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Theory of indirect hyperfine interactions of oxygen-aluminum defects in ionic crystals
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Aluminum hyperfine interactions of the Al +—0 -trapped-hole center in a number of oxides con-
taining Al ions either as a constituent (A1203.Mg, Na P-alumina) or as an impurity (Ge02, SiO2)
are analyzed with use of a semiempirical model of the exchange polarization mechanism of
transferred hyperfine interactions. The theory quantitatively predicts the observed strong depen-
dence of the negative isotropic hyperfine constant on the 0 -Al + distance and, from estimates of
the electrostatic-crystal-field energy at 0, indicates a reasonable outward expansion (-10%)of the
Al + ions next to the 0 hole center. The theory also accounts well for the observation that the an-
isotropic hyperfine constants in these centers vary only slightly despite the large variation in the cor-
responding isotropic splittings.

I. INTRODUCTION

Trapped hole centers have been investigated by
electron-spin resonance (ESR) and electron-nuclear double
resonance (ENDOR) in a number of oxides containing
Al + ions either as a constituent like in A1203 or as an im-
purity. ' The hole is trapped at an 0 anion forming
0 and hyperfine interactions with one or several neigh-
boring Al + ions are measured. These hyperfine (hf) in-
teractions usually showed two distinct peculiarities: The
isotropic hf constant (hfc), denoted 2, was negative and
the anisotropic hfc, denoted B~~, was much smaller than
the value one would expect from- classical dipole-dipole in-
teraction between the unpaired electron (hole) and the
magnetic Al nucleus. Strictly speaking, from the experi-
ments it could only be said that A and B~~ had opposite
signs, but B~~ is always assumed to be positive because of
the classical dipole-dipole interaction. The common elec-
tronic configuration for these centers is that the Al +

neighbor is in a nodal plane of the unpaired 0 p orbital,
so that there is zero overlap between it and the Al + ion
core and, consequently, no direct transferred positive hf
interaction. An indirect mechanism, exchange polariza-
tion, is well known and has been applied in a number of
cases, " of which the Vz center is an example similar
to the centers of interest here; it presents great computa-
tional difficulties because of the large number of excited-
state configurations needed to describe the exchange po-
larization. In analyzing the ESR spectra of these oxygen-
aluminum defect centers and determining their structures,
we shall use, therefore, a semiempirical perturbation
method of calculating these indirect hfc s in which aver-
age excitation energies are introduced to enable summa-
tion over complete sets of the excited states. This
method" of calculating indirect hfc's will be extended to
cover defects in ionic crystals as contrasted with ionic
molecular radicals, and the contribution of the indirect

mechanism to anisotropic, as well as, isotropic hfc s will
be discussed.

The theory is applied to 0 -Al + centers in Na f3-
alumina, GeOq and SiOz, A1203.Mg + (Refs. 1—4) and
will be found to explain the experimental data of these
rather different centers in different crystals quite well. It
predicts the strong dependence of the isotropic hyperfine
constant on the 0 -Al + distance quantitatively, and also
accounts for the fact, that the anisotropic hyperfine con-
stants are nearly independent of 0 -Al + distance, hav-
ing nearly the same low value in all systems. The theory
can be used to determine rather precisely the relaxed 0
Al + distance if a value for the electrostatic-crystal-field
energy at 0 is known. The results show that the in-
crease in 0 -Al + distance due to the charge repulsion is
much smaller ( —10%) than the values derived from the
classical dipole-dipole interaction alone, from which it
was concluded that the bond lengths would increase by up
to approximately 40%. '

II. THEORY

The zeroth-order valence-bond (VB) wave function of
the oxygen-aluminum system of Fig. 1 is

0'o ——Wg&~( ls)QA~( ls)tb~&(2s)gz&(2s) X. . .

&& Wo(2s)eo(2s )Oo(2pz)ttto(2pz )qo(2py ) (1)

where M is the antisymmetrization and renormalization
operator, and the P's are one-electron Hartree-Fock atom-
ic orbitals (AO's) centered on aluminum (subscript Al)
and oxygen (subscript 0) nuclei, respectively, and the dots
(i.e., ) denote orbitals that are not explicitly written
out (e.g., the Al p orbitals) in the interest of saving space.
g is the AO of opposing spin relative to P. Thus, the total
wave function is an antisymmetric product of all the one-
electron AO's centered on the oxygen and aluminum nu-

31 3923 1985 The American Physical Society



3924 F. J. ADRIAN, A. N. JETTE, AND J. M. SPAETH 31

)( X

Zo A I
3+

Al

FIG. 1. Coordinate convention for the aluminum-oxygen
centers where the unpaired electron is in a m orbital (2p~ ) local-
ized on the oxygen.

clei. Since the unpaired electron is an oxygen 2p~ orbital,
the spin density evaluated with this wave function at the
aluminum nucleus is zero.

There is a small spin density in the nodal plane of the
2' unpaired electron, however, due to the spin polari za-
tion of the doubly occupied AO's by the exchange interac-
tions between the unpaired electron and the electrons in
these AO's with the same spin as the unpaired electron.
Of these AO's the 2s and 2p, functions of the anion are
the most important since they have the largest overlap
with the aluminum nucleus. As discussed previously, "
the unpaired 2@~ oxygen electron also exchange polarizes
the paired AO's localized on the aluminum nucleus, but
the contribution of these terms to the transferred alumi-
num hfc is quite small because the excitation energies for
exciting the metal AO's are very much larger than the ox-
ygen excitation energies. Thus, the important excitations
to consider are 2s ~m and 2p ~n excitations of the oxy-
gen anion. The first-order wave function in the exchange
perturbation is accordingly,

o(2py) o(n) (e /ri2) o(2p, ) o(2py) &

n 2p 0

& fo(2py )tPo(m )
I
(e /ri2) I Po(2s)go(2py ) &+

(e —e2, )o

XW[ /~i(2s)g~~(2s) . Po(m )go(2s)go(2p, )go(2p, )fo(2py)], (2)

where the primes on the summations indicate that n =2p, or m =2s is to be excluded from the sums. For the two-
electron integrals, the following convention is followed:

&yo(l)iton(2)
I
(e'/ri2)

I
iiQ'(l)go~(2) &,

where the first function in the "bra" or "ket" pertains to electron No. 1 while the second is a function of electron No. 2.

A. ' ISOTROPIC hfc

The transferred isotropic hfc is given by the expectation value of the operator

H
16m. P+PAi+5(; —R,)I, S;3 IA]

with the VB function, in Eq. (2), where po is the Bohr magneton, and @&i and I~i are the magnetic moment and spin of
the aluminum nucleus. The sum is over all the electrons of the system. The important terms for the aluminum isotropic
hfc ( 3), i.e., to first order in the exchange perturbation, are

2 2

g g &go(2p. )
I WAl(is) &&I~i(i»

I
HF

I PA1(Js) &&WAI(js)
I
fo(n) &

n i=1j=l

&eo(2py W'o(n)
I
(e «12) I eo(2pz)eo(2py ) &

X
(6n —e2p )0

2 2

+2+' g g &fo(2s)
I
/~i(is)&&/~i(is) I~a I WAi(js)&&@~i(js) I go(m)&

m i=1j=l

& iie(2py Wo(m)
I
(e'«i~)

I Po(»)fo(2py ) &

X
(e —e2, )o

(4)

As denoted by the prime in the summation, Eq. (4) involves sums over all orbitals which are unoccupied in the ground
state. To perform these sums, an average excitation energy is introduced in order to remove the energy denominators
from the summations. That is (e„—ezra)o and (e —E2)o are replaced by the po'sitive constants [e(2p~np)]o and
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[e(2s ~ns ) ]o, respectively.
Now, if we complete the sums in Eq. (4) by adding in the ground-state-occupied orbitals and subtracting them

separately and then use the average-energy approximation and the fact that the orbitals of a given atom form a complete
set, Eq. (4) may be reduced to an expression involving only the ground state. Those terms resulting from applying the
completeness theorem to the sum over all orbitals contain products of overlap and two-center exchange integrals. As dis-
cussed in detail previously, " a typical such term resulting from summing over the complete set of oxygen orbitals con-
tains the matrix element product

& fo(2p*) I W~, (is) & & Po(2py)g&, (js) I
(1/" I&) I fo(2p )Po(2py ) &

These terms are considerably smaller (15%%uo or less) than the corresponding terms involving the ground-state-occupied or-
bitals which were introduced to complete the sums in Eq. (4). The ground-state product corresponding to the example
just given is

&@o(2P )
I
PAi(is) & &No(2py 4'o(2p )

I
(1/riz)

I Po(2p )Oo(2py) & &PAi(js)
I
fo(2P ) & .

Thus, for simplicity in this approximate calculation, only the latter terms are considered in obtaining
r

16~ POPA1

3 I, [e(2p~np)]o
& lpo(2py )yo(2P, )

I
(e /r Ip )

I yo(2pg )I/~o(2py ) &

2 2

X g g & Wo(2p. )
I
f~i(is) & & PA1(is)

I
&(r—RA1)

I
WAl(js) & & Ai(j» I fo(2P. ) &

i =1j=l

[e(2s ~ns)]Q
& Po(2py)go(2s) I

(e'/&Iz)
I go(2s)go(2py ) &

2 2

X g g &Wo(2s)
I tidal(is) & &I)j&~(is) I

5(r —RA&)
I

OA&(js) & &@Ai(js) I Oo(») &

i =1j=1

Actually, . there should also be contributions from the
ufo( ls) spin polarization of the shell in Eq. (5), but these
were neglected since both &go(ls) g~~(js)& and
& po(2py )go(ls) I

(e /r U )
I
go(2s)go(2py ) & are smaller

than the corresponding matrix elements of the oxygen 2s
electron by an order of magnitude, and the excitation en-
ergy of the 0 1s electron is extremely large.

There are two contributions to the average excitation
energies; namely, the electrostatic contribution, since the
0 nucleus is at a center of positive charge, and the aver-
age of the energies required to excite the 0 2s and 2p
electrons in the free 0 anion. Since the missing electron
occupied a 2' orbital, the electrostatic contribution is ap-
proximately the interaction of a positively charged 2py
hole with the electron that is being excited, i.e.

e
&~p, (i)=f f I

fo(2py'"z)
I I

go(i'rl)
I
«I«z,

e(i n) = Vzy (i)—3e;l4,
Py

(7)

which quantities are tabulated in Table I along with the

(6)

where i =2s or 2p, . The average energy to excite the 2s
and 2p electrons is taken as three-fourths their respective
expectation values of the Hartree-Fock operator which by
Koopmans theorem is the ionization energy for that elec-
tron. Thus,

I

quantities

and

16' PEA]
&y ( )I&( —R )Iy (j )&

3 IA1

Kkjl= &go(i)go(j) I
(e /rlz)

I
Qo(k)go(l)& . (9)

2.592X 10
( —1 6113R)

[e(2p np )lo

exp( —2.7317R ) MHz, (10)
[e(2s~ns)]Q

where R is the distance in a.u. (ao) and the excitation en-
ergies e are in hartrees (H).

The K~~ were calculated using the Hartree-Fock AO's of
Clementi and Roetti. ' The necessary integrals are tabu-
lated in Table II along with the isotropic hfc as a function
of the Al-0 distance. The isotropic hfc A, according to
Eq. (5), follows very well an exponential law with distance
in the range considered for the 0 -Al + distance, between
3 and 4 Bohr radii (ao). To facilitate comparison with ex-
perimental data, A can be represented with the same pre-
cision as the values in Table II by the following expres-
sion:
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TABLE I. Parameters appearing in Eqs. (5), (11), and (13) for the transferred hfc's of aluminum. 1

H =27.2 eV.

X y =0.14021 H

X2P 2p' ——0.03341 H
Pz Py

A 1,, 1,——7.616)& 10 MHz
A 1,,2$ ———1,982 &( 10 MHz
A 2$2$ ——0.516)& 10 MHz

V2p (2s)=0.705 H

e2$ ———0.81327 H

e2P
———0.12926 H

[e(2sns)]o ——1.315 H

[E( 2p ~np ) ]o =0.725 H

4poJMA1/IA] ——27'7.72 MHz a.u. '

Co(A1)1(„~(2ps), —P„,(2') = —7.05776 a.u.
A1

V2 (2P, )=0.628 H
Py

CO(A1)
QA~(2p, ) 3 1(A~(2p, ) = 14.11552 a.u.

~A1

TABLE II. Two center integrals appearing in Eq. (5), and the isotropic transferred aluminum hfc.

R (a.u. )

3.00
3.17
3.20
3.40
3.60
3.80

(Pai(») I fo(2s) &

0.004622
0.003594
0.003438
0.002554
0.001895
0.001404

(g&~(2s)
I
go(2s) &

0.050497
0.039899
0.038266
0.028911
0.021786
0.016375

'( (('A~(» )
I fo(2p ) &

0.015125
0.012966
0.012622
0.010582
0.008910
0.007533

(1t~~(2s)
I
fo(2p, ) &

0.135515
0.117304
0.114367
0.096688
0.081918
0.069571

3 (MHz)

—40.2
—29.1

—27.5
—18.9
—13.1
—9.2

TABLE III. Two-center integrals appearing in Eqs. (12) and (14).

R (a.u. )

Co(OA])Po(2ps), Po(2p )
~A1

~A1

Co(6A1)
Po(2p*)

~A1

Co(A])
@Ay(2' ) 3 @o(2' )

~A]

( yo(2p )
I (tAj(2p ) &

( yo(2s)
I
yA](2p ) &

Pz 2py

2p 2$

M2, 2

2p 2p

2p 2p

py pz
2$2p

3.00

0.024 63

0.035 54

0.045 60

—0.013 83

0.03043
—0.075 72
—0.047 21

0.001 48

0.004 18

—0.000 64

—0.000 89

3.17

0.021 71

0.030 50

0.039 08

—0.011 32

0.025 02
—0.065 53
—0.037 97

0.001 26

0.003 64

—0.000 45

—0.000 62

3.20

0.021 24

0.029 70

0.038 05

—0.01094

0.024 17
—0.063 86
—0.036 52

0.001 22

0.003 56

—0.00043

—0.000 58

3.40

0.01841

0.025 00

0.031 95

—0.008 71

0.01930
—0.053 73
—0.028 11

0.001 02

0.003 05

—0.000 28

—0.000 38

3.60

0.01603

0.021 17

0.027 00

—0.006 99

0.015 49
—0.045 17
—0.021 55

0.000 85

0.002 62

—0.000 19

—0.000 25

3.80

0.01426

0.018 10

0.022 95

—0.005 63

0.012 49
—0.037 98
—0.01646

0.000 72

0.002 27

—0.000 12

—0.000 16

B. Anisotropic hfc

The anisotropic hfc, BIt, is the component of the expec-
tation value of the electron spin-nuclear spin dipole-dipole
interaction, MD, along the oxygen-aluminum axis. For
simplicity, only an axially symmetric hf tensor is treated
here. Unlike the isotropic hfc considered above, both the
zeroth-order VB function (1) and the polarization terms of

the first-order perturbed VB function in Eq. (2) contribute
to BLI. Denoting these two contributions as the direct
contribution, BI~, and the polarization contribution, B~~,
respectively, the anisotropic hfc is given by

D P
Bll —B

~I
+B

I I

where
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D 4vo12Ai Co(8Al)
2

0o(~ps) s s&o(2ps)) —2&(l'a(&ps)
l
()«(&ps)&

IA ~Al

Co(8Ai)
Al 2' 3 0 2' + 0 ~By Al 2Py

~A1

Co(8Ai)
Al 2Jy 3 Al 2' Al 2Jy 0 2Py

~A1

Procedures similar to those used to derive the isotropic hfc but considering the overlap of the oxygen orbitals with the
aluminum 2p orbitals give

p 4popA1 s
Co(8A1) Co(8A&)2X' ( o(2p,), s&o(» ) —2 & No(2p* )

I s&«(2p*) ) s(A)(2p ) s &so(» ))
~A1 I' Al

C', (8A, )
+&()a(2p, )(()«(2p, )&(g«(2p, )) s g»(2p, ))&()«(2p, )(go(»))

~A1

&Co(2py)Po«) I
(e'«tz)

I fo(2p. )Po(2py ) &

X (e„—e2p )o

+2X (()o(2s)
Co(8Ai~ C,'(8„,)

()o(m) —&& & (»s)
l
at»i(&p*)& s&«(2p*) s ()o™l

~A] ~A1

Co(8Ai)+ &s&o(2s)
(
()«(2p, ) )(tP„,(2p, ) s g», (2p, )) &()«(2p, )

(
()a(m ))

I'Al

& yo(2Py) yo(~ )
I

(e2«&2)
I go(» W'o(&Py) &

X
(e —e2, )o

In the above equations, Co(8A~) is the reduced spherical harmonic defined by

C~(8,$)=[4m.l(21+1)]'~ Y'( (8,$) .

(13)

The sums over n and m are again evaluated by introducing the average excitation energies, completing the set by adding
to the sums the excluded n =2@, and I=2s terms and finally subtracting these terms.

The resulting expression involves a number of terms that roughly cancel in pairs. Even so, however, the expression for
8~~ is more complicated than for A, of Eq. (5), because the isotropic counterparts of a number of the terms in Eq. (13)
were either zero or negIigible due to the spherical symmetry and the infinitely short-ranged character of the isotropic hf
operator. The nonnegligible terms of this expression are

p 4goPA1
II IAI [e(2p —pnp )]o

+
e(2s ~ns )

2p 2p Co(8Ai)
2

2p 2p
M2p 2p + & PO(~Pz)

I WA1(2Pz) & PA1(2Pz) 3 41(2Pz ) +2p 2p
~Al

Co(8Ai)2

—Kss ss' go(2p, ) s l' ( )()a+2&pub (& )la()«p(&p )&
~Al

Co(8Ai)
X Al 2Pz 3 Al 2' Al ~Pz 0 25z

~A1

2p 2$ Co(8A»
~s, ss + & 4o(»)

l
4«(2p. ) & ()«(&p. ) s g»i(2p. )l$ p

~A]

2p 2p 2p 2$
2Co(8At))(+2 ss +2*2» ()o(») s ()o(»))
~A]

Co(8Ai)
+& (sa(2») l()„(2p, )&(()«(2p, ) s ()«(~p, ))

~A1

&«OAi(2p. )
I
Wo(») & (14)
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TABLE IV. Anisotropic hfc as a function of oxygen-
aluminurn distance.

z'
ll [110]

8 (a.u. )

3.00
3.17
3.20
3.40
3.60
3.80

Bll (MHz)

5.26
4.96
4.90
4.47
4.04
3.69

Bll (MHZ)

—3.53
—2.60
—2.46
—1.71
—1.19
—0.83

Bll (MHZ)

1.73
2.36
2.44
2.76
2.85
2.86

y'll [oo1]

AI3+

where the two-electron exchange-type terms are defined
by

2
Co(~~i, 2) e'

~kl= 0 0 J 3 0 O
~A], 2

and

Ge4+
0

/

Ge4+

x'll [110]

FIG. 3. Model of the 0 -Al + center in Ge02 (after Ref. 2).

+kI = '(Q (0& )&~i(j )
I
(e'«i2)

l
4o(k)0o(~) & (16)

P
Bll ———84 7 —1.426R 2086e —2.237R

+
[e(2p ~np )]o [e(2s ~ns )]o

C, Z

The various parameters and matrix elements are tabulated
in Tables I and III. The anisotropic hfc is given in Table
IV as a function of the aluminum-oxygen distance.

The polarization part of Bll, has an exponential depen-
dence on distance in the 3—4ao range of 0 -Al + dis-
tances, analogous to that found for the isotropic hfc. The
expression, which also can facilitate comparison of theory
and experiment, is

III. COMPARISON
WITH EXPERIMENTAL RESULTS

AND DISCUSSION

Figures 2—5 show the models for several 0 -Al +
centers which have been studied by ESR or ENDOR and
where negative isotropic hfc's and small anisotropic hfc's
were found. In all cases the Al + ion was in the nodal
plane of the unpaired 0 2p„orbital. In Na P-alumina
the orientation of the 2p orbital is determined by a Na+3'

vacancy in the mirror plane (Fig. 2). In Ge02 (Ref. 2)
and Si02 (Ref. 3), Al + is incorporated as an impurity and
the hole is trapped at a nearby 0 ion. In Ge02 (Fig. 3)
the hole is perpendicular to the plane spanned by Al +-
Ge +-Ge"+ while in Si02 it is thought to be perpendicular
to the plane spanned by Al +-0(3)-Si(3) (see Fig. 4). In
A1203 doped with Mg + it was established by ENDOR
that the hole interacts with two Al + ions in the first shell
and one Al + ion in the second shell and that one Al +
neighbor is missing in the second shell. This is in agree-
ment with an earlier g-factor analysis. ' '" The Al + va-

FIG. 2. Model of the 0 -A13+ center in Na P-alumina (after
Ref. 1).

FIG. 4. Model of the 0 -Al + center in Si02 (after Ref. 3).
Shorter Si-0 bonds are indicated by shading.
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TABLE V; Comparison of theoretical and experimental hfc's for several 0 -Al + centers.

Center &o(ao)
Experiment

A (MHz) B~~ (MHz) v»
V

Theory
A(E.o) (MHZ) R/Rp B~~ (MHZ)

0 in Na-f3-alumina (Ref. 1}
(Al) in GeOq (Ref. 2)
(A10q) in Si02 (Ref. 3)

in A1203..Mg + (Ref. 4)

'Assuming Al + vacancy.
Assuming Mg + in Al + vacancy.

3.17
3.54
3.40
3.75
3.45
3.30

—23.1
—12.5
—16.2
—7.3

—14.2
—19.0

1.6
1.86
2.10
2.18
2.06
2.00

0.368
0.706
0.368
0 559'

0.283

—43.7
—13.5
—28.6
—11.1
—19.0
—25.2
—18.4
—31.4
—41.1

1.11
1.01
1.09
1.06
1.05
1.05
1.14
1.13
1.13

2.2
2.9
2.4
2.7
2.7
2.6
2.3
2.3
2.2

cancy is most probably filled by a Mg +, but this, howev-
er, could not be conclusively determined from the analysis
of the ENDOR data. The oxygen is assumed to be in the
plane spanned by two first-shell and one second-shell
Al + neighbors and the unpaired p orbital is perpendicu-
lar to that plane. (See Fig. 5). The experimental hfc's of
the four 0 -Al + defect centers are given in Table V.
Except for 0 in Na P-alumina, the hf tensors were
found not to be fully axially symmetric. However, in view
of the approximate nature of the theory only the "axial"
part B~~

——B =2b of the anisotropic tensor is listed and
discussed. In general, one must consider also
B~= —b+ b' and B~~ = —b —b', b' representing the de-
viation from axial symmetry. b' is, however, small for
the centers considered here.

Figure 6 shows that the isotropic hfc, 2, varies ex-
ponentially with the distance between 0 and Al +. The
solid line was calculated with the parameters given in
Tables I and II. Also plotted are the experimental isotro-
pic hfc's for the four centers of Table V, taking the 0

Al + distance to be the regular 0 -Al + distance, Ro,
for an undistorted lattice. In the case of 0 in
A1203.Mg + the site of 0 within the triangle spanned by
the two first-shells and one second-shell Al + neighbors is
not known. Using the slope of ln

~

2
~

versus 0 -Al +
distance from Eq. (10) and Vz~ from Table I (solid line in

Fig. 6) one can find a particular site within the undistort-
ed Al + triangle from which the distances to the three
Al + corners are such that the experimental isotropic
hfc's approximately follow the exponential law with the
theoretical slope in the semilog plot. These distances are

100

C3

[0001j

C2 [0110j

I

3.0 3.2
I

34
R/ao

I

3.6
l

3.8
I

4.0 4.2

AI3+~~ M ~+
9

e - AI~03

FIG. 5. Model of the 0 -Al + center in a-A1203.Mg + (after
Ref. 4).

FIG. 6. Semilog plot of the isotropic hfc A vs O -Al + dis-
tance (R). Solid line: according to Eq. (10) and Tables I and II.
Dotted-dashed line: according to theory assuming V2~

——0.368
Py

H (see text). Experimental data are plotted for Rp, the undisto-
rted 0 -Al + lattice distance. Circle: 0 in Na P-alumina; tri-
angles: 0 in A1203.Mg +; cross: (A104) in Si02,' square:
(Al) in Ge02.
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the Rp in Table IV and Fig. 6. It turns out, that the 0
site determined in this way is within 0.1 a.u. of the projec-
tion of the natural 0 site onto the plane spanned by the
three Al +. Quantitatively, the theory predicts values
which are too high by 12—25%.

Figure 7 shows B~~, ~ B~~ ~, and the resulting B~~ for the
parameters given in Tables I and III (solid curves). B~~
follows an exponential law with distance quite well. For
distances in the range 3.4 to 4.2 a.u. the calculated B~~ is
practically constant, as is observed experimentally. For
very different centers, the observed B~~ always has approx-
imately the same value, albeit one which is 40—50%
higher than the experimental data. Except for precise
agreement, the theory thus predicts satisfactorily the
overall observations: (1) A is negative and follows an ex-
ponential law with distance and accordingly varies very
much from defect to defect. (2) B~~ is considerably small-
er than B

~r
and approximately constant over a wide range

of 0 -Al~+ distances.
The quantitative agreement for the undistorted lattices

is approximately as good as usually obtained for the
theoretical interpretation of hfc's of other point defects in
ionic crystals. '

For a more detailed quantitative comparison between
theory and experiment, which can be useful in applying
the theory to estimate lattice expansion or contraction
near the defect, one has to discuss two parameters, which
enter decisively into the theoretically predicted values:
the average excitation energies and the O -Al + dis-
tances. One would expect the 0 -Al + distance to be
somewhat larger than the regular 0 -Al + distance,
since the 0 center is at a positively charged position in
the crystal and would tend to repel the Al + cations. In
fact, in previous work the low value of B~~ compared to
B

~~
was explained by an increase of that distance of up to

-40%, which, as will be shown below, overestimates
this effect substantially. The method for determining the
electrostatic contribution to the average excitation ener-
gies, Eq. (6), on the one hand, probably overestimates the
magnitude of this quantity and, on the other hand, does
not take into account the crystal-field effects of the sur-
rounding lattice.

From comparing the experimental isotropic hfc's for
the unrelaxed 0 -Al + distances with experiment it
would appear, that the average electrostatic contribution
Vz& (2s, 2p, ) would be 27%%uo higher than the value corre-

sponding to Eq. (6) (dashed line in Fig. 6). For this value
of V2&, however, the agreement with the anisotropic hfc's

becomes worse. Furthermore, for 0 centers in Na /3-

alumina the crystal-field energy between p„and p, was es-
timated to be about 10 eV (0.368 H). ' Taking this value
and neglecting the difference between Vz~ (2p, ) and

Py

V2~ (2s) one calculates with Eq. (10) the dotted-dashed
Py

line in Fig. 6. The experimental isotropic hfc for Na P-
alumina at the regular distance then comes out too high
by nearly a factor of 2. This discrepancy can be explained
by an increase of 11% in the O -Al + distance to
R =3.52 a.u. The dotted-dashed curve in Fig. 7 represents

B~~ estimated for this crystal-field energy. B~~ is smaller
for decreasing electrostatic contribution to the excitation

10.0
i

r

~

o. ~

3.0
I I I

3.8 4.0 4.2
I

3.2
I

3.6
R/a,

FIG. '7. Semilog plot of the components B~~ a.nd —
B~~ of the

anisotropic hfc P~~ and of B~~ vs 0 -Al + distance (R). Solid
lines: according to theory and Tables I, III, and IV. Dotted-
dashed line: according to theory assuming V2~

——0.368 H (see

text). Experimental data for B~~ are plotted for Ro, the undisto-
rted 0 -Al + lattice distance. Circle: 0 in Na P-alumina; tri-
angles: O in A120q..Mg +,' cross: (A104) in Si02,' square:
(Al) in Ge02.

3.4

energy. However, in this case, the theoretical value is still
too high by -30%. To explain the experimental Br~
value, one would need an increase in distance by only
-5%. It must be added, however, that the estimate for
B~~ is less accurate than for A, since it involves the differ-
ence of a number of terms comparable in magnitude
which can contribute to a lack of precision.

For (Al) centers in Ge02 the crystal-field energy was
estimated to be 0.7 H. Using this as the average Vzz in

Eq. (10), 3 for the regular distance is only slightly higher
than the observed value, and exact agreement requires
only a 1% increase in 0 -Al + distance. This very small
increase, compared to the former case, is expected, since
in this center the charges are reduced by one unit at both
0 and the Al + which replaces the Cre + ion, so that one
should expect pretty much the perfect crystal bond dis-
tance. The value for B~~ is again too high, here by -50%
(see Table V).

The crystal-field energy at the 0 site in A120q for an
Al + vacancy in the second-neighbor shell was calculated
to be 15.2 eV (0.559 H). ' ' If a Mg + is occupying the
Al + vacancy, it is lowered to 7.7 eV (0.283 H). ' As
done for the previous centers, the isotropic hfc's for Rp
and the increase in 0 -Al + distance necessary to explain
the experimental data were calculated for both crystal-
field energies (see Table V). Assuming an Al + vacancy,
an increase of Rp on only 5% is calculated, whereas as-
suming a Mg + occupying the Al + site requires a 13%
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increase in Ro to explain the experimental value. Com-
paring this with the previous results in GeOz and Na P-
alumina, one would rather expect an increase of 13% than
5%, since the low value in Ge02 was due to the fact that
no net charge repulsion occurred there contrary to what is
expected here. The better agreement for B~~ for the Mg +

assumption seems fortuitous. For both models the nearly
constant B~~ for the three different distant Al + neighbors
is reproduced by the theory. Although one cannot settle
beyond doubt for one of the two models from this theoret-
ical estimate, it seems more likely that Mg + is present in
the Al + vacancy as is also reasonable considering the
very large positive Coulomb energy of an Al + vacancy.

In A1203, the 0 may not be in the plane spanned by
the three Al + neighbors, since it was observed that the
principal z axes of the Al hyperfine tensors do not lie ex-
actly in that plane, which would be expected if it was in
the plane. The 0 ion is probably somewhat above the
plane towards the 0 lattice site with the p orbital per-
pendicular to the plane. This introduces also a small posi-
tive contribution to the isotropic hfc's due to overlap
terms. A more detailed discussion of the hf interactions
and the model for this center will be given in Ref. 4.

Finally, the hfc's of (A104) centers in Si02 seem to fit
into the range of values discussed above (see Figs. 6 and 7
and Table V). Ro in Table V is an estimate of the Al-0
bond length in quartz which was obtained by scaling the
Si—0 long bond length by the ratio of the Al —0 and
Si—0 bond lengths in various oxides. Also for this center
one certainly expects an increase of the 0 -Al + distance
as in the other centers discussed. Unfortunately, there is
no estimate of the crystal field available It is difficult to
calculate it because of the more covalent nature of the
crystal compared to the other crystals discussed. The
values for V2p from Table I [Eq. (6)] are approximately.2'
an upper limit judging from the experimental isotropic
hfc for the nonrelaxed 0 -Al + distance. Taking
V2p -10 eV as an average value between this and no elec-2p

trostatic contribution at all, which is the unlikely other
extreme, one arrives at an increase of the 0 -Al + dis-
tance of -9%. This is much smaller than the increase of
about 40% estimated previously on the basis of a point-
dipole model to explain the anisotropic hfc without con-
sidering the polarization effects.

In summary, the theory of transferred spin polarization
on the oxygen ion to the neighboring Al + ions explains
the major features of the hfc's in a number of 0 -Al +

defects in which Al + is in a nodal plane of the unpaired
oxygen p orbital A rather precise estimate of the 0
Al + distance can be achieved from the experimental iso-
tropic hfc's when the electrostatic contribution to the
average excitation energy of oxygen is approximately
known. Since 3 depends exponentially on this distance,
this estimate is rather good despite uncertainties in the
average excitation energies. On the other hand, with an
estimate of the bond length and the experimental value for
the isotropic hfc, one can obtain an approximate crystal-
field energy which is often difficult to obtain. The
theoretical values for B~~ are less reliable since it is the
difference of a fairly large number of terms of comparable
magnitude. The theory reflects, however, the experimen-
tal findings of nearly the same value of B~I for a wide
range of 0 -Al + distances and it explains the strong
reduction compared to a pure classical dipole-dipole in-
teraction. It was not attempted in this paper to apply the
theory to all known 0 -Al + centers. Its application
should, however, lead to more reliable estimates of the
bond lengths than was possible so far.
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