, ) from the static percolation Do(cg)

The one-dimensional site percolation problem treated
by Odagaki and Lax, in which a fraction f of sites are
occupied by acceptors whose possible excess electron can
hop only to an occupied nearest neighbor (with hopping
probability w) is formally equivalent to the static one-
dimensional bond-percolation model of the preceding sub-
section (except for an extra factor of f which arises at cer-
tain points from the probability that the origin might be
unavailable as an initial site). Although Odagaki and Lax
evaluate Do(co) for the static percolation problem, extrac-
tion of an expression for (r )o(t) from their results re-

quires some effort, and so the two sets of solutions are
somewhat complementary. By using our result (32) (re-
placing iso by A+iso) we , can, however, now transform
most of their conclusions about Do(co) for the static per-
colation problem directly into conclusions about our
dynamic percolation model.

For example, we thereby obtain the following results.

1. Substitution of A, +i to for icy in D'~'( )to

For a cluster of M =(k+j+1) sites connected to each
other and not connected to other sites, the formal result of
substituting A+ice for , iso in the corresponding D' '(co) is

D(M) d2
M A, +ice

D(Io, A, ) ~f—(2f)(1 f)—
(co —i I, )

EN

(co —i A, )

The ice —+A, +ice replacement used here can also be
similarly applied to available analytic results for the static
percolation problem in two or three dimensions.

3. Illustrative numerical results

3.0 I
1

I
1

I
J

~
1

~
l

~
1

I

2.0

1.5

V
1.0

Figure 1 shows the calculated behavior of (r )(t) cal-
culated using (47) for the one-dimensional DBP model for
various choices of A, /w. For A. »w, the motion is dif-
fusive at all times, and the slope of (r )o(t) versus wt
[given by D (Io,O)] is equal to its initial value 2fd . Inter-
mediate values of k/w lead to curves with the same initial
slope, but with a slope depending on I, in the long-time re-
gime, and proportional to A, for long times in the small
A, /w case (for which static diffusion is renewal con-
trolled).

Figure 2 shows a typical D(co) dependence on co in one
dimension. The curve approaches a saturation value with
increasing co. Although Fig. 2 bears a strong qualitative
resemblance to some of the available ionic conduction fre-
quency response data, ' it must be kept in mind that cer-
tain important details (such as the frequency-dependent
response of the polymer host) remain to be included, and
that the present calculations are based on 10 solutions;

1 1
X 2M

—
2M (48)

where

1Z+=—
2

1/2
1.0 2. 0 3.0 4. 0 5.0 6.0

wt
(49)

This can be used to evaluate the ensemble-averaged dif-

FIG. 1. Mean-square displacement in one dimension as a
function of time for various renewal rates, calculated for
f=0.2.
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FICx. 2. Real part of D(co) in one dimension [proportional to
the conductivity a(co)].

nevertheless, a more applied analysis leads us to believe
that the resemblance is not accidental. Also, as stressed
above, the asymptotic behavior [D (co) asymptotically con-
stant for very large m] is an artifact of the instantaneous
hopping assumption, and certainly is unjustified for
CO ))M.

V. CONCLUDING REMARKS

The great current interest in amorphous systems has led
to extensive work on the theory and applications of gen-
eralized hopping and percolationlike models. When,
however, the matrix in which the hopping of the carrier
of interest is itself moving and changing its configuration
with an average rate A, , the observed transport behavior
for observation times such that t,» ) A,

' will be affected
both by the hopping and by the matrix renewal rate A, .
This latter case of dynamic disorder appears to apply to
many physical systems of interest, especially to transport
in liquids, to membrane channel transport in biophysical
situations, and in polymers above Tz, but also to dif-
fusion mechanisms such as the Grotthus scheme' ' for
hydrogen-bonded materials, in which two different events,
each occurring on a different time scale, are both required
for diffusion to occur (in protonic materials, the two steps
are a hydrogen-bond reorientation and a protonic jump).
This case of motion in a dynamically disordered medium

may be described by a modification of standard hopping
models in which the hopping rate mk J from site k to site
j changes its value on the time scale A,

' (physically, this
is caused by the changed relative geometry or energy of
sites k and j as a result of the reorganization, or renewal,
of the host material). A special case of such a dynamic
disorder hopping model is the dynamic bond-percolation
(DBP) model, in which the hopping rates wl, J are re-
stricted to the percolation-theory values 0 (for unavailable

bonds with fraction 1 f)—and w (for available bonds with
fraction f), and this assignment is changed (on the aver-
age) after time A, '. The DBP model has been dis-
cussed ' previously, and some applications of it to ionic
mobility in polymeric electrolytes have been given. As
pointed out here (Sec. I), many of these results previously
derived for the DBP model apply also to a more general
dynamic disorder model in which the distribution of hop-
ping rates might be continuous. In the present paper, we
have examined the frequency-dependent behavior for
these more general dynamic hopping models. We have
found a simple and general result, expressed by Eq. (31),
which allows D(co, k)for , the dynamic disorder hopping
models to be found from D(co, A, ) for static disorder hop-
ping models merely by the replacement ico~i~+A, . We
have also examined some limiting cases, and have calcu-
lated D (co, A, ) for one-dimensional DBP cases (Fig. 2).

The frequency dependence of the conductivity has been
examined for polymeric electrolytes using microwave
techniques the present results allow interpretation of
those experiments in terms of the renewal process (Fig. 2
and Ref. 36). More importantly and more generally, the
observed frequency-dependent conductivity may be inter-
preted, with the aid of these dynamic hopping models, in
order to better understand the transport mechanisms in
the physical systems to which the models are applicable.
By starting with a microscopic model for these materials,
we can therefore extend the considerations of the quasi-
thermodynamic theories (free-volume, configurational
entropy ), in which kinetic effects are not easily included.

Kimball and Adams have shown very generally that
the conductivity o.(co) must initially increase with co for
any hopping process. ' The present analysis supports an
analogous conclusion that cr(co=0) must ultimately in-
crease with k in a dynamic-disorder hopping model (in ac-
cordance with intuition and with the case discussed in
Sec. IV). This simple deduction is one example of the
utility of (31); it also implies that maximization of A,

should maximize cr(0) so that maximum conduction re-
sults for maximum renewal rate. In the particular case of
polymeric electrolytes, the best conductivity should then
occur for the most liquidlike (lowest Ts) solid polymeric
electrolyte; this conclusion has been tentatively reached
previously. Angell has recently discussed a separation
of disordered solid electrolytes on the basis of a decou-
pling ratio R, defined as the ratio of the structural relaxa-
tion time to the electric relaxation time. In the language
of these dynamical hopping models, the glass case (such
as glassy P-eucryptite or NwsK'z. wss44) is characterized
by very slow renewals and high elastic modulus

'))& t,», whereas the liquidlike regime applicable to
polymeric solid electrolytes is defined by A, '&t,». For
the understanding of this latter case, we feel that standard
hopping models must be generalized to consider the role
of dynamic disorder, as in the work presented here.
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